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Abstract  

Erastin, which has been initially identified as a synthetic lethal compound against 

cancer expressing an RAS oncogene, inhibits cystine/glutamate antiporters and causes 

ferroptic cell death in various cell types, including therapy-resistant mesenchymal cancer 

cells. However, despite recent emerging evidence for the mechanisms underlying ferroptosis, 

molecular biomarkers associated with erastin-dependent ferroptosis have not yet been 

identified. In the present study, we employed isogenic lung cancer cell models with therapy-

resistant mesenchymal properties to show that a redox imbalance leads to glutathione 

depletion and ferroptotic cell death. Subsequent gene expression analysis of pan-cancer cell 

lines revealed that the activity of transcription factors, including nuclear factor erythroid 2-

related factor 2 (NRF2) and aryl hydrocarbon receptor (AhR), serve as important markers of 

erastin resistance. Based on the integrated expression of genes in the nuclear receptor meta-

pathway (NRM), we constructed an NRM model and validated its robustness using an 

independent pharmacogenomics dataset. The NRM model was further evaluated by 

employing it in the sensitivity testing of nine cancer cell lines for which erastin sensitivities 

had not yet been undetermined. Our pharmacogenomics approach has the potential to pave 

the way for the efficient classification of patients for therapeutic intervention using erastin or 

erastin analogs. 

 

Keywords: Erastin, Ferroptosis, Redox imbalance, NRF2, Aryl hydrocarbon receptor, Elastic 

net, Drug response biomarker 
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Introduction  

Erastin (which derives its name from being an eradicator of RAS and ST-expressing 

cells) is a small molecule that was first reported as inducing synthetic lethality in cancer cells 

expressing an RAS oncogene [1] through an oxidative stress mechanism under strong RAS-

RAF-MEK signaling [2]. The mode of action (MoA) for cell death was subsequently 

identified as ferroptosis, a unique iron-dependent form of nonapoptotic cell death [3]. Erastin 

inhibits system Xc
- (XCT), thus impairing the cystine/glutamate antiporter (encoded by 

SLC7A11) that is involved in the synthesis of glutathione (GSH) from imported cystine and 

creating a void in antioxidant defense that leads to ferroptosis [3]. Small molecule inhibitors 

of ferroptosis have since been developed for a variety of therapeutic applications to inhibit 

pathological cell death, including the treatment of neurodegenerative diseases, stroke, and 

ischemic injuries [4]. In particular, ferroptosis inducers (FINs) such as erastin have been 

extensively examined as novel anti-cancer therapeutics [5, 6]. However, to date, clinical trials 

of FINs such as sulfasalazine, which is an inhibitor of XCT [7] in glioma patients, have been 

unsatisfactory due to the lack of clinical response [8]. 

The high dependency of therapy-resistant mesenchymal cancer cells (with high ZEB1 

expression) on the lipid peroxidase pathway governed by phospholipid glutathione 

peroxidase 4 (GPX4) increases their vulnerability to ferroptosis via GPX4 inhibition or GSH 

depletion with erastin treatment [9]. GPX4 dependency on erastin induced ferroptic cell death 

occurs in cell-type-specific manner [10], though the strength of this vulnerability varies in a 

cell-specific manner. As such, a variety of cellular and molecular components and processes, 

such as metabolic heterogeneity[11], mesenchymal properties [9], differentiation status [12], 

p53 status [13], transcription factors [14, 15], signaling pathways (e.g. MAPK[16], ATM [17] 

or YAP [18]), integrins [19], GSH regulators [20], and levels of monounsaturated fatty acid 

[21], have been examined as determinants of ferroptosis vulnerability in a diverse range of 
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cell model systems. Despite this, the variation in the susceptibility of cancer cells to 

ferroptosis, via either XCT or GPX4 inhibition, depending on cellular and molecular 

characteristics has not yet been fully understood. In this regard, the establishment of a unique 

signature that enabled the prediction of erastin vulnerability would be useful for patient 

stratification, which would maximize the efficacy and minimize the toxicity of anti-cancer 

therapy using erastin analogs that are currently being tested in clinical trials [22]. 

The pharmacogenomics approach has advanced the understanding of the MoA of 

various drugs by systematically identifying molecular biomarkers that contribute to drug 

responses [23, 24]. In this respect, gene expression data have been found to be the most 

informative of available omics datasets (e.g., genomic, proteomic, and epigenomic profiling 

data) in predicting the drug response of human cancer cells [25, 26]. In precision oncology, 

transcriptomic profiling has been widely employed to screen for predictive gene signatures 

that effectively guide treatment decisions using a few to a thousand cultured cell lines as 

surrogates [9, 12, 27, 28]. The key resources behind these efforts are the Cancer Cell Line 

Encyclopedia (CCLE) and the Cancer Therapeutics Response Portal (CTRP); these databases 

provide both transcriptomic data and data from the sensitivity screening of 860 cancer cell 

lines against 487 compounds [29, 30]. These datasets make it possible to revisit the MoA of 

particular drugs by offering robust molecular signatures from distinct features of cell lines 

that exhibit differences in their drug sensitivity. 

