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Abstract 17 

Food-borne illness arising from Shiga-toxigenic Escherichia coli (STEC) is often linked to consumption 18 

of fruit and vegetables as the bacteria have the ability to interact with plants and use them as 19 

alternative or secondary hosts. The initial stages of the interaction involve chemotaxis, attachment 20 

and potentially, responding to the early stages of microbe perception by the plant host. We used a 21 

high-throughput positive-selection approach to identify early interaction factors of E. coli O157:H7 22 

isolate Sakai to spinach. A bacterial artificial chromosome (BAC) clone library was quantified by 23 

microarray hybridisation, and gene loci enrichment measured using a Bayesian hierarchical model. 24 

The screen of four successive rounds of short-term (2 hour) interaction with spinach roots produced 25 

in 115 CDS credible candidates, comprising seven contiguous genomic regions. Two candidate 26 

regions were selected for functional assessment: a chaperone-usher fimbrial gene cluster (loc6) and 27 

the pO157 plasmid-encoded type two secretion system (T2SS). Interaction of bacteria with spinach 28 

tissue was reduced in the absence of the pO157 plasmid, which was appeared to involve the T2SS 29 

EtpD secretin protein, whereas loss of loc6 did not impact interactions. The T2SS genes, etpD and 30 

etpC, were expressed at a plant-relevant temperature of 18 °C, and etpD expressed in planta by E. 31 

coli Sakai on spinach plants. Thus, a whole genome screening approach using a combination of 32 

computational modelling and functional assays has identified a novel function for STEC T2SS in 33 

interactions with plant tissue.   34 
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1. Introduction 35 

Shiga-toxigenic Escherichia coli (STEC) (or verocytotoxigenic E. coli, VTEC) including the predominant 36 

serotype O157:H7, are significant zoonotic and food-borne pathogens, across the globe. Although 37 

ruminant farm animals are the primary reservoir for STEC, they can be transmitted through the food-38 

chain on edible plants and plant-derived foodstuffs account for a large proportion (>50%) of food-39 

borne illness in the USA [1]. However, animals remain the primary source of STEC on plants, either 40 

through direct application of manure/biosolids as fertilisers, or more likely via contaminated 41 

irrigation water [2].  42 

STEC has been shown to interact with plants and can colonise them as secondary hosts [3]. 43 

Colonisation of STEC has been demonstrated on plant roots and in the rhizosphere [4-6], a 44 

favourable environment for bacteria that is rich in root exudates, which include a source of nutrients 45 

[7] and chemoattractants [8] . Numbers of E. coli recovered from roots often are greater than that 46 

from the leaves [6] and STEC has been shown to persist in soil and on plants for extended periods, 47 

e.g. >75 days [9].  48 

Initial interactions in host colonisation involve chemotaxis, adherence and response to host 49 

perception. Since attachment is considered a prerequisite for successful colonisation, various 50 

approaches have been taken to identify adherence factors. The genome of STEC serotype O157:H7 51 

isolate Sakai [10] encodes up to 14 fimbriae gene loci. Many of the E. coli adhesins show specificity in 52 

their host interactions, conferring a degree of tissue tropism for different E. coli pathotypes [11]. 53 

Curli, long polar fimbriae (Lpf), Escherichia coli common pilus (ECP), flagella and the T3SS have all 54 

been implicated in plant associated adherence of STEC [12-17], but several others STEC adherence 55 

gene clusters have yet to be functionally characterised. As such, we hypothesised that the STEC 56 

genome encodes additional uncharacterised factors that facilitate initial interactions with plant 57 

tissue. To identify which STEC genomic regions confer an advantage to colonisation of plant roots, a 58 

positive-selection screening approach was taken using an E. coli Sakai BAC clone library for short-59 

term (2 hours) interactions with plant roots. Spinach was selected as it is relevant to large-scale STEC 60 

outbreaks [18], and we have previously shown specific adherence to spinach roots [14, 15, 6]. High-61 

throughput screening enables wholesale analysis and previous global transcriptomic analysis has 62 

shown induction of STEC fimbrial and afimbrial adhesins in lettuce leaf lysates [19-21]. In a similar 63 

manner, high-throughput negative- and positive-selection approaches have identified colonisation 64 

factors, e.g. a random mutant library of Pseudomonas fluorescens was used to identify plant 65 

colonisation factors [22], and signature tagged mutagenesis and a bacterial artificial chromosome 66 

(BAC) library have been used to investigate STEC interactions with bovine mucus [23, 24].  Therefore, 67 

we used a BAC clone library of E. coli O157:H7 isolate Sakai that was previously used to identify 68 
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genetic loci that enhanced adherence to bovine epithelial cells, and promoted bacterial growth in 69 

bovine mucus [23]. E. coli Sakai was used because it was derived from a large outbreak arising from 70 

contamination of white radish sprouts [25]. The approach involved whole-genome interrogation 71 

using microarrays and Bayesian analysis to compare the library clones prior- and post- spinach root 72 

inoculation.  73 

The BAC library screen identified several contiguous E. coli Sakai chromosomal and plasmid regions 74 

that enriched following interaction with spinach roots, present on E. coli O157:H7-specific genomic 75 

segments known as S-loops [26]. Candidate regions that included annotated adherence factors were 76 

taken forward for characterisation. Functional analysis identified the plasmid-borne Type II Secretion 77 

System (T2SS) as a factor that conferred increased adherence for E. coli O157:H7 Sakai to both 78 

spinach roots and leaves.  79 

2. Materials and Methods  80 

2. 1 Bacterial strains and media 81 

E. coli O157:H7 isolate Sakai, hereafter E. coli Sakai [10] and its derivatives were grown in either 82 

lysogeny broth (LB) or MOPS medium [27] supplemented with 0.2 % glucose (or glycerol where 83 

indicated), 10 µM thiamine and MEM essential and non-essential amino acids (Sigma M5550 and 84 

M7145) termed rich defined MOPS (RD-MOPS) media. Antibiotics were included where necessary to 85 

maintain transformed plasmids at the following concentrations: 50 μg/ml kanamycin (Kan), 25 μg/ml 86 

chloramphenicol (Cam), 10 μg/ml Tetracycline (Tet), 50 μg/ml ampicillin (Amp).  87 

