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Abstract: 
Survival analysis and prediction are important in cancer studies. In addition to the Cox 
proportional hazards model, recently deep learning models have been proposed to 
integrate the multi-omics data for survival prediction. Cancer signaling pathways are 
important and interpretable concepts that define the signaling cascades regulating cancer 
development and drug resistance. Thus, it is interesting and important to investigate the 
relevance to patients’ survival of individual signaling pathways. In this exploratory study, 
we propose to investigate the relevance and difference of a small set of core cancer 
signaling pathways in the survival analysis of cancer patients. Specifically, we built a 
biologically meaningful and simplified deep neural network, DeepSigSurvNet, for survival 
prediction. In the model, the gene expression and copy number data of 1648 genes from 
46 major signaling pathways are used. We applied the model on 4 types of cancer and 
investigated the relevance and difference of the 46 signaling pathways among the 4 types 
of cancer. Interestingly, the interpretable analysis identified the distinct patterns of these 
signaling pathways, which are helpful to understand the relevance of the signaling 
pathways in terms of their association with cancer survival time. These highly relevant 
signaling pathways can be novel targets, combined with other essential signaling 
pathways inhibitors, for drug and drug combination prediction to improve cancer patients’ 
survival time. 
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Introduction 

Survival analysis is important in cancer prognosis based on the clinical factors, e.g., age, 
gender, race, stage. Moreover, it is important to identify and understand essential 
biomarkers with the availability of large-scale genomics data, e.g., gene expression and 
copy number variation, in addition to these clinical factors. The cox proportional hazards 
model (Cox PH) model1 is the classic model for the survival analysis. Recently, the deep 
learning models have been widely used in image analysis2,3, medical informatics data 
analysis4, nature language process (NLP)5, and showed significantly improved 
performance than traditional machine learning models. Deep learning models have been 
developed for survival analysis.  

Compared with the Cox PH model, the deep learning models showed improved 
prediction accuracy by integrating a large number of genomics features. For example, for 
the liver cancer subtyping and survival analysis6, the auto-encoder model was first 
employed to reduce the dimension of feature space, considering the large-number of 
genomics features, e.g., gene expression, miRNA, Methylation. The important features 
(non-linear combinations of raw genomics features) were identified using the Cox PH 
model1 for the clustering analysis to identify sub-groups with distinct survival outcomes. 
Then the analysis of variance (ANOVA), based on the clustering results, was applied on 
the raw genomics features was further used to identify the important genes. However, the 
auto-encoder model itself was not analyzed to identify the important raw genomics 
features in a non-linear perspective. In the Cox-nnet model, the RNA-seq data of TCGA 
samples was used as the input a deep neural network to predict the survival time. To 
identify the potential associated signaling pathways of hidden nodes, the Pearson’s 
correlation values between the expression of individual genes and the output of the given 
hidden nodes were calculated to identify the most linearly correlated genes. Then gene 
set enrichment analysis (GSEA)7 was employed to link the hidden nodes with the enriched 
signaling pathways. Moreover, the Survival Convolutional Neural Networks (SCNN)8 was 
developed to predict the survival using histologic images of cancer patients. Then heat 
map visualization of SCNN model output of regions of interest (image patches) was 
overlaid on the image to indicate the important regions in the images correlated with 
survival outcome. 

 In cancer studies, many dysfunctional signaling pathways are identified9, which play 
important roles in tumor development and drug response. In this study, we aim to 
investigate the relevance of these signaling pathways in the context of survival outcome 
prediction using a biologically meaningful and simplified deep learning model, 
DeepSigSurvNet. Specifically, only signaling pathways (46 pathways) were collected from 
KEGG10 signaling database. The gene expression and copy number data of 1648 genes 
from the 46 major signaling pathways are from 4 types of cancer: breast invasive 
carcinoma (BRCA), lung adenocarcinoma (LUAD), glioblastoma multiforme (GBM), and 
skin cutaneous melanoma (SKCM). The model was evaluated using the c-index. 
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Interestingly, the interpretable analysis using the Layer-wise relevance propagation 
(LRP)11 approach identified distinct probability density distribution patterns of these 
signaling pathways, which are helpful to understand the relevance of the signaling 
pathways in terms of the association with cancer patients’ survival. The important signaling 
pathways can be novel targets for drug and drug combination prediction to improve cancer 
patients’ survival time. In the following sections, the materials and methods, results and 
discussions are presented. 