In the present study, we constructed an effective model for the prediction of erastin 

sensitivity based on the basal gene expression and drug-response profiles of pan-cancer cell 

lines obtained from the CCLE and CTRP datasets. This model revealed that nuclear receptor-

enriched gene signatures are important determinants of erastin-induced ferroptotic cell death. 

Our approach accurately predicts the erastin sensitivity of cancer cell lines based on their 
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basal gene expression, indicating that it would be useful for identifying patients who could 

potentially respond to erastin treatment. 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.13.038430doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.038430


 7

Materials and Methods  

RNA sequencing (RNA-seq) and data processing 

Total RNA was isolated using Trizol according to the manufacturer’s instructions. For library 

construction, we used the TruSeq Stranded mRNA Library Prep Kit (Illumina, San Diego, 

CA). Briefly, the strand-specific protocol included the following steps: (1) strand cDNA 

synthesis, (2) strand synthesis using dUTPs instead of dTTPs, (3) end repair, A-tailing, and 

adaptor ligation, and (4) PCR amplification. Each library was then diluted to 8 pM for 76 

cycles of paired-read sequencing (2 X 75 bp) on an Illumina NextSeq 500 following the 

manufacturer’s recommended protocol.  

The sequencing quality of the raw FASTQ files was assessed using FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality reads and the 

adapter sequences within these reads were eliminated using BBDuk (http://jgi.doe.gov/data-

and-tools/bb-tools/). Trimmed reads were aligned to the GRCh37 reference genome (build 38) 

using the STAR aligner (v2.6.0a). Gene-level transcripts per million (TPM) and read counts 

were calculated using RSEM v.1.3.1. with Gencode v19 annotation. The FASTQ files and 

processed data are available in the Gene Expression Omnibus (GEO: GSE135402). Genes 

differentially expressed between A549 and TD cells were obtained using the DESeq2 

package in R. 

Cancer cell line RNA-seq and erastin sensitivity data 

Baseline gene-expression profiles of 932 cancer cell lines were downloaded from the NCI’s 

Genomic Data Commons (GDC, https://gdc.cancer.gov/) as BAM files. Gene-level TPM and 

expected counts were quantified using RSEM v.1.3.1. with Gencode v19 annotation. A total 

of 18,965 protein-coding genes were retained for model training and subsequent analysis. The 

erastin drug-response profiles of 804 cancer cell lines were obtained from CTD2 Data Portal 

(https://ocg.cancer.gov/programs/ctd2/data-portal). Cell viability data were converted into 
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growth inhibition data and adjusted to fall within a range of 0–100 %. The adjusted growth 

inhibition data were subjected to four-parameter logistic regression and low-quality profiles 

(goodness of fit < 0.7) removed. The dose-response area under the curve (AUC) for 

sensitivity was normalized to a range of 0–1 using the maximum AUC, which was assumed 

to represent 0 % growth inhibition, for a given concentration range. 

Predictive modeling of erastin sensitivity 

To identify the genes that were most predictive of erastin sensitivity, we adapted an elastic 

net regression approach, which is a penalized model widely used for feature selection, 

particularly with genome-scale data [31]. A total of 598 non-hematologic cancer cell lines 

with available RNA-seq (TPM) and erastin sensitivity (AUC) data were used to build 

multiple models, each of which considered the expression of genes within the top 16 

individually enriched pathways as a feature set (i.e., one model per pathway). Each model 

was assessed using nested leave-one-out cross-validation (LOOCV) in which a single sample 

(i.e., a cell line) was used to test a model trained by the remaining samples (i.e., the other 597 

cell lines). This process was repeated until all cell lines had been used as the test dataset. For 

each training run, the optimal parameters (α and λ) were taken to be those that minimized the 

mean square error for five-fold cross-validation with 10 iterations of the training data. 

Predicted AUC values from each test set were concatenated and then compared to the actual 

AUC data using Spearman correlation to evaluate prediction performance. The same 

procedure was also applied to assess the generalized linear regression models in Figure 4D. 

For interpretation and visualization purposes, the predicted AUCs were scaled to the 

distribution of the actual AUC data. The overall process was conducted using the glmnet and 

caret packages in R. 