2.2 Plant propagation 88 

Spinach (Spinacia oleracea) cultivar Amazon seeds (Sutton Seeds, UK) were grown in hydroponics for 89 

the BAC screen. Seeds were germinated on distilled water agar (0.5 % w/v) and after 3-5 days 90 

transplanted into pots containing autoclaved vermiculite and sterile 0.5 x Murashige and Skoog (MS) 91 

medium (Sigma Aldrich, USA) with no carbon supplement. Plants were maintained under 92 

environmental cabinet conditions as above for 4-6 weeks. Spinach was grown similarly for BAC clone 93 

adherence assays and confocal microscopy of roots, for hydroponics plants in sterile hydroponic tubs 94 

(Greiner, UK) containing perlite instead of vermiculite (optimal for microscopy of roots).  Spinach 95 

was grown in compost for adherence assays and confocal microscopy of leaves. Seedlings were 96 

grown in an environmental cabinet with a light intensity of 150 μmol m2 s -1 (16 hour photoperiod) 97 

for a further 21 days at 22 °C. Compost-grown plants were germinated and maintained in individual 98 

posts with commercial compost and under glasshouse conditions 22 °C (16 h of light, 8 h of dark) 99 

with 130 –150 μmol m2 s -1 light intensity and 40% humidity.  100 
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2.3 Bacterial Artificial Chromosome Library screen for adherence to spinach 101 

roots 102 

The BAC library contained a partial HindIII digest of E. coli Sakai genome cloned into pV41 vector, 103 

and together with the spinach root adherence approach, is described in detail in (Accompanying DiB 104 

paper DIB-S-20-00975).   105 

2.4 Microarray hybridisation and data analysis 106 

The microarray chip used for the analysis, a 8 x 15k E. coli gene expression array, E. coli v.2 (Agilent 107 

product number G4813A-020097) and gDNA extraction is described in detail in (Submitted dataset to  108 

DiB). Gene enrichment data is deposited with ArrayExpress with accession numbers for the 109 

adherence treatment: E-MTAB-5923 and control treatment: E-MTAB-5924. A complete description 110 

of the data analysis is provided at https://widdowquinn.github.io/SI_Holmes_etal_2017/ 111 

(doi:10.5281/zenodo.822825) but briefly, probe intensity data was subjected to QA and clean-up in 112 

which three problematic probes in a single treatment arm replicate were replaced with values 113 

interpolated from the other two treatment replicates. Array intensities were quantile normalised 114 

separately for control and treatment arms, and each probe annotated by BLASTN match to the most 115 

recent CDS annotations for the E. coli DH10B and Sakai isolates (NCBI accessions: 116 

GCF_000019425.1_ASM1942v1, GCF_000008865.1_ASM886v1). Only probes that unambiguously 117 

matched to a single Sakai or DH10B CDS were taken forward in the analysis (8312 unique probes, 118 

6084 unique CDS, 49872 datapoints). 119 

A Bayesian hierarchical model was fit to the array intensity data. This model treats growth and 120 

amplification (‘control’ and ‘treatment’ arms) and adherence to roots (‘treatment arm only’) as 121 

additive linear effects describing the relationship between the measured intensity for each probe i 122 

before (xi) and after (yi) each replicate experiment. In this model, parameters for the linear 123 

components were pooled either by the CDS from which the probes are derived (for gradients: β and 124 

δ, with corresponding index for the associated CDS ����), or the array used for that replicate (for 125 

offsets: α and γ, with corresponding index for the array/replicate ����). A binary 1/0 value (�� ) was 126 

used to indicate whether a specific experiment did or did not include the spinach root adherence: 127 

��� 	  ����� �  
������ � ������� �  ��������� 

��  ~ �����, ����; �� ~ ��0, ∞� 

����� ~ Cauchy�#	 , �	��; �	  ~ ��0, 100� 


���� ~ Cauchy�#
 , �

��; �
  ~ ��0, 100� 

����� ~ Cauchy�#� , ����; �� ~ ��0, 100� 
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����� ~ Cauchy�#� , ��
��; ��  ~ ��0, 100� 

The model was fit using PyStan 2.12.0.0 under Python 3.6, with two chains each of 1000 iterations, 128 

to estimate parameter values: �����- the array-level offset due to growth for each replicate; 
����- the 129 

CDS-level influence of the growth step on probe intensity; �����- the array-level offset due to 130 

treatment/passage for each replicate; �����- the CDS-level influence of treatment/passage on probe 131 

intensity; #	 , #
 , #� , #�  - the pooled distribution means for each of the four main equation 132 

parameters; �	 , �
 , �� , ��  - the scale values for the pooled distributions for each of the four main 133 

equation parameters; and ��- the variance due to irreducible measurement error. 134 

The CDS with index ���� was considered to be associated with an advantageous effect on adherence 135 

(positive selection pressure) if the median estimated value of ����� was positive, and the 136 

corresponding 50% credibility interval did not include zero. A similar interpretation was used to infer 137 

an advantageous effect on in vitro growth/amplification from estimates of 
����. Goodness of the 138 

model fit was estimated using 10-fold crossvalidation. The model is described in full in an interactive 139 

Jupyter notebook in Supplementary Information. 140 

2.5 Molecular methods 141 

All primers and plasmids are listed in Table S2. To identify BAC clones containing the etp operon, 142 

bacterial pools consisting of 48 clones of the library were screened by PCR for etpD and etpO genes 143 

using primers etpD.RT.F, etpD.RT.R, etpO.F, etpO.R. Individual clones in the pool were then screened 144 

using the same primers, identifying clone BAC2B5.  BAC2B5 sequence was determined from primer 145 

walking near HindIII sites in pO157 with primers specific to the pVG1 vector.  PCR products amplified 146 

using primer pairs BAC2B24F and pVG1; BAC2B5F and pVG1.R were Sanger sequenced.  This 147 

confirmed the sequence from the BAC vector pVG1 to the upstream and downstream sequence at 148 

pO157 HindIII 87463.  E. coli strain Sakai was cured of the pO157 plasmid by plasmid incompatibility 149 

as described by [28].  In short, Sakai was transformed with pBeloBAC11 which has the same 150 

incompatibility as pO157. Transformants were subcultured three times in LB+Cam to cure the 151 

pO157.  Plasmid curing was confirmed by PCR for toxB, hlyAB and etpO.  The pBeloBAC11 was cured 152 

by sub-culturing three times in LB without selection.  Loss of pBeloBAC11 was confirmed by loss of 153 