 

Materials and Methodology 

RNA-seq and Copy number data of 4 types of cancer 

From the UCSC Xena data server, the mean-normalized log2 scaled RSEM12 values (per 
gene) across all TCGA cohorts (HiSeqV2_PANCAN dataset) and integer copy number 
data (per gene) from GISTIC2 analysis were downloaded for 4 types of cancer: breast 
invasive carcinoma (BRCA), lung adenocarcinoma (LUAD), glioblastoma multiforme 
(GBM), and skin cutaneous melanoma (SKCM). The phenotype (clinical) data, including 
survival time, age, gender, stage, of the cancer samples are also available from the Xena 
data server. Table I shows the number of cancer samples, dataset and URLs to download 
these datasets. For the prediction purpose, cancer patients with survival time greater than 
3000 days are not included. 

 

Table I: Number of samples, dataset_id and URLs to download the gene expression and copy 
number data from UCSC Xena data server. 

Cancer Type DataSet URLs 

BRCA 
(n=1057) 

HiSeqV2_PANCAN 
https://xenabrowser.net/datapages/?cohort=TCGA%20Breast%20Cancer%20(BRCA)
&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

Gistic2_CopyNumbe
r_Gistic2_all_thresho
lded.by_genes 

LUAD 
(n=500) 

HiSeqV2_PANCAN 
https://xenabrowser.net/datapages/?cohort=TCGA%20Lung%20Adenocarcinoma%20(
LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

Gistic2_CopyNumbe
r_Gistic2_all_thresho
lded.by_genes 

GBM 
(n=484) 

HiSeqV2_PANCAN 
https://xenabrowser.net/datapages/?cohort=TCGA%20Glioblastoma%20(GBM)&remo
veHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

Gistic2_CopyNumbe
r_Gistic2_all_thresho
lded.by_genes 

SKCM 
(n=358) 

HiSeqV2_PANCAN 
https://xenabrowser.net/datapages/?cohort=TCGA%20Melanoma%20(SKCM)&remov
eHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443 

Gistic2_CopyNumbe
r_Gistic2_all_thresho
lded.by_genes 
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The 46 major signaling pathways 

KEGG (Kyoto Encyclopedia of Genes and Genomes)10 is a database for the systematic 
understanding of gene functions. The KEGG signaling pathways provide the knowledge 
of signaling transduction and cellular processes. There are 303 pathways in KEGG 
database, and 45 of them are annotated as “signaling pathways”. Many of the signaling 
pathways are important oncogenic signaling pathways9, e.g., EGFR, WNT, Hippo, Notch, 
PI3K-Akt, RAS, TGFβ, p53. The ‘cell cycle’ cellular process is also included. For 
simplification, the ‘cell cycle’ is also viewed as one ‘signaling’ pathway. In total, 46 signaling 
pathways (45 signaling pathways + cell cycle) are selected (see Table II). Among these 
46 signaling pathways, there are 1648 genes with both gene expression and copy number 
variation data. In summary, there are gene expression (TPM) and copy number variation 
data of 1648 genes in 46 signaling pathways of 45 cancer cell lines, which was used as 
the input of the deep learning model. 

 

Table II: The 46 signaling pathways used for the analysis. 

MAPK  FoxO  TGF-beta  T cell receptor  Adipocytokine  
ErbB  Sphingolipid  VEGF  B cell receptor  Oxytocin  
Ras Phospholipase D  Apelin  Fc epsilon RI  Glucagon  
Rap1  p53  Hippo  TNF  Relaxin  
Calcium  mTOR  Toll-like receptor  Neurotrophin  AGE-RAGE  
cGMP-PKG  PI3K-Akt NOD-like receptor  Insulin  Cell cycle 
cAMP  AMPK  RIG-I-like receptor  GnRH   

Chemokine  Wnt 
C-type lectin 
receptor  

Estrogen   

NF-kappa B  Notch JAK-STAT Prolactin   

HIF-1 Hedgehog IL-17 
Thyroid 
hormone 

 

 
 

Model Architecture of the DeepSigSurvNet 

Fig. 1 shows the schematic architecture of the proposed DeepSigSurvNet model. In the 
‘input layer’, there are 2 input features, i.e., normalized gene expression across TCGA 
samples and integer copy number, for each of 1648 genes. Then the genes are connected 
to the 46 signaling pathways, only if a gene is included in a signaling pathway (not fully 
connection). The gene connection matrix and pathway connection matrix are used for 
specific the connections. The output of the 46 signaling pathways will be used as the input 
the convolution and inception layers (see Fig. 1). The activation functions for the Dense 
and convolution layers are the ReLu activation function. The last dense layer uses a linear 
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activation function. To better model and predict the survival time of cancer patients, 3 
clinical factors: age, gender and stage and the vital status are concatenated with the 
genomics data. For the training parameters, the batch size is 32, optimizer is “adam”. We 
divided the cancer samples in each type of cancer into training (80%) and test data (20%). 
For four cancer type, we use the same model architecture with different dropout rate, 
regularization value, and epoch. To investigate the relevance of individual signaling 
pathways for the survival time prediction, we employed the Layer-Wise Relevance 
Propagation (LRP) approach, which is available in the “iNNvestigate” package13. The 
distributions of the relevance scores, estimated by using the kernel density estimation 
based on the relevance scores of all samples, of all 46 signaling pathways for each type 
of cancer are obtained to investigate and understand the relevance of individual signaling 
pathways to the patients’ survival.  