Statistical analysis 
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The statistical significance of any differences among three groups and between two groups 

was determined using one-way analysis of variance (ANOVA) with multiple comparisons 

and Student’s t-tests (two-tailed), respectively. Significance was set at P < 0.05 (*), P < 0.01 

(**), and P < 0.001 (***). The error bars represent the mean ± s.d. 
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Results 

Higher sensitivity to ferroptosis in mesenchymal lung cancer cells  

In order to examine selective ferroptosis in therapy-resistant mesenchymal cancer 

cells  [9], we used erastin to trigger ferroptosis because a potent analog of erastin, belonging 

to the group of class I inhibitors targeting XCT is currently undergoing clinical trials for the 

treatment of cancer [32] due to its in vivo suitable pharmacokinetics, a characteristic not 

shared by other FINs [33]. For the isogenic pairing of epithelial and mesenchymal lung 

cancer cells, the mesenchymal lung cancer cell lines (transdifferentiated lung cancer cells, 

hereafter referred to as TD cells) derived from A549 cancer cells following chronic TGFβ 

exposure [34] were used in this study (Fig. 1A). Consistent with previous reports [27, 35–37], 

RNA-seq data analysis of the A549 and TD cells (GSE135402) revealed that mesenchymal 

and therapy-resistant gene signatures were upregulated in TD cells (Fig. S1A). Of particular 

interest was the fact that TD cells exhibiting chemoresistance [27, 37] were highly sensitive 

to erastin-induced cell death (Figs. 1A and B). Selective cell death of TD cells after erastin 

treatment was highlighted when A549 and TD cells were co-cultured (Figs. 1C and S1B and 

Movie S1). As with the selective death of TD cells, erastin-induced cell death was 

significantly blocked by ferrostatin-1, a ferroptosis inhibitor (Fig. 1D), but not by a pan-

caspase inhibitor (Fig. 1E). We thus concluded that the TD cell death induced by erastin was 

the result of ferroptosis. 

 Given the important role of XCT in glutathione (GSH) synthesis, the higher 

sensitivity of TD cells to erastin (Figs. 1A and B) could be the result of the lower basal levels 

of reduced GSH compared to oxidized GSH due to the inhibition of XCT by erastin, as 

previously described [10]. As predicted, the ratio of reduced GSH to oxidized GSH (GSSG) 

was significantly lower in the TD cells, independent of erastin treatment (Fig. 1F). Thus, we 

also monitored the levels of reduced GSH in real-time using FreSHtracer, a recently validated 
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real-time fluorescent thiol tracer [38]. Consistent with the results shown in Figure 1F, the 

recovery of GSH after thiol-specific oxidant diamide treatment was significantly retarded in 

TD cells when compared to A549 cells (Fig. 1G). Importantly, supplementation with GSH 

monoethyl ester (GSH-MEE), a cell-permeable derivative of GSH, markedly rescued TD cell 

death following erastin treatment (Fig. 1H). As a result, it is clear that the lower basal levels 

of the reduced form of GSH in TD cells cause high sensitivity to erastin-induced ferroptosis, 

as previously reported [12]. 

 

Expenditure of GSH due to the redox imbalance caused by NOX4 induction    

To explain the consistently lower levels of the reduced form of GSH in TD cells, we 

first examined the reactive oxygen species (ROS) levels in A549 and TD cells. Interestingly, 

basal ROS levels and ROS levels induced by erastin treatment were much higher in TD cells 

(Fig. 2A). It is generally accepted that the redox imbalance in cancer cells leads to recurrence, 

drug resistance, and metastasis [39], which are typical characteristics of the epithelial–

mesenchymal transition (EMT). Accordingly, it is assumed that the lower levels of the 

reduced form of GSH observed in TD cells result from the consistently high levels of ROS. 

Along the same lines, the anti-oxidants β-mercaptoethanol (BME) and N-acetyl-cystine 

(NAC) significantly attenuated erastin-induced ferroptosis (Figs. 2B and C). 

The redox imbalance that leads to GSH depletion and higher ferroptosis sensitivity in 

TD cells could be caused by the induction of genes that may affect the mechanisms 

underlying the regulation of ROS. To identify these genes, we investigated the changes in 

global gene expression in A549 and TD cells. Of the genes upregulated in TD cells, we 

focused on ROS regulatory genes (Fig. S2A, red dots) and identified NADPH oxidase 4 

(NOX4) as a candidate because of the obvious role of NOX4 in both ROS production [40] 

and ferroptosis [16] (Fig. 2D). High-level NOX4 expression in TD cells (Fig. 2E) was found 
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to be responsible for erastin-induced ferroptosis because chemical inhibition using GKT-

137831 (a NOX1/4 inhibitor) or the knockdown of NOX4 using siRNA (Fig. S2B) rescued 

ferroptosis after erastin treatment in these cells (Figs. 2F and G). The high ROS levels in TD 

cells were also markedly reduced following NOX4 depletion (Fig. 2H). Similar results were 

obtained from the stable knockdown of NOX4 using shRNA (clone #4, Fig. S2C) (Figs. 2I 

and J). 

 

NOX4 as an insufficient marker for erastin sensitivity 

 Because the high-level expression of NOX4 in TD cells appeared to be responsible 

for erastin-induced ferroptosis (Fig. 2), we hypothesized that cancer cells with high-level 

NOX4 expression would be susceptible to erastin-induced ferroptosis. Given that a few 

previous studies have demonstrated the importance of NOX4 in cancer malignancy [41], 

metastasis [42] and drug resistance [43] as well as in the regulation of EMT [44, 45], erastin 

could be a promising candidate drug for the treatment of NOX4-expressing cancers with an 

otherwise poor prognosis [41]. 

