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ABSTRACT

Cancer is the process of accumulating genetic alterations
that confer selective advantages to tumor cells. The order
in which aberrations occur is not arbitrary, and inferring the
order of events is a challenging problem due to the lack
of longitudinal samples from tumors. Moreover, a network
model of oncogenesis should capture biological facts such
as distinct progression trajectories of cancer subtypes and
patterns of mutual exclusivity of alterations in the same
pathways. In this paper, we present the Disjunctive Bayesian
Network (DBN), a novel cancer progression model. Unlike
previous models of oncogenesis, DBN naturally captures
mutually exclusive alterations. Besides, DBN is flexible
enough to represent progression trajectories of cancer
subtypes, therefore allowing one to learn the progression
network from unstratified data, i.e., mixed samples from
multiple subtypes. We provide a scalable genetic algorithm
to learn the structure of DBN from cross-sectional cancer
data. To test our model, we simulate synthetic data from
known progression networks and show that our algorithm
infers the ground truth network with high accuracy. Finally,
we apply our model to copy number data for colon cancer
and mutation data for bladder cancer and observe that
the recovered progression network matches known biological
facts.

INTRODUCTION

Cancer is an evolutionary process that can be modeled as
a sequence of fixation of genetic alterations throughout the
tumor cell population (1, 11). Each new driver alteration
confers a selective growth advantage to the cell and sweeps
through the population, which results in clonal expansion (44).
But the alterations and the order in which they accumulate are
not arbitrary. Alterations are restricted by tissue and exposure
types and their order is determined by the type of conferred
advantage. Inferring the order of alterations has been shown
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to have diagnostic and prognostic importance (1, 11) but is a
challenging problem due to the lack of longitudinal samples
from tumors. The first model of tumorigenesis by Fearon and
Vogelstein (22) was developed for colon cancer and suggested
that a chain of aberrations is required to transform normal
cells into carcinoma. Many cancer types, however, are only
diagnosed in the later stages of the disease, meaning that
early events driving cancer progression are usually hidden in
available data. Our goal is thus to infer the order of alterations
from the cross-sectional data.

Recently, it was shown that cancers of the same type in
different individuals have very few or no driver mutations
in common (44), which suggests that chain models are not
enough to capture cancer progression. Desper’s Oncogenetic
tree (20) modeled progression as a rooted directed tree
(branching). A mixture of oncogenetic trees (9, 10) was
proposed to capture the presence of an aberration in multiple
progression paths. Directed Acyclic Graphs (DAGs) are the
next straightforward generalization of tree-based models, as
they allow multiple alterations (parents) to set up the clonal
stage for the appearance of a new aberration (the child).
Bayesian networks (BN), which are DAGs equipped with a
joint probability distribution (4), lend themselves naturally to
representing such models. Perhaps the most famous BN model
of cancer progression is the Conjunctive Bayesian Network
(CBN) (8, 23) which assumes all parent aberrations must be
present in order for a child alteration to occur.

From the evolutionary cancer modeling perspective, the
assumptions of CBNs are very restrictive because a single
advantageous hit is usually enough for clonal expansion and
preparation of the tumor for future hits (44). Moreover, it is
known that genes of the same pathway are altered mutually
exclusively (31) in the population and therefore under the
CBN progression assumption those genes cannot share any
descendant alterations, Figure 1a. The inability of CBN to
capture mutual exclusivity of alterations has motivated a
line of work in which the mutual exclusivity restriction and
pathway information are introduced artificially to the CBN
(17, 24).
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2 Oncogenetic Network Estimation with DBN

Furthermore, the CBN progression rule makes the
corresponding inference very sensitive to false positives,
i.e., passenger alterations. Since any passenger alteration co-
occurs with drivers, which are usually more frequent, the CBN
assumption requires each passenger alteration to be the child
of all drivers and therefore distorts the shape of the graph from
the underlying ground truth network, Figure 1b.

Related Work
Existing network models of oncogenesis focus on extending
the above model to a variety of more complicated settings.

