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Abstract 10 

Genomic imprinting causes alleles to influence the phenotype in a parent-of-origin-specific 11 

manner. In attempts to determine the effects of imprinted loci, gametic relationship 12 

matrices have widely been used in pedigree-based parent-of-origin analyses of population 13 

data. One drawback of this is the size of these matrices because they represent each 14 

individual by two gametic effects. Significantly fewer equations are needed if a previously 15 

published reduced imprinting model is used that relates observations from progeny without 16 

its own offspring to the transmitting abilities of their parents. This can be accomplished 17 

using a numerator relationship matrix, with only a single row and column per parent and 18 

ancestors. However, the reduced model is not applicable when the parents have records. To 19 

better handle the curse of dimensionality, we propose a combination of average gametic 20 

effects (transmitting abilities) for individuals without their own records and single gametic 21 

effects for others. The generalized gametic relationship matrix is the covariance of this 22 

mixture of genetic effects that allows for a significant reduction in the number of equations 23 

in gametic models depending on the trait, depth of pedigree, and population structure. It 24 

can also render the reduced model much more flexible by including observations from 25 

parents. Rules for setting-up its inverse from a pedigree are derived and implemented on an 26 

open-source program. The application of the same principles to phased marker data leads to 27 

a genomic version of the generalized gametic relationships. The implementation of 28 

generalized gametic models to the ASReml package is illustrated through worked examples.  29 
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 30 

Shortly after its discovery, it was recognized that the gametic relationship matrix (Smith and Allaire, 31 

1985; Schaeffer et al., 1989) can help isolate fractions of the genetic variance in quantitative traits 32 

caused by genomically imprinted loci. Alleles of the latter are expressed in a parent-of-origin-specific 33 

manner. In the early stages of pedigree-based imprinting analysis, animal models were augmented 34 

by an additional vector of paternal (alternatively, maternal) gametic effects, usually modeled as 35 

uncorrelated with any other effect. Its variance was assumed to be the product of a gametic 36 

relationship matrix and a variance component that can be explained by polymorphisms at loci with 37 

only paternal (maternal) gene activity. Pioneered by DeVries et al. (1994), these models were in use 38 

for more than a decade. However, they can account only for a single kind of classical imprinting, 39 

where either maternal or paternal alleles are fully silenced through, e.g., the methylation of DNA. A 40 

proposal (Hill and Keithly, 1988) to consider both kinds of imprinting simultaneously did not 41 

materialize in any pedigree-based analysis of empirical data. Further, there was uncertainty 42 

regarding ways to account for the effects of partially imprinted loci, where both alleles are expressed 43 

but at different strengths depending on their parental origins. 44 

A model for parent-of-origin analysis was subsequently developed (Neugebauer et al., 2010a, b) that 45 

is comprehensive in the sense that it accounts for all kinds of imprinting, be it full or partial, maternal 46 

or paternal (Blunk et al., 2014). This so-called reduced imprinting model relates observations from 47 

non-parents (final progeny, e.g., animals used for meat) to transmitting abilities (half of the breeding 48 

values) of their parents. There are two correlated genetic effects per parent, a transmitting ability as 49 

sire and a transmitting ability as dam, which reflect an animal’s genetic effect on its offspring under a 50 

paternal or maternal imprinting pattern. In the presence of genomically imprinted loci, these two 51 

genetic effects are different. The variance of these differences has been called the imprinting 52 

variance because it summarizes contributions from all kinds of possible imprinted loci. A numerator 53 

relationship matrix is needed for parents only, as the final progeny with observations but without 54 

offspring do not appear in the underlying pedigree and the resulting relationship matrix.  The null 55 

hypothesis of the absence of polymorphic imprinted loci with an effect on the trait under 56 

investigation (i.e., a zero imprinting variance) can be tested by a restricted maximum likelihood 57 

(REML) ratio test. 58 

Alternatively to the above, a comprehensive gametic model can be used to estimate the same set of 59 

genetic covariances, including the imprinting variance (Tier and Meyer, 2012; Meyer and Tier, 2012). 60 

This requires four gametic effects to be estimated per individual, two as sire and two as dam, where 61 

the relationships include the final progeny with observations. As an advantage over the reduced 62 
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model, the gametic model allows for records from parents. Moreover, it can be extended to account 63 

for maternal effects (see Appendix A5). 64 

The use of measured genotypes in genomic best linear unbiased prediction models (gBLUP) that 65 

include imprinting effects has been outlined by Nishio and Satoh (2015). The first (GBLUP-I1) of the 66 

two variants of the proposed model contains an imprinting effect that is modeled as independent of 67 

the action of un-imprinted Mendelian locus, summarized as an additive genetic effect. The second 68 

model (GBLUP-I2) considers a paternal and a maternal gametic effect with zero mutual correlation. 69 

This clearly could be turned into a comprehensive model by abandoning the assumption of a zero 70 

correlation and replacing pedigree-derived gametic relationships by a genomic counterpart of equal 71 

size and structure. In cases where not all pedigreed individuals are genotyped, this enables a 72 

combined analysis of the genotyped and un-genotyped individuals in a single-step approach (Legarra 73 

et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). The first model (GBLUP-I1), by 74 

contrast, cannot easily be extended to have such a pedigree-derived counterpart.        75 

The downside of the gametic model is the large number of equations (Smith and Allaire, 1985) used 76 

to represent the random genetic effects, in particular when variance components are to be 77 

estimated. A pedigree with a size of approximately half a million is a technical barrier for REML 78 

estimation in animal models using currently available software packages (Shor et al., 2019). With a 79 

gametic parent-of-origin model, the same number of equations is reached with only a quarter of 80 

individuals. Therefore, the question arises if there is any option for models that retain the flexibility 81 

of the gametic model while allowing for a considerably smaller number of equations for random 82 

genetic effects, as close as possible to the reduced imprinting model. 83 

As a solution, we propose a much smaller re-defined vector of genetic effects obtained by a proper 84 

linear transformation of the gametic effects. This is rendered applicable by introducing a version of a 85 

corresponding relationship matrix, called the generalized gametic relationship matrix, together with 86 

rules for its rapid inversion from the pedigree. As a result, the size of the gametic model can be 87 

reduced to a more manageable one while retaining all of its advantages. We also show how the same 88 

kind of transformation can be applied to measured genotypes to obtain conformable genomic and 89 

pedigree-derived versions of the new relationship matrix. 90 

THEORY 91 

Generalized gametic relationships 92 

In gametic models, each individual i  is represented by the additive genetic effects of its paternal 93 

gamete ,1ig  and maternal gamete ,2ig  (Schaefferet al., 1989), which usually are arranged in a pair-94 
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wise manner in a vector g  of length 2t , which is twice the number t  of individuals in the pedigree. 95 