Because strong mitogenic signaling from RAS oncogenes produces ROS [46], which 

promote cell proliferation, it is possible that cancer cells with an RAS oncogene may be more 

susceptible to erastin [1, 2], leading to the suppression of GSH synthesis [47]. Thus, we 

examined erastin sensitivity in seven in-house lung cancer cell lines with and without RAS 

mutations (Fig. S3A). Unexpectedly, it was found that the oncogenic mutation of KRAS was 

not associated with either erastin sensitivity or basal ROS levels (Figs. 3A and S3B). The 

seven lung cancer cell lines could be classified into erastin-sensitive (erastin S: H1650, Calu1 

and TD) and erastin-resistant (erastin R: H460, H1299, H358 and A549) groups regardless of 

the presence of a KRAS mutation or ROS levels (Figs. S3A and B). The time-dependent cell 

viability of Calu1 cells (the most sensitive to erastin of the tested cell lines) after erastin 
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treatment was markedly restored by BME treatment and significantly delayed by ferrostatin 

treatment, confirming that Calu1 cells underwent erastin-induced ferroptosis (Fig. S3C). 

Similarly, pretreatment with GKT-137831 markedly rescued cell death in Calu1 cells (Fig. 

S3D), while the ectopic expression of NOX4 in erastin-resistant A549 and H358 cells 

sensitized them to erastin treatment (Fig. S3E). These results are consistent with a recent 

study that demonstrated that the NOX4 induced by TAZ treatment leads to ferroptotic cell 

death [48]. 

To our surprise, the expression levels of NOX4 and other NOXs (e.g. NOX1, 2, 3 and 

5) were not strongly associated with erastin sensitivity (Fig. 3B), in contrast to a previous 

study that reported a close correlation between NOX1 or NOX4 expression and the response 

to erastin [3]. In addition, the expression of ZEB1 and GPX4 in these cell lines was not 

closely correlated with erastin sensitivity (Fig. 3C). This was also observed in lung cancer 

cell line data obtained from the CCLE and CTRP (Fig. 3D). As a result, we concluded that 

the individual expression levels of these genes cannot be used to indicate the susceptibility of 

cancer cells to erastin-induced ferroptosis. 

 

Systematic investigation of the molecular mechanisms associated with erastin response 

To further examine the association between erastin sensitivity and known genomic 

characteristics in a variety of cancer cell lines, we explored cell-line omics profiles and drug 

response data from the CCLE and CTRP. Consistent with previous observations (Fig. 1), the 

expression profiles for the isogenic lung cancer cell models A549 and TD were clustered with 

those for the erastin R and S groups, respectively, of CCLE lung cancer cells (Fig. 4A, Fig. 

S4A). However, though erastin was initially employed to target oncogenic RAS, no 

consistent association between erastin sensitivity and status of RAS mutations was observed 

(Fig. S4B). Rather HRAS mutant cell lines exhibited moderate resistance to erastin (t-test, P 
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< 0.05). In addition, a previous report has shown that therapy-resistant mesenchymal cancer 

cells that are highly sensitive to GPX4 inhibitors are also sensitive to erastin [9]. However, 

our correlation analysis between cell-line mesenchymal scores [9] and drug sensitivity found 

erastin had only a modest effect on the mesenchymal cancer cells (Fig. S4C). In fact, the 

sensitivity to erastin differed from the sensitivity to GPX inhibitors according to the cell type 

is still in question [49]. Taken together, neither RAS mutations nor mesenchymal signatures 

are suitable as indicators of erastin sensitivity. 

We subsequently employed a two-step process to determine the molecular pathways 

that contribute to erastin sensitivity using pan-cancer transcriptome data. First, we conducted 

single-sample gene set enrichment analysis (ssGSEA) across 598 non-hematologic cancer 

cell lines using biological pathway information, which yielded 443 pathway-enrichment 

scores (PESs) for each cell line (Table S1). By correlating these cell-line PESs with 

sensitivity to erastin, the 16 pathways most strongly related to erastin sensitivity were 

selected (Fig. 4B). The A549 and TD cell lines exhibited similar enrichment patterns for 

these pathways (Fig. 4C). In the second step, we applied elastic net regularized regression [31] 

to identify the subset of genes that were most strongly associated with the response to erastin 

in each of the 16 pathways. Overall, regularized regression outperformed general linear 

regression and ssGSEA (Fig. 4D, Table S2), suggesting that erastin sensitivity can be 

predicted by the integrated expression of a set of designated genes in these pathways. In 

particular, the elastic net based on the nuclear receptor meta-pathway (hereafter referred to as 

the NRM) had the strongest correlation (r = 0.456), which was surprisingly higher than that 

based on all genes (r = 0.429, the red line in Fig. 4D). 