The models of tumorigenesis discussed thus far are discrete-
time models. There are continuous-time extensions such as
timed oncogenetic trees (20) and continuous-time CBN (6).
Progression models alone do not capture the range of observed
data, which makes likelihood-based methods assign zero
probability to such data sets. One way of addressing this
issue is to consider measurement error, i.e., false positive
and negative observations, as the source of non-compliance
(23, 50). Another approach is to relax the original model and
accommodate some deviations. For example, the mixture of
oncogenetic trees model (9, 10) captures the independently
arising alterations in a separate star-shaped individual tree,
which confers the flexibility to all alterations to happen
without any parent. Existing approaches considering pathways
and their effects in cancer progression either assume that the
pathways are an input of the progression inference algorithm
(17, 24) or learn them along with the progression network
based on the principle of mutual exclusivity of mutations
belonging to the same pathway (18, 43). Finally, population
genetic models such as Wright-Fisher (7) and Moran (2)
processes have been used to model the evolution of cancer
as a large absorbing Markov chain whose states are cell
population with specific fixated alterations. The absorbing
states represent a diagnosed tumor or fully developed tumor
and state transition is determined by the fitness values of
alterations. These population genetic models are related to
the progression network viewpoint of the same process,
but the investigation of their connections is beyond the
scope of this paper. Thinking about cancer progression in a
population genetic framework allows more refined modeling
of progression by considering aspects such as the number of
cells, alteration rate, and fitness of each alteration (2).

There have been several recent attempts to model the
accumulation of alterations by Suppes’ probability raising
causal framework (15, 19, 34, 41, 42). Intuitively, these
methods for two alterations A and B test the following
two inequalities using their frequency counts in the given
data set to determine if A is a parent of B: P(A)>P(B)
and P(A|B)≥P(A|¬B). However, the causality definition
of Suppe’s has been proven to be insufficient for modeling
cause and effect mainly because it is symmetric: A raises B’s
probability if and only if B does so for A (37, 38). Even in
Desper’s original paper, the authors address the impossibility
of reconstruction of skewed oncotrees, i.e., trees with spurious
topological edges (20, 34). Therefore the condition of P(A)>
P(B) is the only factor that determines the order of two
alterations. But this condition just assumes that the more
frequent alteration should have happened earlier, which is the
core heuristic of all non-causal progression inference method.
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Figure 1. Issues with current state-of-the-art methods of cancer
progression inference. (a) In the CBN-based models, mutual exclusive nodes
A andB can not share a childC becauseA∧B should be true for progressing
to C. (b) The CBN-based models are sensitive to passenger alterations, like
E. Many edges are added from driver alterations to E to comply with the
CBN progression rule, which falsely renders E as an important alteration. (c)
The probability raising models of progression are unable to capture mutual
exclusivity, and therefore extra logical nodes (black squares) are added to the
network to enhance the expressiveness of the model.

Additionally, mutual exclusivity of causes cannot be modeled
directly in the standard Suppes’ framework (41). Therefore,
it has been suggested (15, 41) to augment the progression
network with artificial nodes required for modeling mutual
exclusivity. For example, if C has A and B as mutually
exclusive parents, A∨B and ¬A∨¬B should be added to
the network, Figure 1c. Learning progression networks, under
the assumption of mutual exclusivity, using causal discovery
methods (32, 48, 49) is an open question.

Lastly, since each cancer subtype has distinct molecular
characteristics and (semi-)disjoint progression path, one must
first stratify samples to disjoint subtypes and then learn the
progression network of each subtype separately. Note that
this extra step is required for all of the above models mainly
because they cannot capture mutual exclusivity of subtypes
naturally. PICNIC (15) is the state-of-the-art pipeline that
clusters samples to subtypes, detects driver events, checks for
statistically significant mutual exclusivity hypotheses or takes
pathway information as an input, and infers the progression
network from one of the several available models.

Our Contribution
Due to the intrinsic shortcomings of the state-of-the-art
methods, in this paper, we propose the Disjunctive Bayesian
Network (DBN), which relaxes the CBN progression
assumption. The DBN progression rule assumes that each
alteration can occur if at least one of its parents has occurred
first, Figure 2a. Our results show that DBN can naturally
accommodate distinct progression paths for subtypes and
capture mutual exclusivity of alterations present in the data.
Therefore, one can skip two preprocessing steps that are
necessary in state of the art models: stratifying samples by
subtype and mutual exclusivity detection.