The model equation for a phenotypic observation iy  of individual i  then is 96 

 ,1 ,2i i i i iy g g e     , 97 

With 
i i  x β  as a place-holder for any combination of explanatory variables in vector i

x  with fixed 98 

effectsβ , and the residual ie . Thus, the gametic model splits the additive genetic value (breeding 99 

value) ib  of individual i  into paternally derived and maternally derived parts, ,1 ,2i i ib g g  .  100 

The basic idea of reducing equations in gametic models by a considerable number is to replace the 101 

two gametic effects of a subset of u  individuals by their pair-wise average: 102 

  1
,1 ,22 i i ig g a   , 103 

which is known as the transmitting-ability (half the breeding value) of individual i . 104 

The vector g  of gametic effects can be arranged such that the gametic effects of all u  individuals 105 

precede the gametic effects of the v  that are bound to retain their distinct gametic effects. The 106 

corresponding subdivision of g  is  107 

 
u

v

 
  
 

g
g

g
. 108 

The sub-vectors ug  and vg have respective lengths of 2u  and 2v . The covariances of all gametic 109 

effects in g  are the elements of the 2 2t t  gametic relationship matrix G  (Schaeffer et al., 1989). It 110 

can be partitioned into sections that correspond to the relationships between the gametic effects in 111 

ug  and vg . 112 

 
u uu uv

v uv vv

Var
   

       

g G G
G

g G G
  113 

The required average gametic effects can be obtained by a linear transformation that is defined by a 114 

matrix K  , such that 115 

 
1

2

u u u

v v v

     
        

     

K 0 g a
K g a

0 I g g
. 116 
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In effect, all gametic effects of individuals in ug  are replaced by their transmitting abilities in ua . The 117 

upper-left partition u
K  of the transformation matrix K  has dimensions 2u u , and is defined as 118 

the Kronecker product of a u u  identity matrix uI and a row vector with two elements equal to 1
2

:    119 

   1 1
2 2u u

  K I . 120 

Further, K  comprises a 2 2v v  identity matrix vI  and two null matrices, 10  and 20 , with 121 

respective dimensions of 2u v  and 2 2v u . 122 

The covariance matrix of the transformed vector of gametic effects a  then becomes 123 

 
u

v

Var
 

  
 

a
K GK G

g
, 124 

which in the following is called a generalized gametic relationship matrix. A natural choice is to retain 125 

the gametic effects of all individuals with their own phenotypes in vector 
vg  and let all their 126 

ancestors without records be represented by their transmitting abilities, constituting
ua . The 127 

subdivisions of G  then are 128 

 
1
2u uu u u uv v u uv

v uv u v vv v uv vv

    
        

K G K K G I A S
G

I G K I G I S G
. 129 

The upper-left part 1
2 uA  is equal to the co-ancestry matrix (half the numerator-relationship matrix) 130 

of all ancestors without own records, while 
vvG  reflects relationships between the gametic effects of 131 

all individuals with their own observations. Finally, 
uvS  contains the covariances between 132 

transmitting abilities and gametic effects. See the small example involving four individuals (IDs). 133 

There are three transmitting abilities for individuals 1, 2, and 3, with corresponding pair-wise 134 

elements of 1
2

 in the transformation matrix K  and two gametic effects, for which the elements in 135 

K are one. The resulting generalized gametic relationship matrix G  has dimensions 5 5 . 136 

 

ID sire dam

1 0 0

2 0 0

3 1 2

4 1 3

            

1 1
2 2

1 1
2 2

1 1
2 2

0 0 0 0 0 0

0 0 0 0 0 0

  0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 
 
 

  
 
 
  

K              

1 1 1 1
2 4 2 4

1 1 1
2 4 4

1 1 1 1 1
4 4 2 4 2

1 1 1
2 4 4

1 1 1 1
4 4 2 4

0

0 0

0 1

1

 
 
 
 
 
 
  

G  137 

 138 

Generalized gametic relationships in a gametic model  139 

In light of the above, the model equation for an observation 
iy   can be retained as in the gametic 140 

model, and a mixed model that considers parent-of-origin effects (POEs) and uses the generalized 141 

relationship matrix becomes 142 
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s s d d   Y Xβ Z a Z a e  , 143 

where Y is a vector of observations, β  comprises the fixed effects, and X  is the corresponding 144 

incidence matrix. The covariance of random effects is assumed to be  145 

 

2

2

2

s s sd

d sd d

e

Var

 

 



  
  

   
     

a G G 0

a G G 0

e 0 0 I

. 146 

This generalized gametic model contains the gametic effect vectors 
sg  and 

dg  replaced by their 147 

transformed counterparts 
sa  and 

da , respectively, and, consequently, uses the corresponding 148 

relationship matrix G  instead of the classical gametic relationships of .G  Further, incidence 149 

matrices 
sZ  and 

dZ link observations to the random gametic effects in 
sa  and 

da , respectively, 150 

while no observation is linked to any of the transmitting abilities in the latter vectors. As a result, any 151 

incidence matrix a u v   Z 0 Z  that links observations to gametic effects in the generalized vector 152 

of genetic effects  u v
  a a g  can be considered a converted incidence matrix 2g u v   Z 0 Z  153 

from a classical gametic model that links the observations to the gametic effects in  u v
  g g g : 154 

 a g Z Z K . 155 

This transformation retains all columns in the partition v
Z , i.e., one per gametic effect of individuals 156 

with records, while the number of null columns in u
0  of a

Z  collapses to half of that of 2u
0  in g

Z . In 157 

the same manner, both incidence matrices 
sZ  and 

dZ  from the previous model equation are 158 

converted versions of their counterparts in the classical gametic imprinting model, which forms the 159 

basis for the proof of equivalence of the classical and the generalized gametic models involving G  160 

(see Appendix A1).    161 

 162 

Reduced gametic model 163 

The reduced imprinting model as initially described by Neugebauer et al. (2010a, b) relates each 164 

observation from the final progeny i  to the transmitting abilities as sire 
s

sia  and as dam 
d

dia of the 165 

parents si  (sire of i) and di  (dam of i), respectively. For a single observation 
iy  we have the 166 

observation equation 167 

 
s d

i i si di iy a a r    . (1) 168 

Here, the residual 
ir  is a sum of the Mendelian sampling effects of both parents (

sim  and
dim ) and 169 

the measurement noise (
ie ). The latter is identical to the residual of the gametic model. Thus, 170 

 
i si di ir m m e   . 171 
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Its variance is a function of the inbreeding coefficients siF  and diF  of the parents of i :    172 