 

The relationship between nuclear receptors and erastin resistance as revealed by 

predictive models 
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To identify the most predictive gene signature in the NRM, we constructed an elastic 

net model using all 598 cancer cell lines employing the expression of the 312 genes involved 

in the NRM. This model included 43 predictor genes with non-zero coefficients (Fig. 5A), 

most of which were involved in one or more of the other 15 enriched pathways (Fig. 5B). 

Among them, NRF2 and Aryl hydrocarbon receptor (AhR) pathways accounted for the 

largest proportion (Fig. 5C and Fig. S5A). Correlation analysis of the cell-line PESs and 

sensitivity to class II FINs (e.g. RSL3, ML162, and ML210, which are direct GPX4 inhibitors) 

revealed that NRF2- and oxidation-related genes were commonly associated with resistance 

to FINs (Fig. S5B). This is in line with previous reports that found that NRF2, a master 

regulator of oxidative stress responses, modulates ferroptosis [50, 51]. However, the AhR 

pathway was found to be the only factor associated with resistance to erastin, unlike the 

NRF2 pathway, which is commonly associated with resistance to both erastin and class II 

FINs (Fig. 5D). Interestingly, an analysis of genome-wide CRISPR-Cas9 loss-of-function 

screening data (DepMap 19Q2, https://depmap.org/portal/) revealed the high dependency on 

GPX4 or genes encoding selenoproteins (SEPSECS, EEFSEC, and SEPHS2) in cells that are 

sensitive to all FINs (Fig. 5E, Fig. S5C), consistent with previous studies [10, 52]. In contrast, 

the knockout of AHR (the gene encoding AhR) led to vulnerability in erastin-resistant cancer 

cell lines, while the deficiency of NFE2L2 (the gene encoding NRF2) increased sensitivity to 

both erastin- and GPX4 inhibitors-resistant cells (Fig. S5C). This suggests that the AhR 

signature, which complements the NRF2 signature, accounts for the unique dependency of 

erastin-resistant cells, thus increasing the predictive power of the NRM model for erastin 

response. 

 

High correlation between NRF2 activity and erastin resistance 
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As predicted, the basal NRF2-dependent gene response determined by the antioxidant 

response element (ARE) was significantly stronger in erastin R cancer cells than in erastin S 

cancer cells (Fig. 6A). In the isogenic pair with different sensitivity to erastin (A549 vs TD 

cells), induction of CHAC1, an NRF2 downstream gene [53] that acts as a marker for 

ferroptosis [54], was significantly lower in TD cells (Fig. S6A). In addition, the activation of 

the NRF2-dependent gene response by tert-Butylhydroquinone (tBHQ), a well-established 

NRF2 activator [55], induced typical NRF2-dependent genes such as GCLC, GCLM, and 

NQO1 in a dose-dependent manner (Fig. 6B). Under these conditions, the erastin sensitivity 

of Calu1 cells was significantly reduced (Fig. 6C). Conversely, the knockdown of NFE2L2 

(which encodes NRF2) in erastin R cells sensitized them to erastin treatment (Fig. 6D). These 

results suggest that the NRF2 pathway is closely associated with erastin sensitivity. Similarly, 

the mutation of KEAP1, which leads to an NRF2-dependent adaptive response in cancers [56] 

was significantly correlated with erastin resistance, while RAS, TP53, or NFE2L2 mutations 

were not (Fig. S6B). The expression of six typical NRF2 target genes (SLC7A11, a molecular 

target of erastin, NQO1, GCLC, GCLM, ME1, and SRXN1) involved in anti-oxidant activity 

was significantly correlated with erastin sensitivity in lung cancer cells and all cancer cells 

(Fig. S6C). These results support that conjecture that NRF2-associated genes are a major 

determinant of erastin sensitivity. 

 

Association between AhR dependency and erastin resistance  

Because the AhR signature was enriched in the NRM model, we sought to determine 

whether AhR activity differed between the erastin R and S groups. To achieve this, AhR 

activity was monitored in three cell lines each within the erastin R and S groups by measuring 

CYP1A1, a well-characterized AhR downstream target, after treatment with kynurenine (Kyn), 

a ligand of AhR [57]. As predicted, CYP1A1 was strongly induced by Kyn treatment in two 
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out of the three cell lines in the erastin R group, while it was only moderately induced in all 

three cell lines in the erastin S group (Fig. 6E). 