Cam resistance and by PCR for the vector using primers T7 promoter and Cml_rev.  The pO157-cured 154 

and WT strains were whole genome sequenced from a paired-end library to generate short-read 155 

(Illumina) sequences (ENA accessible number: ERS4383229 – accessible 30-Jun-2020), which were 156 

annotated using PROKKA [29] for Blastp [30] comparisons, using the reference Sakai sequence 157 

(BA000007.3) on the Galaxy platform [31]. A defined deletion in the E. coli O157:H7 isolate Sakai 158 

etpD gene (pO157p03) and loc6 fimbrial locus (ECs1276-1280) was constructed using allelic 159 
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exchange as previously described [32, 14] using constructed vectors pAH005 (loc6) and pAH006 160 

(etpD), respectively. The SakaiΔetpD strain was cured for resistance to tetracycline by transforming 161 

the mutant with FLP recombinase expressing plasmid pCP20 [33]. Deletions were confirmed by PCR 162 

and Sanger sequencing, and for the Sakai ΔetpD strain by whole genome sequencing and BLASTn 163 

analysis to confirm loss of the CDS for pO157p03 locus. The promoterless etpD gene was PCR 164 

amplified (primers EtpD.Xba.pSE and EtpD.Hind.pSE) and cloned into the IPTG inducible plasmid 165 

pSE380 to create pAH007 and complement the mutation in trans. For the GFP transcriptional 166 

reporters, the 5’UTR of etpC and etpD was PCR amplified (primers EtpC.XbaI.F, EtpC.XbaI.R, 167 

pKC_EtpD.XbaF, pKC_EtpD.XbaR) and cloned into pKC026 using XbaI, creating the transcriptional 168 

fusions pAH008 (etpC) and pAH009 (etpD), respectively. 169 

2.6 Bacterial adhesion assays on plant tissues 170 

Adherence assays were performed as described in [15]. In short, plant tissues were washed and 171 

incubated in bacterial suspension (~1x10
7
 cfu/ml in sterile PBS; OD600 = 0.02) statically for two hours 172 

at 18 °C. Plant samples were vigorously washed 3 times in sterile PBS by mixing on a vortexer, 173 

weighed then homogenised with a sterile pestle and mortar. Samples were serially diluted and 174 

plated on MacConkey’s agar with appropriate antibiotics for bacterial counts. Measurements of E. 175 

coli Sakai wild type and etpD knockout, and Sakai ΔetpD transformed with the empty vector 176 

(pSE380) and etpD complement (pSE-etpD), were performed separately in batches of five biological 177 

replicates on independent leaf or root tissues as appropriate. Four batches were obtained for leaf 178 

tissue, and six for root tissue. 179 

The bacterial recovery data (logCFU) was fit to a linear model describing additive non-interacting 180 

effects due to: E. coli Sakai adhesion (α); the modification of wild-type adhesion due to knockout of 181 

etpD (β); the introduction of empty pSE380 plasmid into the knockout background (γ); the effect of 182 

introducing pSE-etpD with respect to introduction of the empty vector in the knockout background 183 

(δ); and batch effects (φ1..n). The data were fit using PyStan 2.16.0.0 under Python 3.6, and the 184 

parameter estimates for β and δ and their 50% and 95% credibility intervals were used to infer the 185 

effects of knockout and complementation of etpD, respectively. These estimates represent the 186 

change in recovered bacterial counts as a result of the specific modification (loss or gain of etpD) 187 

with respect to the appropriate control. The model fit is described in full in a Jupyter notebook 188 

(https://widdowquinn.github.io/SI_Holmes_etal_2017/notebooks/04-etpD.html). 189 

2.7 Bacterial adhesion to abiotic surfaces 190 

Bacterial strains were cultured in LB at 37°C, 200rpm, for 16 hours then washed in fresh LB, RD 191 

MOPS glucose or RD MOPS glycerol.   To assess initial attachment, the OD600 was adjusted to 0.5 for 192 

2 hours incubation in the microtiter plate; for early biofilm formation, the OD600 was adjusted to 0.02 193 
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for 24 hours incubation.  200 µl was aliquoted in quadruplicate in an untreated 96 well plate (VWR, 194 

UK).  The plate was incubated at 18°C statically before measuring adherent bacteria by Crystal Violet 195 

as described in [34]. 196 

2.8 Analysis of bacterial fluorescence in vitro 197 

Gene expression was measured from E. coli Sakai transformed with pAH008 or pAH009 following 198 

growth for ~18 hours in LB medium + Chl at 37 °C, 200 rpm before diluting 1:100 into 15 ml RD 199 

MOPS medium supplemented with 0.2 % glucose or glycerol. Cultures were incubated statically at 18 200 

°C and samples periodically removed and measured for cell density and GFP fluorescence. GFP 201 

fluorescence was measured in triplicate 200 µl volumes in a 96 well plate using GloMax plate reader 202 

(Promega). E. coli Sakai transformed with the vector control plasmid pKC026 was included as a 203 

control for background fluorescence. Fluorescence was plotted against OD600 and a quadratic line of 204 

best fit obtained. This was used to correct readings for background fluorescence. Corrected data was 205 

normalised to cell density (OD600) and values plotted using GraphPad Prism software for two 206 

experimental repeats. 207 

2.9 Confocal microscopy 208 

Fully expanded 4-week-old spinach leaves were infiltrated, by pressure injection using a 1 ml 209 

needleless syringe into the abaxial epidermis, with approx. 106 cfu E. coli Sakai + pAH009 + pmKate 210 

and the plants maintained in an environmental cabinet until observed four days later. Two leaves on 211 

two individual plants were infiltrated per experiment and the experiment repeated on spinach 212 

plants propagated several weeks later.  High inoculum levels ensured sufficient cells for observation 213 

since we have previously shown that E. coli Sakai is unable to proliferate in the apoplast of spinach 214 

and remains in a persistent state [17].  Leaf segments were infiltrated with sterile distilled water, to 215 

displace air from the apoplastic spaces between the spongy mesophyll cells, prior to mounting 216 

abaxial side up on microscope slides using double-sided tape. For spinach roots, 5 weekold spinach 217 

were grown under hydroponic culture as described, the 0.5x MS was removed and replaced with 218 