    2 2 21 1
2 2

var( ) 1 1i si s di d er F F       . 173 

By rewriting the transmitting abilities of the parents as the averages of the respective gametic 174 

effects, i.e.,  1
1, 2,2

s s s

si si sia g g   and  1
1, 2,2

d d d

di di dia g g  , we get an observation equation in terms 175 

of gametic effects: 176 

    1 1
1, 2, 1, 2,2 2

s s d d

i i si si di di iy g g g g r      .  (2) 177 

The covariance of the gametic effects then is  178 

 
2 2

2 2

s s sd s sd

d sd d sd d

Var
   

   

    
      

     

g G G
G

g G G
. 179 

Here, the relationship matrix G  of the gametic effects that define the involved transmitting abilities 180 

includes only the parents and their ancestors. The advantage of this gametic version of the reduced 181 

imprinting model over the previously published version that uses only transmitting abilities and their 182 

relationship matrix 1
2
A  is that it enables us to easily integrate observations from parents by linking 183 

them to the respective gametic effects. Hence, for observations of any parent i , the observation 184 

equation becomes  185 

 
1, 2,

s d

i i i i iy g g e    .  (3) 186 

Generalized reduced gametic model 187 

The drawback of the reduced gametic model is that it has twice the number of equations compared 188 

to a version that uses 1
2
A . For all individuals without own records, it is however possible to reduce 189 

the number of equations for random genetic effects by representing the individuals through their 190 

transmitting abilities (average gametic effects) while retaining separate gametic effects for all 191 

parents with records, i.e., vectors of gametic effects 
sg and 

dg  are replaced by appropriately 192 

transformed counterparts 
sa  and 

da , respectively. Consequently the covariances of random genetic 193 

effects in a parsimonious generalized reduced gametic model that allows for parents with records is 194 

 
2

2

s s sd

d sd d

Var
 

 

  
   

   

a G G

a G G
. 195 

Further, we need a diagonal matrix W  of weights equal to 1iw   for observations from parents, for 196 

which model Equation (3) applies and 197 
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   

1
2 2 21 1

2 2

2

1 1si s di d e

i

e

F F
w

  





    
  
 

  198 

for the final progeny, where parents without their own records are represented by transmitting 199 

abilities or both parents have a record and are represented by gametic effects (the respective 200 

observation equations are (1) and (2)). The same weight applies to mixed kinds of representation 201 

that arise from cases where one parent of a final progeny has a record while the other does not. The 202 

corresponding observation equations for observations 
iy  of such final progeny are 203 

  204 

  1
1, 2,2

s d d

i i si di di iy a g g r       (4) 205 

and 206 

  1
1, 2,2

s s d

i i si si di iy g g a r     .  (5) 207 

 208 

A general model for parent-of-origin analyses 209 

A general comprehensive model for parent-of-origin analyses banks on the generalized gametic 210 

relationship matrix. Special cases of the generalized gametic relationship matrix G are the classical 211 

gametic relationship matrix G G  in the gametic model and 1
2

G A as in the reduced imprinting 212 

model. Correspondingly, the matrix W  of weights can be an identity matrix that fits the classical 213 

gametic model, or a matrix all the weights of which are different from one as those in the reduced 214 

model for records of the final progeny. A general model can be specified for parent-of-origin analyses 215 

containing these two basic kinds of comprehensive imprinting models as well as models with any 216 

combination of gametic effects and transmitting abilities that can be obtained using our 217 

transformation matrix K . In matrix notation, the general model is 218 

 
s s d d   Y Xβ Z a Z a ε , 219 

whereε  is a vector of residuals. That is, 
i ie   for records from individuals represented by two 220 

gametic effects, or
i ir  for observations from final progeny linked to the genetic effects of their 221 

parents. The respective weights are 222 

 1iw    223 
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and 224 

 
   

1
2 2 21 1

2 2

2

1 1si s di d e

i

e

F F
w

  





    
  
 

. 225 

 Random genetic effects and residuals are assumed to have covariance: 226 

 

2

2

2

s s sd

d sd d

e

Var

 

 



  
  

   
     

a G G 0

a G G 0

ε 0 0 W

. 227 

The resulting mixed model equations are 228 

  

 

    
    

    
        

1 2

2 3

-1 -1 -1 -1

s d

-1 -1 -1 -1 -1 -1

s s s s d s s

-1 -1 -1 -1 -1 -1

d d s d d d d

X'W X X'W Z X'W Z β X'W y

Z' W X Z' W Z + G Z' W Z + G a Z' W y

Z' W X Z' W Z + G Z' W Z + G a Z' W y

. 229 

with 230 

 

1
2

1 2 2

2
2 3

s sd

e

sd d

   


   



  
   

   
. 231 

The general model comprehends any combination of observation Equations (1) to (5) to provide a 232 

large degree of flexibility in parent-of-origin analyses. Model variants may be chosen to minimize the 233 

number of equations for random genetic effect by using as many reduced observation equations as 234 

possible, which comes at the expense of the need for the recomputation of weights when estimating 235 

the components of variance. Alternatively, the repeated recomputation of weights may be avoided 236 

by representing all individuals with an observation using gametic effects. The underlying reason for 237 

this flexibility is that for the given data (observations, fixed effects, and pedigree), each possible 238 

general imprinting model has as an equivalent the same classical gametic model (that follows from 239 

Appendices A2 and A3). Consequently, any two general models that share the same equivalent 240 

classical model are also equivalent, and can replace each other, especially for the sake of estimating 241 

the components of variance. 242 

 243 

Figure 1: about here 244 

 245 

Direct inversion of the generalized gametic relationship matrix 246 
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Setting-up the inverse generalized gametic relationship matrix is key to any large-scale application. 247 

Rules for direct inversion can be derived by factoring the inverse 1
G  into inverses of a matrix T248 

and a diagonal matrix D  of inverse Mendelian sampling variances 249 

  
11 1 1  G T D T .  250 

The above is known from the direct inversion of the numerator relationship matrix (Henderson, 251 

1976; Quaas, 1976) and the classical gametic relationship matrix (Schaeffer et al., 1989). The matrix 252 

 
1

T is lower triangular, as shown in Figure 1. The underlying pedigree of this example 253 

(Supplement) comprises 12 individuals. Nine of them are represented by a single transmitting ability 254 

while the remaining three by two gametic effects. The kind of representation is indicated by the 255 

respective values of one and two in the last column of the pedigree file. Consequently, the 256 

dimensions of the inverse of the example are 15×15. Each of the 15 rows of  
1

T  pertain to a single 257 

genetic effect, which itself may be derived from different kinds of genetic parental predecessor 258 

effects: An individual’s transmitting ability may be derived from two unknown parents (a-00) or a 259 

single unknown parent, where the known parent may be represented by a transmitting ability (a-0a, 260 

a-a0) or two gametic effects (a-0gg, a-gg0). Two known parents may show up as any combination of 261 

transmitting abilities or gametic effects (a-aa, a-agg, a-gga, a-gggg). Likewise, a gametic effect may be 262 

derived from an unknown parent (g-0), or a known parent enrolled by either a transmitting ability or 263 

two gametic effects (g-a, g-gg). These 12 cases need to be distinguished for directly inverting the 264 

generalized gametic relationship matrix. The example pedigree was constructed such that each case 265 

appeared at least once. For each effect related to a particular row of the lower-triangular matrix in 266 