Modulation of the AhR gene response was then compared for the isogenic pair of 

A549 and TD cells with different erastin sensitivities. Consistent with the data shown in 

Figure 6E, the AhR gene response following Kyn treatment was markedly lower in TD cells, 

which showed higher sensitivity to erastin, compared to that of A549 (Fig. 6F). Similar 

results with AhR activation with Kyn (Fig. S6D) and high dose of tBHQ [58] (Fig. S6F) were 

reproduced in the comparison between A549 and Calu1. These observations led us to 

hypothesize that AhR activation in A549 may confer erastin resistance. Based on the increase 

in MT1G, which is induced during ferroptosis [59] (Fig. 6G), and in the number of dead cells 

(Fig. 6H) following AhR depletion and subsequent erastin treatment, we concluded that the 

depletion of AhR promoted ferroptotic cell death in A549 cells. In contrast, erastin sensitivity 

was attenuated by AhR depletion in Calu1 (Fig. 6I). Thus, the enrichment of the AhR 

pathways in the NRM model may account for the clear dependency of erastin sensitivity on 

AhR. 

 

Predictive performance of the NRM model for erastin sensitivity 

Next, we assessed the specificity of the NRM signature in terms of predicting erastin 

response. Correlating cell-line NRM predictions with the sensitivity to each of 543 drugs in 

CTRP showed that erastin, followed by class II FINs (ML210, RSL3, ML162, and ML239), 

had the highest priority, but STATINs that have been shown to induce ferroptosis [9] did not 

(Fig. 7A). The NRM gene signature was more effective in predicting erastin sensitivity than 

the three independent mesenchymal signatures used to identify FINs as the best treatment 

option for mesenchymal cancer in a previous study [9] (P = 7.13 x 10-7, Fig. 7B). These 

results together suggest that the NRM signature allows specific predictions of cellular 
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vulnerability to erastin-induced ferroptosis to be made, but not to FIN- or STATIN-induced 

ferroptosis.  

To evaluate the predictive performance using independent datasets, we applied the 

NRM model to gene expression data for A549 and TD and showed accurate predictions of 

erastin sensitivity in each cell line (Fig. 7C). We then compared our NRM prediction to 

recently published drug response data obtained from PRISM viability assay, a multiplexing 

screening with molecular barcoding method [26, 60]. The PRISM dataset provides an erastin-

sensitivity profile across 533 cancer cell lines, 457 of which have also been screened in the 

CTRP. Encouragingly, the PRISM profile was more closely correlated with the NRM 

prediction (Spearman’s r = 0.433) than the CTRP profile (Spearman’s r = 0.358) (Fig. 7D, 

left panel). We also observed overall agreement across the 76 cancer cell lines present only in 

the PRISM dataset (Spearman’s r = 0.27, P=0.006) (Fig. 7D, right panel). For further 

validation, we additionally predicted the erastin sensitivity of 334 cancer cell lines not used in 

NRM modeling and selected nine test cell lines and three control cell lines (Fig. S7A, Table 

S3). The nine test cell lines were divided into responders (erastin S) and non-responders 

(erastin R) based on the NRM prediction of the control cell lines. The cell death population 

size of twelve cancer cell lines was examined after erastin treatment (Fig. 7E). The erastin 

sensitivity of seven of the cancer cell lines (all except SW480 and HCC1359) was highly 

correlated with the NRM prediction (Fig. 7F). These results provide evidence that our NRM 

model is universally applicable, being able to accurately predict erastin sensitivity based on 

transcriptome data generated from different cohorts. 
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Discussion  

There is emerging evidence that mesenchymal-type cancer cells are responsible for 

malignant phenotypes [61, 62]. Thus, EMT-associated molecular targets that govern 

chemoresistance [27, 37, 63] or metastatic potential [35, 36] have been extensively studied 

for the development of novel anti-cancer therapies [64]. As such, the induction of the 

selective death of mesenchymal-type cancer cells using small molecules identified via library 

screening [65] or in silico gene signature-based analysis [9] has been highlighted as an 

effective potential strategy.  

Using isogenic lung cancer cell models, we observed that selective ferroptosis 

occurred in chemoresistant mesenchymal lung cancer cells [27, 37] (Fig. S1A) following 

erastin treatment (Fig. 1) due to the redox imbalance caused by the high expression of NOX4 

and subsequent depletion of GSH (Fig. 2). However, the mRNA expression levels of both 

NOX4 and previously identified determinants (e.g. GPX4, ZEB1, and other NOXs) were 

unable to be used as indicators of erastin sensitivity in other lung cancer cells due to cell-to-

cell variation (Fig. 3). Therefore, we adopted a pharmacogenomic approach that utilized pan-

cancer cell-line omics to fully explore predictive biomarkers for erastin sensitivity. We 

initially examined whether known markers such as the KRAS mutation status or mesenchymal 

signatures explained erastin sensitivity, but neither were able to predict erastin sensitivity in 

either lung cancer or pan-cancer cell lines. 