10ml 0.5x MS inoculated with 10
8 

cfu bacteria.  After four days in environmental cabinet conditions, 219 

the tub was flooded with sterile PBS to displace the perlite from the roots as non-invasively as 220 

possible.  The leafy part of the plant was removed from the root by sterile scalpel cutting 221 

approximately 5mm below the cotyledon.  After a further two washes in PBS, the root was mounted 222 

on a microscope slide, flooded with sterile PBS, and the coverslip held in place with double-sided 223 

tape. 224 

Mounted plant tissue samples were observed using a Nikon A1R confocal laser scanning microscope 225 

mounted on a NiE upright microscope fitted with an NIR Apo 40x 0.8W water dipping lens and GaAsP 226 

detectors. Images represent false-coloured maximum intensity projections as indicated, produced 227 
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using NIS-elements AR software. GFP (green) and chlorophyll (blue) were excited at 488 nm with the 228 

emissions at 500-530 nm and 663-737 nm respectively, and mKate (RFP) was excited at 561 nm with 229 

emission at 570-620 nm (magenta).   230 

3 Results 231 

3.1 Interaction screen using an E. coli isolate Sakai BAC clone library  232 

To identify candidate gene loci for E. coli O157:H7 isolate Sakai (hereafter: E. coli Sakai) that 233 

conferred an advantage to spinach root tissue interactions, a Sakai BAC clone library was employed 234 

hosted in E. coli strain DH10B, which is derived from a K-12 strain and in our hands is a poor 235 

coloniser of plants [6]. A differential screen compared BAC clones inoculated with spinach roots to 236 

BAC clones treated similarly but in the absence of spinach roots. The BAC library was inoculated with 237 

freshly harvested spinach roots for two hours (insufficient time for bacterial proliferation) in four 238 

successive rounds to enrich for interactions. Loosely-attached and non-adherent bacteria were 239 

excluded between each round, so that the only strongly-adherent population were used for 240 

subsequent inoculation rounds, since these are most likely to be retained as ‘successful colonisers’. 241 

Each round resulted in successive reductions of the number of bacteria recovered from the roots as 242 

selectivity increased, with a 400-fold reduction between round 1 and 2 from 6 x 105 cfu/ml to 1.6 x 243 

10
3
 cfu/ml, which necessitated an amplification step after the second round to ensure that there 244 

were sufficient bacteria for subsequent selection rounds 3 and 4. An additional amplification step 245 

after round 4 ensured sufficient gDNA for hybridisation to the microarray. The no-plant negative 246 

control treatment did not include spinach root tissue, where the bacteria were inoculated into 247 

medium and suspended in PBS alone, to account for gene loci in the BAC clone library that may have 248 

conferred an advantage during the amplification steps between round 2 & 3 and after round 4. After 249 

four rounds of selection and enrichment, a total of 7.17 x 108 cfu/ml of bacteria were recovered 250 

from the plant-treatment compared to 1.13 x 10
9
 cfu/ml of bacteria from the negative control 251 

treatment and taken forward for gene abundance analysis. 252 

Gene abundance in pools of BAC clone gDNA was quantified on a DNA microarray before (i.e. input 253 

pools) and after selection (output pools), for both plant and no-plant treatments (dataset submitted 254 

to DiB DIB-S-20-00975). A Bayesian hierarchical model was fitted to the probe intensity data to 255 

estimate for each CDS in the E. coli DH10B and Sakai genomes a parameter representing the 256 

selection pressure due to inoculation on the plant.  A CDS was considered to be under positive 257 

selective pressure (i.e. enriched) if its estimated value of this parameter was positive, and its 50% 258 

credibility interval did not include zero. This resulted in 115 CDS with a credible positive effect on 259 

adherence (Table S1).  260 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.13.038984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.038984


3.2 Spinach root interactions enrich E. coli Sakai genes in six genomic regions 261 

(S-loops) 262 

The 115 CDS that correlated with adherence to spinach tissue comprised seven contiguous regions 263 

of interest, of which 68 CDSs had existing functional annotation and 47 were annotated as 264 

hypothetical proteins (Table S1). Enriched genes were grouped by chromosome / plasmid location 265 

[10] and described in the context of the E. coli Sakai-specific S-loop designation [26]: S-loop 71; S-266 

loop 72 / prophage SpLE1; S-loops 85 / prophage Sp9; S-loop 225; S-loop 231; and pO157 (Fig. 1).  267 

S-loop 71: a contiguous region in S-loop 71 was identified spanning 28 loci from ECs1272-ECs1296. 268 

This region is equivalent to the genomic island OI#47 in STEC isolate EDL933, which is conserved in 269 

STEC O157 serotypes [35], and includes the loc6 fimbrial cluster, putative 270 

hemagglutinin/haemolysin-like proteins and fatty-acid synthesis genes.  271 

S-loop 72: Sakai prophage like element 1 (SpLE1) in S-loop 72 encodes 111 open reading frames 272 

(ECs1299-ECs1409 [36]), of which 36 were enriched in interaction with spinach tissue, which we 273 

termed SpLE1 (partial). Enriched genes included those for urea degradation ureA,B,EFG, of which 274 

urease genes ECs1321-1327 were repressed in response to spinach root exudates [20]. Adhesion Iha 275 

and AidA, encoded by ECs1360 and ECs1396 respectively, are also present in SpLE1, but were not 276 

enriched in a contiguous region of 50 genes (ECs1349-1398).   277 

S-loop 85: Prophage Sp9 in S-loop 85 includes a number of genes encoding non-LEE encoded (Nle) 278 

effectors (nleA, nleH2, espO1-2 and nleG [37]). This region was enriched in a separate study 279 

investigating adherence to bovine primary tissue [23], and induction of nleA was induced in STEC 280 

(EDL933) in response to lettuce leaf lysates [19].  281 

S-loop 225: Gene loci in S-loop 225 (ECs4325 – 4341) are associated with fatty acid biosynthesis and 282 

ECs4331 is annotated as a putative surfactin [26]. ECs4325-4340 were also induced in E. coli Sakai in 283 

the presence of spinach leaf lysates [20].  284 

S-loop 231: Gene loci in S-loop 231 (ECs4379 – 4387) are associated with heme utilisation and 285 

transport and ECs4379 encodes a chuS heme oxygenase [38]. ECs4383/86/87 were induced in the 286 

presence of spinach root exudates [20] and locus Z4912 (ECs4381) was induced for STEC isolate 287 