Figure 1, the case is indicated in the last column. Note that the six cases a-0gg, a-gg0, a-agg, a-gga, a-267 

gggg, and g-a are specific to the generalized gametic relationship matrix as they appear neither in the 268 

direct inversion of the numerator relationship matrix—involving only a-00, a-0a, a-a0, and a-aa—nor 269 

the classical gametic relationship matrix, for which only g-0 and g-gg need to be distinguished.  270 

Mendelian sampling variances that define the diagonal elements of D  are different for transmitting 271 

abilities and gametic effects. Further, they depend on the occurrence of unknown parents and the 272 

inbreeding coefficients of the known ones. In particular, this is known parentF  when an individual with a 273 

transmitting ability in the matrix has only one known parent, or 
sireF  and 

damF  in case of full 274 

parentage information. For gametes, we need to account for the inbreeding coefficient parentF  of the 275 

known parent from which a gamete is derived. Accordingly, the 12 cases (a-00, a-0a, ... , g-00) are 276 

grouped into five classes with distinct formulae for the inverse Mendelian sampling variance :    277 
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a-00  278 

a-0a, a-a0, a-0gg, a-gg0  279 

a-aa, a-agg, a-gga, a-gggg  280 

g-a, g-gg  281 

g-0  282 

For any arbitrary order of genetic effects, the inverse generalized gametic relationship matrix can be 283 

constructed step by step from the pedigree. In each step, a matrix contribution 
iU is added for 284 

genetic effect i  to a matrix composed of an inverse 
1

1i



G   that already covers the preceding 1i   285 

effects and zeroes:  286 

 
1

1 1

0

i

i i



 
 

  
 

G 0
G U

0
 , 287 

where 0 is a column vector of 1i    zeroes and 288 

 
i i i iU u u  289 

is the contribution made for each genetic effect i . The row-vector 
i
u consists of all zeros, except for 290 

those elements with indices indicating the genetic effects of the respective parent(s). At minimum, 291 

the i-th element is always equal to unity as a non-zero element in this vector. All other non-zero 292 

elements are negative, with values of either 1
2

  or 1
4

 . Thus, the number of non-zero entries varies 293 

from one to five, as can be derived from the rows of the example triangular matrix  
1

T in Figure 1. 294 

For all 12 possible cases, the non-zero coefficients in 
i
u  and their indices are summarized in Table 1. 295 

The non-zero elements of the resulting matrix 
i i i iU u u  correspond to the (scaled) cross-products 296 

of the elements of the non-zero vector, and their coordinates in the matrix are the respective 297 

combinations of indices. 298 

Table 1: about here 299 

 300 

Transforming measured genotypes in a generalized genomic gametic relationship matrix 301 

Parent-of-origin analyses may also use genomic relationships, or combined genomic and pedigree 302 

relationships. A specific feature of this is that ordinary marker genotypes (AA, AB, BB) are not 303 

sufficient for this purpose, and the parental origin of the marker alleles at each locus has to be 304 

2 

 
1

1
 2

1 known parentF


  
 

    
1

1 1 1
2 2 2

2 1 1sire damF F


     

 
1

1
2

2 1 parentF


  
 

1 
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inferred instead (Lawson et al., 2013, and references therein) and summarized as ordered genotypes 305 

AA, AB, BA, and BB, where the first allele is paternally derived. This is, however, not always possible 306 

for all members of a genealogy. In such a case, the principles above are beneficial for integrating 307 

ordered and unordered genomic information into a single genomic version of the generalized 308 

gametic relationship matrix. 309 

Let us assume that all t individuals are genotyped with p markers and all genotypes are phased into 310 

2t haplotypes. Information on the number (zero or one at each locus before centering) of minor 311 

alleles for all marker loci on each haplotype can be summarized in a column-wise mean-centered 312 

2t p matrixC . To this matrix, each individual i contributes two p-row-vectors 1i
c and 2i

c , where 313 

the centered allele accounts for its first and second haplotype. Matrix C can then be split into two 314 

submatrices vC and uC : 315 

 
v

u

 
  
 

C
C

C
. 316 

For imprinting analyses, at least all u  individuals with records need to have their paternal and 317 

maternal haplotypes identified in uC . This can be achieved by adding at least one preceding 318 

generation without records but with genotypes. In case of only a single generation, all their 2v  319 

haplotypes in partition vC  would be left unordered. If the additional v genotyped individuals contain 320 

more than a single successive generation, only a part of their genotypes may qualify as ordered, with 321 

the exceptions coming from the founders. 322 

FromC , a genomic gametic relationship matrix can be derived: 323 

 
1 guu guvu u u v

g

gvu gvvv u v vs s

     
         

G GC C C CCC
G

G GC C C C
,  324 

 , 325 

where s is a scaling factor,  1j js p p  , and jp  is the frequency of the allele at marker j . 326 

In all cases where the parental origin of the two haplotypes can be traced back, the first haplotype of 327 

each individual is assumed to be paternal and the second maternal ( 1i ip
 c c and 2i im

 c c ); 328 

otherwise, the ordering of haplotypes is arbitrary. This is where the concept of generalization from 329 

above is used. A transformation matrix K  can be defined such that for all individuals i  with 330 

unordered genomic information, the two row vectors 1i
c  and 2i

c  are replaced by their averages:   331 
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  1 2

1

2
i i ic c c .  332 

ic does not depend on the order or the parental origin of the haplotypes of an individual:  333 

    1 2

1 1

2 2
i i i ip imc c c c   c . 334 

That is, ic  is also the vector of average paternal- and maternal-centered number of gene counts. 335 

Consequently, a generalized genomic gametic relationship matrix can be defined as 336 

 
1

g g
s

   G K CC K K G K  , 337 

with K  defined as before. The partition u u
C C  of gG can be used to determine only the ordered 338 

genomic information of all individuals with records and, as such, is sufficient to estimate the 339 

components of genetic variance in a parent-of-origin analysis. All respective gametic effects of these 340 

individuals can also be estimated. The entire matrix gG  delivers gametic effects (as sire and dam) for 341 

all individuals, including those with no phenotypes. The generalized variant 
gG by design is also 342 

appropriate for parent-of-origin analyses, with no other requirements for K as for the pedigree-343 

derived counterpart. Thus, the general model for parent-of-origin analyses is also applicable to 344 

genomic relationships, provided the marker haplotypes of individuals with observations can be 345 

ordered. 346 

 347 

Software and data availability 348 

A detailed guide to practical implementation is available on the RADAR repository 349 