 
 

 

Figure 1: Schematic architecture of the DeepSigSurvNet model. 
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Results 
Model performance evaluation 

To evaluate the performance of the proposed model, the concordance index (c-index) 
metric was used. The c-index is defined as follows. Let 𝑦"  and 𝑦#$  be the true and 
predicted survival time. The concordance is defined as 𝑃(𝑦#$ > 𝑦($ |𝑦" > 𝑦*), where i and j 
are two randomly selected samples. The c-index indicates the probability that prediction 
and the real survival time are relatively consistent or concordant, i.e., 𝑦#$ > 𝑦($ , 𝑎𝑛𝑑	𝑦" > 𝑦*, 
or 𝑦#$ < 𝑦($ , 𝑎𝑛𝑑	𝑦" < 𝑦*. Let C, D, T represent the number of concordant, discordant, and 
equal survival time, then the c-index is defined as:  

𝑐 − 𝑖𝑛𝑑𝑒𝑥 =
89:;<

89=9<
. 

We compared the proposed model with random forest model, which is available as in the 
RandomForestRegression from the scikit-learn package. We train the random forest 
model using the same training and test dataset setting for the four types of cancer. The 
“n_estimator” and “max_depth” parameters are used to find the best performance of the 
random forest models. For the DeepSigSurvNet model, we use same architecture for all 
four types of cancer, with different dropout rate, regularization value and epoch number 
for each cancer type. Table III and Table IV show the comparison results. As can be seen, 
the random forest model has the similar c-index values in the training datasets. However, 
it has much lower c-index values on the test datasets, compared with the proposed 
DeepSignSurvNet model, which indicates that the proposed deep learning model is robust. 
 
 
Table III: C-index values of random forest model in four types of cancer.  

 
 
Table IV: C-index values of DeepSigSurvNet in four types of cancer. 

Data set n_estimator Max_depth c-index 

Training-GBM 30 5 0.6550 

Test-GBM 30 5 0.5598 

Training-BRCA 40 7 0.7849 

Test-BRCA 40 7 0.5946 

Training-LUAD 30 6 0.7433 

Test-LUAD 30 6 0.5593 

Training-SKCM 60 9 0.9419 

Test-SKCM 60 9 0.5112 

Data set Epoch number c-index 
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Relevance of individual signaling pathways in 4 types of cancer 

As discussed, it is interested to investigate and understand how the individual signaling 
pathways contribute to the cancer patients’ survival prediction. After training the deep 
learning models, we employed the ‘iNNvestigate’ package to calculate the relevance 
scores of the individual signaling pathways on individual cancer patients in each of 4 types 
of cancer. Fig. 2 and Fig. 3 show the probability density distributions of 46 signaling 
pathways in the 4 types of cancer.  

Specifically, for BRCA, the mTOR, Hedgehog, PI3K-Akt, TGF-beta, AMPK, VEGF, 
Apelin, Adipocytokine and Oxytocin signaling pathways have the strongest relevance 
scores. P53, Wnt, Notch, NF-Kaapa B, FoxO, cGMP-PKG, cAMP, Chemokine, 
Sphingolipid, Relaxin, Thyroid hormone signaling pathways have relative high relevance 
scores. Surprisingly, the MAPK, ErbB, Ras, Rap1, JAK-STAT signaling pathways as well 
as cell cycle are not well associated with patients’ survival outcome. It is well known that 
these signaling pathways play important roles in cancer development. However, they can 
be separable in BRCA cancer samples to be the essential signaling pathways for patients’ 
survival outcome prediction. For LUDA, the patterns of density distributions are different 
from BRCA. More signaling pathways show high but not very strong relevance scores. For 
example, the MAPK, Ras, Rap1, cGMP-PKG, HIF-1, mTOR, PI3K-Akt, Wnt, Notch 
Hedgehog, C-type lectin receptor, GnRH, Neurotrophin, and Thyroid hormone signaling 
pathways have relatively high and consistent relevance scores. On the other hand, the 
AMPK, Hippo and NOD-like signaling pathways have the zero-mean value but with great 
variance. Then it is hard to evaluate their relevance important in cancer patients’ survival 
prediction analysis. For GBM, the Ras, p53, mTOR, PI3K-Akt, Notch, Hippo, TNF, 
Estrogen, Thyroid hormone and Relaxin signaling pathways have relatively high relevance 
scores; and the other signaling pathways are not correlated to the patients’ survival. For 
the SKCM, the patterns are kind of similar as the LUAD cancer samples. The Ras, Calcium, 
cGMP-PKG, NF-Kappa B, HIF-1, FoxO, Sphingolipid, Phospholipase D, p53, mTOR, Wnt, 
Hedgehog, NOD-like receptor, Estrogen, Prolactin, Thyroid hormone signaling pathways 
have relatively high and consistent relevance scores. Whereas, the MAPK, Rap1, PI3K-