In our study, we applied a two-step strategy in which the molecular pathways 

associated with the erastin response were screened and then the 16 top pathways were 

assessed to identify the most relevant biomarkers. Interestingly, we found that the NRF2 and 

AhR pathways were strongly associated with erastin resistance in pan-cancer cell lines (Figs 

4 and 5). The high dependency on the NRF2 pathway for the conferral of erastin sensitivity 

was then biochemically proven in cancer cell line models (Figs. 6). In particular, a diverse 
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range of cancer malignancies results from continuous ROS generation [66] following 

oncogenic RAS mutations or elevated MAPK signaling [46], while excessive ROS can be 

sensitized to chemotherapeutics [67]. Thus, cancer cells may adapt to a high-ROS 

environment through the induction of anti-oxidant mechanisms, including KEAP1-NRF2 [68, 

69], which is why NRF2 has been studied as a promising molecular target within advanced 

cancers. Moreover, the AhR gene response, which was induced by erastin treatment, was 

higher in erastin R cells than erastin S cells. Furthermore, the depletion of AhR sensitized 

only erastin R cells to erastin, while it desensitized erastin S cells (Fig. 6). 

The NRM model, with the enriched NRF2 and AhR signatures used as predictors, 

has the potential to readily predict the erastin response of any cell lines whose transcriptome 

data are available. The robustness of this model was assessed using an independent 

pharmacogenomic dataset for pan-cancer cells and in-house isogenic lung cancer cells. The 

model was further experimentally validated using nine additional cancer cell lines whose 

erastin responsiveness had not yet been determined (Fig. 7). Given that an erastin analog is 

currently undergoing clinical trials for anti-cancer therapy [22], this approach would be 

useful for patient stratification in these trials to maximize their efficacy and for the selection 

of those patients most likely to respond to erastin-based anti-cancer therapy in the future.  

 

Data availability 

RNA-seq of A549 and TD cell lines can be obtained from Gene Expression Omnibus (GEO) 

under accession number GSE135402. 

Code availability 

Source code for training and testing the elastic net regression model is available from the 

corresponding authors upon request. 
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Figure Legends 

Figure 1 Higher sensitivity to ferroptosis in mesenchymal lung cancer cells. (A) 

Schematic diagram of model for A549 and TD (left). Microscopic images of A549 and TD 

cells 24 hours after an indicative dose of erastin. (B) Flow cytometry for Annexin V and 7-

AAD 24 hours after 40 μM erastin treatment. (C) Flow cytometry for GFP-positive cells 

(A549-GFP) compared to GFP-negative cells (TD) two days after 40 μM erastin treatment. 

(D, E) Flow cytometry for Annexin V and 7-AAD 24 hours after 40 μM erastin treatment 

with or without ferrostatin (Fer-1) pretreatment (D) or Z-VAD (E). (F) Fold ratio of 

GSH/GSSG 24 hours after treatment with 40 μM erastin in A549 or TD cells. (G) Relative 

ratio of the fluorescent intensity of FreSHtracer after treatment with diamide in A549 (open 

circle) or TD (closed circle) cells at the indicated times. (H) Levels of cell death population 

of A549/TD cells after erastin treatment with or without GSH-MEE.  

Figure 2 Expenditure of GSH due to the redox imbalance caused by NOX4 induction. 

(A) Flow cytometry for DCF-DA 24 hours after treatment with the vehicle (Cont) or erastin 

(Era) in A549 or TD cells (left). Graphical representation of the mean fluorescence intensity 

of DCF-DA (right). (B, C) Cell death population size of A549 or TD cells 24 hours after 40 

μM erastin treatment with BME (B) or NAC (C) pretreatment. (D) Venn diagram showing 

the number of shared genes involved in ROS regulation (GO: 0000302) and upregulated in 

TD compared to A549 cells. Upregulated genes that met the criteria of log2FC ≥ 4 and FDR ≤ 

10-3 were selected using DESeq2. (E) mRNA expression of NOX4 in A549 and TD cells. (F, 

G) Cell death population size in A549 or TD cells 24 hours after 40 μM erastin treatment 

following pretreatment with GKT (F) or NOX4 siRNA transfection (G). (H) Flow cytometry 

for DCF-DA 24 hours after the introduction of siRNA for the control (siNC) or NOX4 
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(siNOX4) in A549 or TD cells (left). Graphical representation of the mean fluorescence 

intensity of DCF-DA (right). (I) Graphical representation of the cell death population 24 

hours after 40 μM erastin treatment in the control (NC) or NOX4 knockdown cells (clone #4). 

(J) Flow cytometry for DCF-DA in the A549, TD control (NC), and NOX4-knockdown TD 

cells (TD#4) (left) and graphical representation of the mean fluorescence intensity of DCF-

DA (right). 

Figure 3 NOX4 as an insufficient marker for erastin sensitivity (A) Percentage of cell 

death population in the indicated lung cancer cell lines 24 hours after 40 μM erastin treatment 

(erastin R: resistant, erastin S: sensitive, * KRAS mutation). (B) mRNA expression of NOXs 

in the indicated lung cancer cell lines. (C) mRNA expression of ZEB1 (top) and GPX4 

(bottom) in the indicated lung cancer cell lines. (D) Relationship between erastin sensitivity 

and the gene expression of NOX4, GPX4, and ZEB1 in 123 lung cancer cell lines. Erastin 

sensitivity (AUC) data from the CTRP and gene expression levels from the CCLE RNA-seq 

(log2TPM) are shown. 