(https://www.radarservice.eu/radar/dataset/get/lGjshsdpCzWftGAQ?lang=en&token=DpsQlXcXJRuD350 

kLmbwmzB – this is a temporary link for the purpose of review only and will later be replaced by a 351 

permanent DOI). It includes the source code of a program to directly set-up the inverse of the 352 

generalized gametic relationship matrix from a pedigree file, a detailed program description and 353 

example input and output files. There we also provide a collection of six worked toy examples 354 

demonstrating in very detail how various mixed models with generalized gametic relationships can 355 

be implemented using the ASReml package. Each example is also accompanied with R-code to check 356 

details and the correctness of the ASReml results.       357 

  358 
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DISCUSSION 359 

The outlined generalization introduces elements of the reduced imprinting model to the gametic 360 

model and vice versa, accompanied by gains in flexibility and substantial savings in terms of the 361 

number of equations used. The latter is important especially for estimating the components of 362 

variance (Shor et al., 2019). The matrix G  contains two limiting cases that set the boundaries for the 363 

ratio of equations that can be eliminated. The first is the classical gametic relationship matrix itself 364 

(dimensions 2 2t t ), when K is an identity matrix. The other limiting case is  1 1
2 2

  K I , such 365 

that  1
2

G A  with dimensions t t . Therefore, the reduction in the number of equations for 366 

genetic effects can take a range of 0%–50%, compared with a classical gametic model. However, the 367 

actual savings depend on the specifics of each dataset. As examples, two animal datasets were 368 

considered: the first was from an analysis of daily net gain in Brown Swiss fattening bulls (Blunk et al., 369 

2018; Blunk et al., 2019), with a pedigree of 663,515 individuals (173,051 non-parents with records), 370 

whereas the second dealt with litter size in an experimental line of mice (2,137 females with an 371 

observation for first-parity litter size; necessery pedigree size for variance component estimation: 372 

4544; total pedigree size 15222; unpublished data). In the Brown Swiss, the number of gametic 373 

effects for all animals was 1,327,030, compared with 836,566 with gametic effects for animals with 374 

observations only. The relative saving was 37% in terms of the number of equations and 32% in 375 

terms of the number of non-zero elements of the half-stored inverse. The respective numbers of 376 

equations in the mice example were 9088 versus 6681, with relative savings of 26% and 25%. In 377 

particular, small proportions of individuals that have records cause large reductions as all ancestors 378 

without a record are assigned only one equation. This applied to the mice example, as only females 379 

that had reproduced had records of litter size. If all available animals from the same number of 380 

generations were included (no “pruning” performed; 15222 animals), as one would prefer e.g. for the 381 

estimation of the genetic trend, there were 30,444 gametic effects versus 17,359 effects with the 382 

generalized relationships, with relative savings of 42% of equations and 56% of non-zero elements. 383 

The vast majority of this pedigree included males, females from older generations with no data, and 384 

non-reproducing females of younger generations.  385 

Sex-specific traits such as litter size, number of eggs, or milk yield provide the opportunity to 386 

represent all males by their transmitting abilities. Thus, the resulting number of equations is 387 

considerably smaller in comparison with a trait recorded in both sexes. The family structure also has 388 

an effect: More equations are saved in the presence of typically small paternal groups of offspring, 389 

given that sires without own phenotypes are represented by their transmitting abilities.  Further, it 390 

makes sense in imprinting analyses to add a high ratio of ancestors without phenotypes to better 391 

reflect inbreeding, and the relationships between genetic effects as sire and dam. Including their 392 
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transmitting abilities rather than gametic effects in the model therefore also leads to a large number 393 

of saved equations. 394 

A certain fraction of individuals with records might have either not reproduced at all or not yet 395 

reproduced at the time of data recall (i.e. they appear as final progeny), which provides the 396 

opportunity for representing them by reduced observational equations rather than having their own 397 

gametic effects in the model. In the Brown Swiss example, where all observations were from final 398 

progeny, this leads to a fully reduced model with relationships of 490,464 ancestors, a reduction of 399 

63 %. In the small mouse example more equations for 634 final progeny can be saved (3910 animals 400 

and 5413 equations left), forcing the relative savings up to 40% of equations.  401 

In certain cases, one could, however, abstain from reduced observational equations, which has the 402 

advantage that no weights are required that depend on as-yet undetermined components of 403 

variance. That has not proven to be a particular problem in the REML estimation of the components 404 

of variance (Neugebauer et al., 2010a, b; Blunk et al., 2017a,b), but may be beneficial to avoid in 405 

Bayesian approaches that employ Markov chain Monte Carlo methods, where the values of the 406 

components of variance change from iteration to iteration. By capitalizing on the flexibility of the 407 

generalized approach, weights become obsolete by representing all individuals with records—be 408 

they final progeny or not—by two gametic effects, which helps offset the computational burden 409 

resulting from repeated reweighting. At the same time, individuals without observations can be 410 

integrated by single equations.  411 

For reasons of principle, a maternal genetic component of variance provides a special challenge as it 412 

is difficult to separate from the imprinting variance. Okamoto et al. (2019) showed that when 413 

estimated with a model variant that uses information only on the sire and maternal grandsire (Blunk 414 

et al., 2017; Okamoto et al., 2019), the imprinting variance may also be interpreted as maternal 415 

genetic. Similarly, for the reduced imprinting model, it can be shown that the imprinting variance and 416 

maternal genetic variance cannot be disentangled when both are present, and instead only a 417 

composite component of variance can be inferred (Appendix A4). A way out of this is to avoid 418 

reduced model equations and, instead, to represent individuals with records explicitly by their 419 

gametic effects in a model that includes maternal genetic effcts. Then, gametic variances as sire and 420 

dam can, at least in principle, be separated from the maternal genetic variance (Appendix A5). In 421 

practice, however, this may be hampered by limitations in the amount and structure of the data, as 422 

has been reported for Mendelian models (Heydarpour et al, 2008). Like maternal effects models, 423 

other kinds of imprinting models may also comprise more than a single genetic effect as sire and dam 424 

per individual—e.g., random regression models or multitrait models. As they all suffer from a large 425 

number of gametic equations, they benefit even more from generalized relationships.   426 
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In applications where all v individuals with records plus at least one preceding generation have 427 

measured genotypes and variance componets are to be estimated, it is sufficient to include only the 428 

subset of these v individuals with their genomic covariance gvvG . If there is interest in the genetic 429 

effects of the u  founders as sire and dam, either gG or 
gG is the choice. An example is an F2 line-430 

cross experiment with phenotypes recorded only in the F2 generation, and the genotypes of F1 and P0 431 

generations needed only for phasing and determining line origins of the markers. 432 