EDL933 attached to radish sprouts [39].   288 

pO157: pO157 p3,5,6, and 8 encode genes in the operon for a Type 2 secretion (T2SS) system. The 289 

T2SS of STEC has been reported to play a role in adherence to mammalian host tissues [40]. The 290 

pO157 has a role in biofilm formation, since a plasmid cured strain of E. coli Sakai was shown to have 291 

reduced EPS production and did not generate hyperadherent variants (Lim et al., 2010). 292 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.13.038984doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.038984


Furthermore, the T2SS is an important virulence factor in many phytopathogens required for the 293 

secretion of plant wall degrading enzymes (reviewed in [41].  294 

Analysis of the unclassified group (hypothetical genes) by InterProScan did not indicate any potential 295 

roles in adherence and none were selected for functional analysis: 18 had no predicted functional 296 

domains and six genes had a predicted transposase function (ECs1337-1340, Ecs3868-3869). Nine 297 

were included above: four nle effectors in prophage Sp9; urease gene ECs1321; fatty acid synthesis 298 

genes ECs4333 and 4335; and p79 and p81 from lipid operon ecf. Another four have domains of 299 

unknown function (DUF).  300 

Oon basis of gene annotation and any reference in the published literature, we focused on two 301 

candidates that may have a function in adherence, as a key aspect of initial colonisation interactions: 302 

the loc6 gene cluster from S-Loop 71 since fimbriae are well described adherence factors, and the 303 

T2SS genes on pO157, which are associated with biofilm formation. Therefore, the functional activity 304 

of loc6 and the pO157-based T2SS was assessed with spinach tissue using a series of deletion 305 

mutants. 306 

3.3 Functional characterisation of loc6 fimbrial locus 307 

A defined loc6 (ECs1276-1280) deletion mutant was constructed in E. coli Sakai and its ability to 308 

interact with spinach roots compared to the WT parental strain. There was no difference between 309 

the numbers of the Loc6 fimbriae-deficient bacteria recovered compared to wild-type, following a 310 

two-hour incubation on spinach roots (Fig. 2). This suggested that the loc6 fimbrial locus did not 311 

confer a direct advantage on spinach roots, and it is possible that genes elsewhere in the contiguous 312 

region were responsible for enrichment of the BAC clones (Table S1). 313 

3.4 Functional characterisation of the pO157-encoded Type II secretion 314 

system  315 

3.4.1 A role for pO157 in spinach interactions 316 

Candidate BAC clones containing TS22 genes (in E. coli DH10B background) were tested for their 317 

ability to interact with spinach root tissue compared to the empty BAC vector, pV41 (also 318 

transformed in DH10B). Clone BAC2B5, which encompasses the entire pO157 sequence, increased 319 

adherence to spinach roots significantly (p <0.05; students t test) compared to the pV41 vector-only 320 

control (Fig. 3A). A plant-dependent specificity of the pO157 BAC2B5 clone was determined by 321 

testing adherence to two non-plant surfaces. There was no significant difference in binding for clone 322 

BAC2B5 compared to the vector-only control on natural wool (a biotic surface mimicking root 323 

structures) (Fig. 3A; p=0.9864) or polystyrene (abiotic surface) (Crystal Violet (OD590nm) mean of 324 

BAC2B5: 0.0178 ± 0.0227; pVG1: 0.0236 ± 0.0303). 325 
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A role for the pO157 plasmid in interactions with spinach was confirmed by removal of the pO157 326 

plasmid from E. coli Sakai. Plasmid loss was confirmed by PCR for the pO157 specific genes toxB, 327 

ehxA and etpO, and from comparison of the whole-genome sequence and its isogenic parent (E. coli 328 

Sakai WT). All the annotated pO157 plasmid coding sequences were absent in the pO157-cured 329 

isolate except for two CDS associated with an IS element (IS629), while 100 % of the annotated 330 

chromosome and pOSAK1 plasmid CDS were present. The E. coli Sakai pO157-cured strain showed 331 

99.996 % average nucleotide identity to the Sakai chromosome (GCA_000008865.2)  (95.629 % 332 

alignment), with no or alignment to the pO157 plasmid, but partial coverage of pOSAK1 plasmid (100 333 

% identity, 47.822 % alignment). Inoculation of E. coli Sakai pO157-cured with spinach plants 334 

significantly reduced the number of bacteria recovered from roots and leaves compared to its 335 

isogenic parent (Fig. 3B, black and white bars respectively). Binding to spinach tissue was not due to 336 

generic adherence to surfaces, since there was no significant difference between the number of E. 337 

coli Sakai pO157 mutant and its isogenic parent recovered from natural wool (Fig. 3B, wool grey 338 

bars). 339 

3.4.2 Analysis of a T2SS mutant in spinach interactions 340 

To assess a role of the pO157-encoded T2SS in spinach binding, a defined knockout of the T2SS 341 

secretin protein, EtpD was constructed (E. coli Sakai ΔetpD). Whole genome sequencing confirmed 342 

the specific loss of the etpD CDS in its entirety, as designed. Average nucleotide identity between E. 343 

coli Sakai ΔetpD and the Sakai genome (GCA_000008865.2) showed 99.997 % identity to the 344 

chromosome (94.614 % alignment), and although short-read sequencing was performed, some 345 

contigs covered the plasmids, with 99.960 % identity to the pO157 plasmid (49.374 % alignment).  346 

Adherence of the etpD mutant was compared to the isogenic parent to spinach roots derived from 347 

plants that were propagated in compost (Fig. 4B). Recovery of the etpD mutant (E. coli Sakai ΔetpD) 348 

was reduced by 0.32 logCFU (95% credibility interval -0.56:-0.09) compared to the control (E. coli 349 