Figure 4 Prediction of the molecular mechanisms that contribute to erastin sensitivity. 

(A) Partial least square discriminant analysis (PLS-DA) of lung cancer cell lines (123 CCLE 

cell lines, A549, and TD) based on global gene expression profiles. To divide the CCLE cell 

lines into erastin sensitive (S) and resistant (R) groups, we roughly defined the cut-off (AUC 

= 0.7) with reference to the AUC values of two sensitive (Calu1, NCI-H1650) and four 

resistant (NCI-H1299, A549, NCI-H359, NCI-H460) cell lines tested beforehand (Fig. S4A). 

(B) The pathways most closely associated with erastin sensitivity. The association between 

the pathways and erastin sensitivity was measured using Pearson’s correlation between the 

cell-line pathway-enrichment scores (PESs) and erastin sensitivity (AUC). Pathways with an 

absolute z-normalized correlation coefficient greater than 2 were selected. Positive and 
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negative correlations are shown in red and green, respectively. Gene annotations for the 445 

pathways were obtained from Wikipathways. (C) Scaled PESs of the top 16 pathways in 

A549 and TD cells. (D) Performance of individual predictions of erastin sensitivity. The 

predictions were assessed using leave-one-out cross-validation (LOOCV) with the absolute 

Spearman’s correlation coefficient for the actual and predicted AUC. Predictions using an 

elastic net, a general linear model (GLM), and ssGSEA based on each of the 16 feature gene 

sets are represented. Elastic net predictions employing the expression of all genes (n=18,965) 

are indicated by the red line. 

Figure 5 Association of nuclear receptors with erastin resistance as revealed by the 

predictive models. (A) Bar plot showing the weight of the 43 predictor genes in the model 

for erastin sensitivity. (B) NRM model predictors involved in each of the top pathways. (C) 

Venn diagram of the number of shared genes involved in the NRF2 and AhR pathways from 

among the 43 predictor genes in the NRM model. (D) Venn diagram of representative 

functional terms accounting for the response to erastin and FINs (RSL3, ML210, and 

ML162). (E) Volcano plot highlighting CRISPR hits associated with erastin sensitivity across 

pan-cancer cell lines. Dependency is defined as the t-statistic calculated by testing the 

difference between erastin sensitivity (AUC) in the non-dependent and dependent cell lines 

for the corresponding gene. 

Figure 6 High correlation between NRF2 activity and erastin resistance. (A) Relative 

luciferase activity of the NRF2 promoter in the indicated lung cancer cell lines. (B) Relative 

mRNA levels of NRF2 downstream genes (GCLC, GCLM, and NQO1) 24 hours after tBHQ 

treatment at the indicated concentrations in Calu1. (C) Graphical representation of cell death 

population size 24 hours after erastin treatment with 50 μM tBHQ treatment. (D) Cell death 

population size 24 hours after erastin treatment in the control (siNC) or NRF2-knockdown 
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cells with siRNA (siNRF2) in A549 and H1299 cell lines. (E, F) mRNA expression of 

CYP1A1 in the indicated lung cancer cell lines (E) and the isogenic pairing of A549 and TD 

cells (F) with or without kynurenine (Kyn: 100 nM). (G) Relative mRNA expression of 

MT1G in A549 8 hours after 80 μM erastin treatment in AHR-knockdown cells with siRNA 

transfection. (H, I) Cell death population with Annexin V positive cells 24 hours after 200 

μM erastin treatment.  

Figure 7 Evaluation of the NRM model for erastin sensitivity (A) Prioritization of 

compounds based on the correlation between NRM-based LOOCV predictions and sensitivity 

profiles (AUC) for 543 compounds in the CTRP. (B) Receiver operating characteristic (ROC) 

curve illustrating the performance of the erastin sensitivity predictions using the NRM-based 

model (ROCAUC=0.84) and three mesenchymal scores obtained from a previous study. A 

cell with an AUC lower than 0.7 was considered to be sensitive. (C) Distribution of NRM 

prediction scores for all CCLE cancer cell lines, A549, and TD cells. Cell-line R and S 

groups were determined by the AUC measured for each cell line (higher or lower than 0.7, 

respectively). (D) Comparison of NRM predictions to PRISM cell viability data (log2 fold 

change) with 2.5 μM erastin treatment. Primary screened data were obtained from 

https://depmap.org/repurposing. (E) Flow cytometry plot for the 7-AAD positive cell 

population size 24 hours after 120 μM erastin treatment in the indicated cell lines. (F) 

Comparison of NRM predictions to cell viability with 7-AAD positive cells after 120 μM 

erastin treatment in the indicated cell lines.  
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