Often in animal breeding, large pedigrees are combined with smaller cohorts of genotyped 433 

individuals. Then, certain individuals are the first in their genealogy to be genotyped while the 434 

pedigree can be traced further back. In contrast to their own descendants, haplotypes of such a 435 

candidate cannot be ordered, which renders uncertain whether the first of two unordered marker 436 

haplotypes matches the paternal gametic effect in a pedigree-derived gametic relationship matrix or 437 

the maternal one. Consequently, a combined relationship matrix that is suitable for parent-of-origin 438 

analyses cannot be constructed. This problem can be solved by collapsing gametic effects into 439 

transmitting abilities both in the genomic relationships and the pedigree-derived ones. Then, 440 

generalized pedigree relationships for all animals can be combined with their matching generalized 441 

genomic counterparts 
gG for the genotyped cohort in a way that allows for the easy integration of 442 

unordered genomic information. To this end, the available theory (Legarra et al. 2009; Christensen 443 

and Lund 2010; Aguilar et al. 2010) can be used to combine pedigree-derived relationships (here, G ) 444 

and genomic relationships (
gG ) into a joint matrix, at least in the many cases where candidates with 445 

unordered genotypes have no record, such as dairy bulls.  446 

In conclusion the generalized gametic relationship matrix provides the necessary flexibility to adapt 447 

imprinting analyses to specific computational and analytical needs in a large variety of situations 448 

through tailored versions of the general imprinting model. The most important aspects are the 449 

effective estimation of the imprinting variance in REML and Bayesian approaches in case the parents 450 

have records and the inclusion of maternal genetic effects and genomic relationships that integrate 451 

ordered and unordered genomic information. All things considered, these new possibilities are 452 

expected to stimulate systematic research on the importance of parent-of-origin effects for the 453 

genetic variation of quantitative traits in farm animals and other species. 454 

 455 

 456 

 457 
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APPENDIX 528 

Appendix A1: Equivalence of the classical gametic model and the generalized gametic model in 529 

which all individuals with records have two gametic effects. 530 

Both models have the same expectation  E y Xβ  of the vector of observations y . 531 

The variance of observations in the classical gametic model is   2

c eVar  y Q I  , 532 

 where 533 

  
2

2

ss sd

c s d

dsd d

 

 

   
      

ZG G
Q Z Z

ZG G
  534 

 2 2

s s s s d sd d s sd d d d         Z GZ Z GZ Z GZ Z GZ . 535 

The first term can be rewritten as 536 

 
 

 

2

2

u

uu uvu v v v

s s s s vv s

vuv vv
s

 
               

 

0G G
Z GZ 0 Z Z G Z

G G
Z

. 537 

Likewise, 538 

 v v

s d s vv d
 Z GZ Z G Z  , v v

d s d vv s
 Z GZ Z G Z  and v v

d d d vv d
 Z GZ Z G Z . 539 

Finally, 540 

 2 2v v v v v v v v

c s vv s s s vv d sd d vv s sd d vv d d         Q Z G Z Z G Z Z G Z Z G Z . 541 

In the generalized case, the variance of observations is 542 

 ( ) e

g eVar  y Q I   543 

with 544 

  
2

2

ss sd

g s d

dsd d

 

 

    
       

K ZG G
Q Z K Z K

K ZG G
. 545 

We make use of u v

s s
   Z K 0 Z  and u v

d d
   Z K 0 Z , and rewrite 546 

 
 

 

1

2

u

u uvu v v v

s s s s vv s

v

suv vv

  
                 

0A S
Z KGK Z 0 Z Z G Z

ZS G

. 547 
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In the same manner, 548 

 v v

s d s vv d
  Z KGK Z Z G Z  , v v

d s d vv s
  Z KGK Z Z G Z and v v

d d d vv d
  Z KGK Z Z G Z . 549 

From this, we get 550 

 2 2v v v v v v v v

g s vv s s s vv d sd d vv s sd d vv d d c          Q Z G Z Z G Z Z G Z Z G Z Q .  551 

From g cQ Q , it follows that  Var y  is the same in both models and that they are equivalent. 552 

 553 

Appendix A2: Equivalence of classical and generalized gametic relationships in reduced models. 554 

We consider a reduced model with classical gametic relationships. With classical gametic 555 

relationships all parents of final progeny and their ancestors have two gametic effects in the model 556 

with covarianceG . In the generalized case the gametic effects of u of them are collapsed into 557 

transmitting abilities, while the remaining v individuals retain their gametic effects. For the sake of 558 

generality the latter group, among an arbitrary choice of others, includes all parents who may have 559 

records. Parents with records need to have gametic effects, while all other individuals may be 560 

modelled by gametic effects or by transmitting abilities. As final progeny have no genetic effects of 561 

their own in the reduced model the variance of residuals 
2

eW is not affected by relationships. With 562 

classical gametic relationships the variance of observations is 563 

    2

c eVar  y Q W  ,  564 

where 565 

  
2

2

ss sd

c s d

dsd d

 

 

   
      

ZG G
Q Z Z

ZG G
. 566 

The incidence matrix sZ  for genetic effects can be partitioned as 2u v

s s s
   Z Z Z . In the first 567 

partition are two adjacent columns per individual, i.e.
2 1 1 1 1

2 2 2 2

u u u

s s s u

    
       

    
Z Z Z I , 568 

where 
u

sZ  is the corresponding partition from the same kind of incidence matrix in the model with 569 

generalized gametic relationships and uI is anu xu idendity matrix. Note that a multiplication with 570 

K  cannot apllied here for the conversion of the matrix 2u v

s s
  Z Z into 

u v

s s
  Z Z , because 

v

sZ571 

may both have entries of single ones for records of parents and of pairs of one half for records from 572 

final progeny. All of that also applies in an analogous manner to 
2u

dZ and 
u

dZ .   573 
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The first component of cQ  is  574 

 
 

 

2
2 2

2

2 2

u

su v uu s uv s

s s s s

vuv s vv s
s

 

 

 
   

       
   

 

ZG G
Z GZ Z Z

G G
Z

  575 

       2 2 2 2 2 2 2 2u u u v v u v v

s uu s s s uv s s s uv s s s vv s s         Z G Z Z G Z Z G Z Z G Z  576 

    2 21 1 1 1 1 1

2 2 2 2 2 2

u u u v

s uu s s s uv s s 
           

              
          