Sakai WT), although adherence was not completely abrogated. Complementation of the etpD 350 

mutant with a plasmid-borne copy of etpD (E. coli Sakai ΔetpD + pAH007) under inducible control did 351 

not restore adherence to wild-type levels, relative to cells transformed with the empty vector 352 

control (E. coli Sakai WT + pSE380) also treated with the inducing agent, IPTG (Fig. 4). Substantial 353 

variation occurred between replicate plants and the average number of recovered bacteria with the 354 

empty vector (E. coli Sakai WT + pSE380) was greater than the etpD mutant without the plasmid (E. 355 

coli Sakai ΔetpD), indicative of an artefactual effect from the addition of IPTG. This was previously 356 

reported and suggests that IPTG may influence off-target genes that directly or indirectly alter 357 

adherence to plant tissue in E. coli Sakai [14].  358 
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The role in adherence for the T2SS was also tested on spinach leaf tissue to determine whether this 359 

function extended to other tissue sites. Recovery of the etpD mutant transformed with the empty 360 

vector (E. coli Sakai ΔetpD + pSE380) was enhanced with respect to the etpD mutant alone by 0.4 361 

logCFU (95% credibility interval 0.15:0.63). Complementation of the etpD mutant using an inducible 362 

version of etpD cloned into single-copy plasmid (E. coli Sakai ΔetpD + pAH007) restored binding to 363 

2.6-fold greater than the etpD mutant (E. coli Sakai ΔetpD + pSE380) (Fig. 4).  364 

A plant-dependent specificity for etpD was confirmed by assessing binding to an abiotic surface 365 

(polystyrene), where there was no significant difference in attachment between E. coli Sakai ΔetpD, 366 

Sakai pO157-cured or E. coli Sakai WT, after either 2 hours (as measured by Crystal Violet, OD590nm 367 

<0.050 ±0.025 SD) or after 24 hours, in 3 different media types.   368 

3.4.2 Expression of T2SS in vitro  369 

The T2SS from E. coli Sakai is largely uncharacterised, both in terms of function and expression 370 

profile, with no data relating to plant-relevant environments. Therefore, expression was assessed 371 

from two independent plasmid-borne (multi-copy) transcriptional reporter fusions for etpC, the first 372 

gene of the operon, and for etpD, the outer membrane protein, since there is 211 nt between the 373 

stop codon of etpC and start codon of etpD, which includes putative transcriptional start sites (Fig. 374 

5A). It appears that etpD-K are polycistronic since there is no apparent untranslated DNA between 375 

genes, and there is a predicted ribosome binding site upstream of etpI. The reporter fusions 376 

encompassed 508 nt and 257 nt upstream of the etpC and etpD start codons, respectively. Under in 377 

vitro conditions (defined medium at 18 °C), the maximum level of expression for both genes 378 

occurred in late exponential phase of growth (OD600 ~ 1), although there were marked differences 379 

in growth rates under the different carbon source regimes: E. coli Sakai reached this cell density in 380 

two days when grown with glucose, but needed six days with glycerol as a carbon source. The 381 

relative fluorescence was normalised to cell density to allow for comparison between the reporters, 382 

and GFP fluorescence from the etpD-gfp+ reporter was five- to six-fold greater than the etpC-gfp+ 383 

reporter (Fig. 5B). GFP fluorescence from both reporter constructs were three- to four-fold higher in 384 

RD-MOPS glycerol compared to that in RD-MOPS glucose; indicative of catabolite repression [42].  385 

3.4.4 Expression of the T2SS secretin gene, etpD, in planta 386 

The transcriptional activity of the T2SS etpD secretin gene was assessed during E. coli Sakai 387 

colonisation of spinach roots or leaves, using the etpD-gfp+ transcriptional reporter plasmid 388 

(pAH009). Repressive culture conditions for etpD expression (RD MOPS glucose: Fig. 5B white bars) 389 

were used to pre-culture the cells to observe bone fide expression, and E. coli Sakai + pAH009 were 390 

co-transformed with a constitutive RFP plasmid (pmKate) to aid location (Fig. 6). After four days, E. 391 

coli Sakai + pAH009 + pmKate were located along the surface of intact spinach root epidermal cells 392 
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(Fig. 6A) or within an epidermal cell (Fig. 6B). Detection of GFP showed that etpD was expressed 393 

both on and inside spinach root cells, and expression was heterogenous, ranging from no GFP to 394 

very bright levels. Although the non-GFP expressers could have lost the reporter plasmid due to lack 395 

of selective pressure, detection of RFP from pmKate indicated maintenance of plasmids. E. coli Sakai 396 

located within the epidermal cell (Fig. 6Bi and ii) were apparently adherent to the plant cell wall (Fig. 397 

6Biii), while others appeared to still be moving (since the plant tissue was live and unfixed during 398 

imaging) (Fig. S1A, arrow). E. coli Sakai co-transformed with pmKate and a constitutive GFP reporter 399 

(pgyrA-gfp) showed that the experimental conditions did not impact GFP detection and resulted in a 400 

similar pattern of colonisation, with apparently adherent cells (Fig. S1A, circle), indicating that 401 

harbouring two plasmids did not incur detrimental effects on isolate Sakai colonisation. As expected, 402 

there was no GFP observed from E. coli Sakai co-transformed with pmKate and the no-promoter 403 

pKC026 plasmid vector control (Fig. S1B).   404 

Expression of etpD was also shown for endophytic E. coli Sakai +pAH009 + pmKate located within the 405 

apoplast of spinach leaves (Fig. 7), from individual cells attached to spongy mesophyll cells (Fig. 7A) 406 

or adjacent to the cell wall (Fig. 7B), and in small chains of cells (Fig. 7C). In contrast, no GFP was 407 

observed from E. coli Sakai transformed with empty vector control (pKC026) (Fig. 7D). 408 

4 Discussion  409 

The main aim of this study was to identify novel STEC genes that mediate early interactions with 410 

fresh produce plant hosts. A high-throughput positive selection approach was used, where a BAC 411 

library of E. coli Sakai genomic fragment clones was screened for interactions to spinach roots. 412 

Spinach has been linked with high profile outbreaks of STEC, and although plant roots are not 413 

consumed they represent the preferred site of colonisation of E. coli Sakai. The screen enriched for 414 

the equivalent of 2 % of the E. coli Sakai genome, which is in-line with other studies using alternative 415 

approaches, e.g. a whole transcriptome study of E. coli Sakai identified two or six ‘adherence’ genes 416 

following inoculation with lettuce plants for one hour or two days, respectively (Linden et al., 2016).  417 

Several of the enriched gene loci were previously reported for STEC interaction with plant tissue, 418 

validating both the screen and their potential plant-associated functional role.   419 