Training-GBM 35 0.6808 

Test-GBM 35 0.6274 

Training-BRCA 35 0.7930 

Test-BRCA 35 0.6013 

Training-LUAD 30 0.8263 

Test-LUAD 30 0.7438 

Training-SKCM 20 0.8103 

Test-SKCM 20 0.7627 
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Akt, AMPK, VEGF signaling pathways have zero-mean values but with great variance.     

 In summary, the probability density distribution patterns of all the 46 signaling 
pathways vary significantly among the 4 types of cancer. For example, the p53 and mTOR 
signaling pathways are strongly relevant to patients’ survival outcomes in BRCA, GBM, 
SKCM, but not in the LUDA cancer patients. The MAPK, RAS, Rap1, ErBB signaling 
pathways are the known important signaling pathways in cancer. However, they are not 
strongly correlated with cancer patients’ survival outcome in the prediction models. It might 
be because all of these important signaling pathways are always activated in cancer 
patients. Thus, they are important targets for cancer therapy, but not informative in terms 
of the survival time prediction. Also, the cell cycle signaling does not play an important role 
in the survival time prediction. Moreover, a small set of signaling pathways, e.g., T cell 
receptor, B cell receptor, Fc epsilon RI, TNF signaling pathways do not show important 
contributions to the survival of cancer patients across all 4 types of cancer. Also, for each 
type of cancer, the less than half of the signaling pathways have strong effects to the 
survival prediction. Thus, drugs and drug combinations that can inhibit these essential 
signaling pathways, and that can inhibit the signaling pathways with strong relevance 
scores for each type of cancer might be effective to improve cancer patients’ survival time 
and outcome. 

Discussion and conclusion 

Survival prediction is important in cancer studies. Deep learning models also have been 
proposed for the survival prediction, and outperformed the classic Cox PH model. 
However, it is challenging to understand the contributions of individual genes considering 
the non-linear combinations of a large number of genomics features, e.g., gene expression, 
copy number variation. Signaling pathways are important in cancer research to 
understand the signaling cascades regulating cancer development and drug response. 
Instead of using a large number of genomics features, in this study, we proposed a 
relatively biologically meaningful and simplified deep learning model, DeepSigSurvNet, for 
the survival prediction. In the model, the gene expression and copy number data of 1648 
genes from 46 major signaling pathways are used. The analysis of deep learning model 
on 4 types of cancer can identify the distinct patterns of these signaling pathways, which 
are helpful to understand the relevance of the signaling pathways in the context of survival 
analysis, and can be novel targets for drug and drug combination prediction to improve 
cancer patients’ survival outcome. In conclusion, the proposed deep learning model can 
correlate the signaling pathways (not individual genes level) with cancer patients’ survival 
time and outcome.     

There are some limitations of the proposed model that need to be further addressed. 
In addition to the 46 signaling pathways, other KEGG pathways, like metabolism 
pathways, will be further evaluated. Moreover, Gene oncology17 (GO) terms provide 
alternative biologically meaningful biologically processes (BP) (gene sets). Also, other 
omics data, like protein, methylation, genetic mutation can be integrated conveniently to 
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the model in addition to the copy number, gene expression data. As aforementioned, the 
important genes within the important signaling pathways can be used potential gene 
signatures to discover drugs using the connectivity map (CMAP)15,16. We will investigate 
these possible directions in the future work.  

    

 

 

 
Figure 2: Density distribution of relevance scores of 46 signaling pathways on BRCA (top) and LUAD (bottom) 
cancer. 
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Figure 3: Density distribution of relevance scores of 46 signaling pathways on GBM (top) and SKCM (bottom) 
cancer. 
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