Z I G I Z Z I G Z   577 

    2 21 1

2 2

v u v v

s uv s s s vv s s 
        

  
Z G I Z Z G Z   578 

        2 2 2 21

2

u u u v v u v v

s s s s uv s s s uv s s s vv s s         Z A Z Z S Z Z S Z Z G Z . 579 

Similarly, 580 

 
 

 

2

2

u

duu sd uv sdu v

s d s s

vuv sd vv sd
d

 

 

 
   

       
   

 

ZG G
Z GZ Z Z

G G
Z

  581 

        
1

2

u u u v v u v v

s s sd s uv s sd s uv s sd s vv s sd        Z A Z Z S Z Z S Z Z G Z  , 582 

 and 583 

 
 

 

2

2

u

suu sd uv sdu v

d s d s

vuv sd vv sd
s

 

 

 
   

       
   

 

ZG G
Z GZ Z Z

G G
Z

  584 

        
1

2

u u u v v u v v

s s sd s uv s sd s uv s sd s vv s sd        Z A Z Z S Z Z S Z Z G Z ,  585 

finally  586 

 
 

 

2
2 2

2

2 2

u

du v uu d uv d

d d d d

vuv d vv d
d

 

 

 
   

       
   

 

ZG G
Z GZ Z Z

G G
Z

  587 

        2 2 2 21

2

u u u v v u v v

s s d s uv s d s uv s d s vv s d        Z A Z Z S Z Z S Z Z G Z . 588 
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From this, cQ can be summarized as 589 

    
 

 

2

2

1

2

u v

s suu uvu v u v s sd

c s s d d

u vsd s
uv vv d d

 

 

  
                   

Z ZA S
Q Z Z Z Z

S G Z Z

  , 590 

which is equal to the equivalent quantity rQ using generalized gametic relationships 591 

    
 

 

2

2

u v

s su v u v s sd

r s s d d

u vsd d
d d

 

 

 
             

 

Z ZG G
Q Z Z Z Z

G G
Z Z

. 592 

Thus 593 

   2 2

c e r eVar     y Q W Q W , q.e.d. .  594 

 595 

Appendix A3: Equivalence between the model with gametic effects for all individuals and and the 596 

reduced model with gametic effects for parents 597 

We consider a classical gametic model that includes a number f  of final progeny. The vector g  is 598 

partitioned into two components; in f
g  are the 2 f  gametic effects of the final f   progeny, and 599 

other gametic effects are in g
g . The covariance of g  then is 600 

  
g gg gf

f gf ff

Var Var
   

        

g G G
g G

g G G
. 601 

  The incidence matrices for gametic effects are 602 

 1

g

all s

s f

s

 
  
 

Z 0
Z

0 Z
 and 1

g

all d

d f

d

 
  
 

Z 0
Z

0 Z
 , 603 

where 1

g

sZ  ( 1

g

dZ ) relates the observations to the gametic effects as sire (as dam) of individuals that 604 

are not in the set of the f  final progeny. Accordingly 
f

sZ (
f

dZ ) relates observations of the f  final 605 

progeny to their respective gametic effects as sire (as dam). 606 

By contrast, in a reduced model, all observations of the f  final progeny are to be related to the 607 

gametic effects as sire (as dam) of their parents. The respective incidence matrices are 608 

 1

2

g

red s

s g

s

 
  
 

Z 0
Z

Z 0
 and 1

2

g

red d

d g

d

 
  
 

Z 0
Z

Z 0
, 609 

where
red

sZ and
red

dZ have only zero entries in columns for gametic effects of final progeny. 610 
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The relationships between the incidence matrices of the two types of models are  611 

 1 1

2 2

g g

red alls s

s s sg ff g
s ss s


    

        
    

0 0Z 0 Z 0
Z Z Z

Z Z0 Z Z 0
, 612 

The matrix s


Z is the difference between

all

sZ and 
red

sZ : 613 

 
2

s g f

s s

  
  

 

0 0
Z

Z Z
 , and analogously 

2

d g f

d d

  
  

 

0 0
Z

Z Z
, 614 

 
all red

s s s

 Z Z Z  , and 615 

 
all red

d d d

 Z Z Z . 616 

For the proof of equivalence of the two models, we express the variance of observations  Var y  in 617 

terms of model-specific incidence matrices and show their equality by making use of the last two 618 

identities. 619 

For any reduced observation equation the variances of the relevant Mendelian sampling effects are 620 

part of the residual. For each paternal gamete as sire of a final progeny, the Mendelian sampling 621 

effect is the difference between the effect of the paternal gamete and the transmitting ability of the 622 

individual’s sire as sire. The respective vector is    623 

 
s s f

m Z g  , 624 

and the maternal counterpart as dam is 625 

 
d d f

m Z g . 626 

The common covariance matrix is  627 

  
   

   

 

 

2 2

2 2

s s s s d sd s s ss

d
s d sd d d d d d d

Var

     

     

  

  

     
     

      
       

   

Z G Z Z G Z Z G Z 0m

m
Z G Z Z G Z 0 Z G Z

. 628 

 The covariance between sm  and dm  is zero as all rows of s


Z   have their non-zero entries at places 629 

other than the rows of d


Z , causing  s d

  
Z G Z  to be a matrix of zeroes. 630 

In detail the product is 631 

      , ,sum 0s d d i s j ij

ij

      
   

  
Z G Z z z G , 632 
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where  denotes element-wise multiplication, sum () is the sum of all matrix elements in (), and633 

 ,d i

 
z and  ,s j

 
z are the i th and j th rows of the two involved incidence matrices. 634 

The total  Var y  in the reduced model is 635 

       2

red s d eVar Var Var    y Q m m I , 636 

with 637 

 
 

 

2

2

red

sred red s sd

red s d

redsd d
d

 

 

 
   

      
   

 

Z
Q Z Z G

Z

  638 

        2 2red red red red red red red red

s s s s d sd d s sd d d d      
   Z G Z Z G Z Z G Z Z G Z . 639 

In the classical gametic model the variance of observations  Var y  is 640 

 
2

all eQ I .  641 

The first component is 642 

 
 

 

2

2

all

sall all s sd

all s d

allsd d
d

 

 

 
   

      
   

 

Z
Q Z Z G

Z

  643 

 
 

 

2

2

red

s sred red s sd

s s d d

redsd d
d d



 



 

 

 
   

        
   

 