Adherence is a key step in early interactions with host tissue and STEC fimbrial adhesins that 420 

mediate specific binding to plant cell wall components include E. coli common pilus (ECP) and Yad 421 

fimbriae [14, 43] and non-specific interactions via flagella [15]. Potential candidates enriched in the 422 

screen may be involved in non-adherence functions, such as response to PAMP perception by the 423 

host, Nle effectors since NleA is known to play a role in disrupting secretory pathways [44, 45] or 424 
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modulating host cytoskeleton (EspO1-2) [46] in animal hosts. Metabolic processes are also key for 425 

colonisation, which may explain enrichment of siderophore, ChuS. 426 

One of the enriched loci selected for functional assessment on the basis of potential adherence 427 

included a chaperone-usher fimbrial gene cluster, termed Loc6 [11], was previously shown to be 428 

induced in STEC isolate EDL933 (gene Z1536) 30 minutes after exposure to lettuce leaf lysates [19]. 429 

In a separate study, the gene encoding the outer membrane protein (ECs1277) was induced in E. coli 430 

Sakai in response to a temperature reduction, to 14 °C [47]. However, the absence of any positive 431 

interaction with spinach root tissue indicated either no functional role or a subtle effect on binding. 432 

Alternative genes in the contiguous region identified by the BAC screen that may have contributed 433 

to interactions include a two-partner secretion (TPS) system termed otpAB (ECs1282-1283), which 434 

was characterised in STEC isolate EDL933 [48] and shares 100% sequence identity with E. coli Sakai. 435 

Although OtpA and OtpB apparently constitute a genuine TPS system in this isolate, the gene 436 

sequences did not genetically cluster with either of the two major subtypes of characterised two-437 

partner secretion systems, haemolysins or adhesins [48]. Therefore, the authors postulated that the 438 

function of otpA could be accessory to that of the upstream fimbrial locus (loc6), which suggests that 439 

there may be a linked function between the gene clusters.  440 

The second enriched candidate region selected for functional analysis was the T2SS encoded on the 441 

E. coli Sakai plasmid, pO157. The pO157 plasmid is ~ 93 Kb and also encodes virulence factors such 442 

as haemolysin genes, a catalase, a serine protease and a toxin gene [49]. The T2SS is widespread but 443 

not ubiquitous in bacteria and has been reported for bacteria from a range of hosts and 444 

environmental habitats [50]. In the related phytopathogen Pectobacterium atrosepticum, the T2SS 445 

(termed the Out system) bears structural and evolutionary similarity to the conjugative T4 pilus, and 446 

the gene cluster organisation tends to be labelled with gene ‘C’ at the beginning and gene ‘O’ at the 447 

end of the cluster. It is often termed the general secretory pathway (gsp), but in E. coli it is termed 448 

the EHEC type II pathway (etp) [51]. EtpD is orthologous to the secretin protein, ‘D’ that forms a 449 

channel across the outer member, while EtpC is homologous to the ‘C’ protein that spans the inner-450 

membrane as an anchoring protein [50]. Outside the Escherichia genus, EtpC has lower levels of 451 

homology to other species T2SS than EtpD [51], but does retain the functional domain of the 452 

superfamily of PulC proteins [52].   453 

Absence of the pO157 plasmid reduced the number of bacteria recovered from spinach tissue, which 454 

appeared to be dependent on the EtpD secretin protein. Gene expression analysis supports a role for 455 

the T2SS in planta. The T2SS was shown to be responsive to incubation with plant tissue, with 456 

induction of etpC in response to spinach leaf lysates and spinach root exudates, and etpD induced in 457 
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response to spinach root exudates [20]. Here, we show that expression occurs at plant-relevant 458 

temperatures (18 °C), and that both etpC and etpD expression was induced in the presence of 459 

glycerol but not glucose. Our data also supports independent promoter activity for both genes, 460 

albeit to differing levels. It is notable that the etp gene cluster for E. coli Sakai is encoded on the 461 

pO157 plasmid, whereas in other E. coli pathotypes the genes are chromosomal, indicative of recent 462 

recombination events, which could influence regulation in a background-dependent manner. A role 463 

for the STEC T2SS in colonisation of plant hosts is supported by data that shows the etp genes were 464 

upregulated in spinach outbreak STEC isolate TW14359 compared to E. coli Sakai upon adherence to 465 

mammalian MAC cells in vitro [53]. However, expression of the T2SS was not a pre-requisite for 466 

colonisation of bovine GI tract [24, 54] or gnotobiotic piglet intestines [55], indicating a degree of 467 

specificity in its function.  468 

Whether or not the TS22 interacts directly with plant tissue, or indirectly via a T2-secreted protein, is 469 

not yet clear. Functional analysis of the T2SS in STEC isolate EDL933 showed that it is required for 470 

secretion of StcE (TagA), a metalloprotease that cleaves a C1-esterase inhibitor (C1-INH) [56], 471 

glycoprotein 340 (gp340) and mucin7 [57]. A role for the T2SS binding to mammalian tissue was 472 

demonstrated with Hep-2 cells [57], HeLa cells and in colonisation of the rabbit intestine [58]. 473 

Beyond that there is little available information on the STEC T2SS.  474 

4.1 Conclusion 475 

High-throughput screening of the E. coli Sakai genome, using a BAC clone library, has enabled 476 

identification of a novel role for the T2SS of this foodborne pathogen. We have shown that it is 477 

expressed under relevant plant-host conditions and its presence enhances the short-term 478 

interactions of E. coli Sakai with plant hosts. Given the widespread nature of the T2SS, and a proven 479 

plant-colonisation role for T2SS of phytopathogens, it is perhaps not surprising that the STEC T2SS 480 

can mediate plant colonisation interactions.  481 

  482 
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8 Tables 687 

Table S1 Description of gene loci enriched by the adherence screen, indicating S-loop and 688 

genomic location; output data from the enrichment analysis; gene annotation and description. 689 

Table S2 Description of plasmid and primers used in the study. 690 

 691 

9 Figure Legends 692 

Figure 1  Regions in E. coli Sakai genome enriched by the adherence screen 693 

Output from the model indicating estimated values of delta: the effect of treatment (passage) on 694 

retention of the introduced E. coli Sakai DNA in an E. coli DH10B background, for (A) Sakai 695 

chromosome DNA; (B) Sakai pO157 DNA; (C) the DH10B chromosome background. Estimated values 696 

are shown as black dots, and the 50 % credibility interval (CI) of this value as a vertical line. Where 697 

the 50 % CI does not include the median value for the dataset (assumed to represent a neutral 698 

response to passage), this may imply a selection response. Green CIs, where the median response is 699 

lower than the 50 % CI, are interpreted as positive selection pressure such that the gene is beneficial 700 

under passage. Magenta CIs, where the median response is greater than the 50 % CI, are interpreted 701 

as negative selection pressure such that the gene is deleterious under passage. Regions of the E. coli 702 