Z Z
Z Z Z Z G

Z Z

. 644 

This results in a sum of 16 terms, of which the first four are 645 

        2 2red red red red red red red red

s s s s d sd d s sd d d d      
   Z G Z Z G Z Z G Z Z G Z . 646 

This is equal to redQ  in the reduced model. Further, we have two more terms 647 

    2 2

s s s d d d

     
Z G Z Z G Z  , 648 

equivalent to    s dVar Varm m . The remaining 10 terms in  649 
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  650 

all are zero matrices. Thus,    all red s dVar Var  Q Q m m  and, therefore, the variance  Var y651 

in the classical gametic model and the reduced model with gametic relationships are identical. As 652 

both models also have identical expectations of y , they are equivalent; q.e.d. . 653 

 654 

 Appendix A4: Maternal genetic variance in a reduced model. 655 

We consider a reduced model equation for a single observation: 656 

 
d s

i d d s iy m a a r     . 657 

This equation comprises the maternal breeding value dm  of the dam d  of individual i , together with 658 

the transmitting ability as dam 
d

da  of the dam d  of i , the transmitting ability as sire 
s

sa  of the sire 659 

s  of i , and the residual ir . 660 

Then, the covariance of the respective vectors of random genetic effects is 661 
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a A

a

 , 662 

where
2

m is the maternal gametic variance. As we use 
1

2
A  as relationship matrix (assuming all 663 

records are from final progeny) the incidence matrix for maternal breeding values needs to have 664 

non-zero entries of two to match this set of covariances. 665 

The variance of observations has the non-residual component 666 

  

2

2

2

1

2

m
m ms md

rm m s d ms s sd s

md sd d
d

  

  

  

 
   
       
    

 

Z

Q Z Z Z A Z

Z

 , 667 

involving the incidence matrices mZ , sZ , and dZ  that link observations to maternal genetic effects, 668 

transmitting abilities as sire, and transmitting abilities as dam, respectively. rmQ  is a sum of nine 669 
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matrices; of them, the following matrix equalities can be found by dropping the respective 670 

components of variance: 671 

 m m d d m d d m
     Z AZ Z AZ Z AZ Z AZ  672 

 m s d s
 Z AZ Z AZ    673 

 s m s d
 Z AZ Z AZ .  674 

The underlying fact is that the incidence matrices mZ  and dZ  link all observations to genetic effects 675 

of the same animals, i.e., of the dam of each final progeny. Thus, the incidence matrices m dZ Z  676 

are equal, and constitute equalities from above. Consequently, rmQ  can be rewritten as 677 

 
2 2

2

1

2

m m m d d d m d md d m md m s ms d s sd

rm

s m ms s d sd s s s

     

  

         
  

   

Z AZ Z AZ Z AZ Z AZ Z AZ Z AZ
Q

Z AZ Z AZ Z AZ
, 678 

which, in terms of the incidence matrices of the reduced model without maternal genetic effects, is  679 
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 

2 2

2
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2

d d d m md d s sd ms
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s d sd ms s s s

    

  

    
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Z AZ Z AZ
Q

Z AZ Z AZ
.  680 

The variance in the transmitting ability as dam and the covariance with the transmitting ability as sire 681 

are therefore contaminated by components of the maternal genetic (co-)variances. This shows that 682 

in the presence of maternal genetic effects, 
2

d  and 
2

s  cannot be inferred from the reduced model. 683 

Moreover, we cannot correctly calculate the weights of the observations as this would require that 684 

we know these two components of variance. 685 

Interestingly, we can assume the absence of genomic imprinting and make use of 686 

2 2 2

g s d sd      , from which the residual variance of observation i  becomes 687 

    2 2 2

, ,

1 1
1 1

2 2
s i g d i g eF F      .  688 

Consequently, the imprinting variance becomes 689 

    2 2 2 2 22 2i d m md s sd ms m              . 690 

 691 

Appendix A5: Maternal variance in a classical gametic model. 692 

The model equation for a single observation iy  in a gametic model with maternal effects is 693 
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,1 ,2 ,1 ,2

m m s d

i d d i i iy g g g g e      . 694 

In this, we have the maternal effect (superscript m ) of the paternal (1) gamete 
,1

m

dg  and the 695 

maternal ( 2 ) gamete 
,2

m

dg  of the dam d  of individual. 
,1

s

ig  is the effect of the paternal gamete of 696 

individual i  as sire, 
,2

d

ig  is the effect of the maternal allele of individual i  as dam, and ie is the 697 

residual. The covariance of random gametic effects is 698 
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. 699 

The vector of observations y  has covariance 
2

mm eV Q + I , with   700 
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. 701 

All other components of covariance are defined as before in appendix A4.  702 

mmQ  has three components—
2

m m mZ GZ , 
2

d d dZ GZ , and —related to components of variance, 703 

and another three— m s ms s m ms  Z GZ Z GZ , m d md d m md  Z GZ Z GZ , and—that are connected 704 

to the covariances. In contrast to the reduced model, the incidence matrices mZ  and dZ  relate the 705 

records to different gametic effects and, therefore, are not equal. As a result, all six addends of mmQ  706 

are linearly independent and all components of variance can be separated. 707 

    708 

 709 

  710 

     711 

   712 

   713 

 714 

 715 
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Figure 1: Example of a lower triangular matrix  
1

T from a decomposed inverse of a 

generalized gametic relationship matrix. Each row of the matrix pertains to a particular 

genetic effect. The last column indicates the respective combination of each kind of genetic 

effect (a: transmitting ability; g: gametic effect) with the genetic effects of the parents (a: 

transmitting ability; gg: pair of gametic effects; 0: unknown parent, and combinations thereof). 
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   

 



  1   0   0   0   0 0   0   0   0   0 0 0 0 0 0 a 00
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Table 1: Size and indices of non-zero elements of vectors 'iu  by kind of genetic effect (a: 

transmitting ability; g: gametic effect). The cases indicate unique combinations of kind of 

genetic effect and kind of indices. The latter consist of i: number of genetic effects; d: 

transmission abability of dam; s: transmission ability of sire; u: paternal gamete of dam; v: 

maternal gamete of dam; p: paternal gamete of sire; q: maternal gamete of sire. For gametic 

effects (cases g-a and g-gg), the respective effects of the known parent are indexed as for a 

sire.  

 

Kind of effect 

 

Case 

Non-zero-

elements in 'iu  

Indices of non-

zero elements 

a a-00 1  i 

a a-0a 1
2

1   d, i 

a a-0gg 1 1
4 4

1    u, v, i 

a a-a0 1
2

1  s, i 

a a-gg0 1 1
4 4

1   p, q, i 

a a-aa 1 1
2 2

1   s, d, i 

a a-agg 1 1 1
2 4 4

1     s, u, v, i 

a a-gga 1 1 1
4 4 2

1    p, q, d, i 

a a-gggg 1 1 1 1
4 4 4 4

1      p, q, u, v, i 

g g-a 1 1   s, i 

g g-gg 1 1
2 2

1   p, q, i 

g g-0 1 i 
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