Sakai genome that are potentially under positive selection pressure include S-loop 71, S-loop 231, 703 

and S-loop 225; SpLE1, and the plasmid genes encoding the Etp type II secretion system, and StcE, as 704 

indicated. The DH10B chromosome genes show no evidence of positive or negative selection. Gene 705 

loci are listed in Table S1. 706 

Figure 2 Assessment of E. coli Sakai Loc6 fimbriae in binding to spinach root tissue 707 

E. coli Sakai or its isogenic loc6 mutant recovered after a 2 hour adherence assay on spinach roots. 708 

The data from 3 independent experiments with 10 biological replicates for each bacterial strain are 709 

presented in box plots with the mean shown as a line in the interquartile ranges, and whiskers for 710 

maximum and minimum values. There was no statistically significant difference in the mean number 711 

of E. coli Sakai WT recovered compared to Δloc6 by Students t test (p=0.3268) 712 

Figure 3 E. coli Sakai pO157 mediates interactions with spinach tissues 713 

(A) E. coli DH10B transformed with BAC clone BAC2B5, containing pO157 sequence, or the empty BAC 714 

vector pV41 recovered from roots of hydroponics-grown spinach (filled bars) or natural wool (striped 715 

bars) and (B) E. coli Sakai WT or pO157-cured recovered from roots of compost-grown spinach (filled 716 

bars), leaves (open bars) or natural wool (striped bars). Data shown is the average from triplicate 717 
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experiments each with five biological replicates. Statistical significance was calculated by students t 718 

test (* p<0.05, NS not significant). 719 

Figure 4 Modelling the impact of E. coli Sakai T2SS in interactions with spinach leaves and 720 

roots 721 

Bacteria recovered from spinach plant tissue after 2 hour adherence assay. Regression coefficients 722 

(parameter estimates) obtained when fitting recovery data (CFU) from E. coli Sakai WT, ΔetpD and 723 

etpD mutant complemented with pSE380 or pAH007 (pSE_etpD) under IPTG-induction from leaves 724 

(A) or roots (B) to a linear model of additive effects, for each tissue. Sakai: expected recovery 725 

(logCFU) of wild-type E. coli Sakai; Sakai ΔetpD: expected (differential) effect on recovery of ΔetpD 726 

knockout with respect to wild-type Sakai; ΔetpD pSE380: expected (differential) effect on recovery of 727 

introducing the pSE380 into the knockout background; ΔetpD pSE_EtpD: expected (differential) 728 

effect on recovery of expressing EtpD, with respect to pSE380 alone. For each estimate, the marker 729 

represents the median value, and vertical lines represent the extent of the 50% credibility interval 730 

(50% of runs produce a value within this range).  731 

Figure 5  The E. coli Sakai etp T2SS operon and in vitro expression at 18 °C  732 

Genetic organisation of the etp operon including the upstream metalloprotease gene stcE (A). GFP 733 

reporter activity for gene expression from the 5’UTR of etpC (508 bp) or etpD (211 bp) in E. coli 734 

Sakai, grown in RD MOPS medium supplemented with glucose (white) or glycerol (black). Expression 735 

values were corrected for background from the promoter-less reporter plasmid (pKC026) measured 736 

at the same optical density, and RFU normalised for cell density (OD600). Equivalent expression levels 737 

at late-exponential phase are provided (OD600nm of 1) from two experimental repeats. 738 

Figure 6 Expression of E. coli Sakai etpD during root colonisation 739 

Spinach roots inoculated with 108 cfu of E. coli Sakai co-transformed with pmKate and pAH009 740 

(etpD-gfp+) were imaged by confocal microscopy after 4 days. E. coli Sakai were located along (A) or 741 

within (B) root epidermal cells with some E. coli Sakai attached to the cell wall within an epidermal 742 

cell (Biii). Maximum intensity projections (A, Bi-ii) of root epidermal cells with the merged image (Ai, 743 

Bi) or green channel (Aii, Bii-iii). GFP expression in green and RFP expression in magenta; root cell 744 

wall autofluorescence is also detected in the magenta channel (Ai). Scale bars are 10 µm. The panel 745 

of images are representative of four independent experiments from individual plants.  746 

Figure 7 Expression of E. coli Sakai etpD in spinach leaves  747 

Spinach leaves infiltrated with E. coli Sakai co-transformed with pmKate (constitutive expression of 748 

RFP) and pAH009 (etpD-gfp+) (A-C) or promoterless gfp+ vector pKC026 (D) were imaged by confocal 749 
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microscopy after four days. Chloroplast autofluorescence is false coloured blue in the images; GFP 750 

expression in green and RFP expression in magenta. Three sets of parallel panels show the maximum 751 

intensity projection of abaxial epidermal and mesophyll cells with the merged image (left), green 752 

channel (centre) and red channel (right). The panel of images are representative of two independent 753 

experiments from individual plants.  Scale bars are 25 µm(A) or 5 µm (B-D). Examples of co-754 

expression of etpD-gfp and rfp are indicated by white arrows (B). 755 

Supplementary Figure 1 Confocal microscopy controls of spinach root colonisation  756 

Spinach roots inoculated with 108 cfu of E. coli Sakai co-transformed with pmKate and pgyrA-gfp+ (A) 757 

or empty vector pKC026 (B) were imaged by confocal microscopy after 4 days. Maximum intensity 758 

projections (left column A and B) of spinach root epidermal cells colonised by E. coli Sakai, within (A) 759 

or on the surface (B) of the cell. Volume projection of spinach root epidermal cell (A right column) 760 

showing E. coli Sakai colonisation within the epidermal cell with bacteria attached to the plant cell 761 

wall (circled). E. coli Sakai may also have been moving during image acquisition (arrow). GFP 762 

expression is coloured green and RFP expression in magenta. Scale bars are 10 µm. The panel of 763 

images are representative of four independent experiments from individual plants.  764 

 765 
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