In DBN the probability of an event does not increase with
the number of its parents that have occurred. This assumption
makes biological sense, because usually an aberration hitting
any genes of a pathway is enough to perturb the pathway’s
function, and give the cell a selective advantage and prepare it
for the next alteration. The DBN progression rule is therefore
in contrast with the well-known CBN model where the
assumption is that all parent events should occur to make the
child event possible (8).
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Figure 2. Bayesian networks of the three cancer progression models investigated in this paper. Node N represents normal cell state, and each random
variable Xj is an observed alteration, and the corresponding progression probability parameter is θj . In all models, the conditional probability table of X3 is
shown, and probabilities of instance observations are computed. (a) Basic DBN model where further progression is impossible if none of the parent alterations
have occurred. (b) Spontaneous activation model where there is a non-zero chance of a child occurring even if none of its parents are active. (c) Measurement
error model where each actual unobserved alteration Zj generates an observation Xj according to universal false positive and negative probabilities.

We consider two extensions of our proposed model. The
first extension relaxes the strict disjunction assumption and
allows spontaneous alteration. This means that an aberration
may occur in spite of unaltered parents, Figure 2b. The second
extension directly models false positive and negative errors
in measuring alterations, and therefore allows observations to
deviate from the standard DBN model, Figure 2c.

Although we are not directly modeling pathways, each set
of parent alterations can be thought of as a pathway whose
hit of its single element is sufficient for progression. In this
way, each alteration can belong to more than one pathways
and pathways can have non-linear interaction, which is more
general than the state-of-the-art pathway linear progression
(43) and pathTiMEx (18) models.

We present a genetic algorithm for learning the structure
of DBN from cross-sectional tumor data. We characterize a
likelihood-equivalence relation over DAGs representing the
DBN and use it to speed up the algorithm by only searching
through the representative DAGs of each equivalence class.
We show that the ability of the proposed algorithm
in reconstructing ground truth progression networks from
simulated data sets and inferring biologically interpretable
progression networks for colon and bladder cancer.

In summary, our scalable ALgorithm for Oncogenesis
Network Estimation, ALONE, based on the biologically-
derived progression rule of DBN, captures patterns of mutual
exclusivity, pathway perturbations, and disjoint progression of
cancer subtypes alone, without contrived modeling of each
one of these issues separately.

Notation. We denote sets by capital script V , matrices by
bold capital V, random variables and vectors by capital V , and
vectors of their realized values by small bold v=(v1,...,vp)

letters. To select a specific index set S of a vector we use the
notation v(S).

METHODS

We model the observation of genomic events as a binary
random vector (X1,...,Xp), where Xj=1 if the j-th event
(e.g., mutation or loss and gain of chromosome arms) is
detected in the sample. We represent a realization (sample) of
the event vector with x=(x1,...,xp). Moreover, we assume
that a Bayesian Network (BN) governs the order in which the
events can occur. The BN consists of a Directed Acyclic graph
(DAG) G and local Conditional Probability Distributions
(CPD) P(xj |x(Pj);θ) where Pj is the set of parents of
event j in G and θ parameterizes the distribution. Local
conditional probabilities form the joint distribution of all
events as follows:

P(x;G,θ)=

p∏
j=1

P(xj |x(Pj);θ). (1)

In this section, we first present the Disjunctive Bayesian
Network (DBN) progression rule and describe how it
determines the form of the CPDs. Next, we improve our initial
progression model by presenting two more realistic variants
of DBN. For each variant, we derive maximum likelihood
estimators for the network parameters θ. Finally, we provide a
Genetic Algorithm (GA) to search the space of DAGs for the
optimal network structure. To simplify this search, we define
an equivalence relation between networks and ensure that only
one network per equivalence class is searched.
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DBN Progression Rule
Basic DBN. The DBN progression rule allows an event to
occur if and only if at least one of its parents have occurred.
Given that at least one parent of event j occured, event j
occurs with probability θj . Therefore, CPDs of the basic
model, Figure (2a), take the following form:

P(xj=1|x(Pj);θ)=

{
0, x(Pj)=0

θj , otherwise
. (2)

Although it is known that there exists an order for genetic
events, we do not expect the proposed model to perfectly
comply with the observed data. For this reason, we investigate
two variants of DBN which capture deviations from the basic
model (2).
Spontaneous Activation Model. One can assume that
observations that deviate from the proposed progression
model are the results of spontaneous activation caused
by unknown sources. Therefore, we consider a non-zero
spontaneous activation probability εi>0 for each node
(Figure 2b) such that

P(xj=1|x(Pj);θ)=

{
εj , x(Pj)=0

θj , otherwise
. (3)

Measurement Error Model. One can attribute deviation
from the progression network to measurement error, i.e.,
presence of false positive and negative observations (50). False
positives and negatives can arise from errors in measurement
technology. A false negative (failing to observe an event)
can also arise from having a single sample from a spatially
heterogeneous tumor.

We assume that there are unique (across all events) false
positive ξ+ and negative ξ− probabilities that generates the
observed event x from the underlying latent event z as follows:

P(xj=1|zj=0)=ξ+, P(xj=0|zj=1)=ξ−. (4)

The corresponding graphical model is depicted in Figure 2c.

Parameter Estimation
Given n cross-sectional samples and the progression network
G, we wish to find θ̂MLE

G , the maximum likelihood estimator
(MLE) for θ in each variant of the DBN.

MLE for the Basic DBN First, we need to compactly write
the joint distribution of events using matrix A, the adjacency
matrix of G.

PROPOSITION 1. The likelihood can be written as

P(x;θ,G)=

p∏
j=1

[θj
xj (1−θj)

1−xj ]1(x(Pj) 6=0)(1−xj)
1(x(Pj)=0)

(5)

where 1 is the indicator function and 1(x(Pj) 6=0) checks
if any of j’s parents has occurred. Note that x(Pj) can be
computed easily as (aj�x)Pj

where aj is the jth column of

A, � is the Hadamard product and the subscript Pj selects
parents of j from the vector.

Using the compact representation (5) of the likelihood, one
can compute the MLE of θ for the basic DBN model (2).

PROPOSITION 2. Given n independent samples {xi}ni=1
from the same population defined by G and θ where xi∈
{0,1}p, MLE for θj is

θ̂MLE
j =

∑n
i=11(xij=1,xi(Pj) 6=0)∑n

i=11(xi(Pj) 6=0)
. (6)

where xij is the realization of the jth event in the ith sample.

Intuitively, (6) is just a sample proportion. The denominator
counts the number of samples in which at least one of the
parents of j occurred while the numerator counts those where
j occurred along with at least one of its parents.

MLE for the Spontaneous Activation Model. The likelihood
of the spontaneous activation model (3) is as follows:

P(x;θ,G)=

p∏
j=1

[θj
xj (1−θj)1−xj ]1(x(Pj) 6=0)ε

1(x(Pj)=0)
j .

(7)

Similarities between likelihoods (5) and (7) suggest that the
MLE for θ of the spontaneous activation model should be the
same as for the θ of the basic DBN presented in (6). Thus we
only need to compute the MLE for ε.

PROPOSITION 3. Given n independent samples from the
same population defined by G and θ, the MLE of θ for the
spontaneous activation model (3) is as (6) and the MLE of εj
can be computed as:

ε̂MLE
j =

∑n
i=11(xij=1,xi(Pj)=0)∑n

i=11(xi(Pj)=0)
. (8)

where xij is the realization of the jth event in the ith sample.

The ratio in (8) counts the percentage of samples in which
j has occurred without any parent and is thus an intuitively
reasonable estimator of the spontaneous activation rate.

EM for the Measurement Error Model Assuming ξ+ and ξ−
are fixed and known, the MLE of θ can be approximated using
the Expectation Maximization (EM) algorithm. Given the tth
EM iteration estimate θ(t) for θ, we set

θ(t+1)=argmax
θ

n∑
i=1

∑
zi

P(zi|xi;θ(t),ξ+,ξ−)`(θ;xi,zi), (9)

where `(θ;xi,zi)=logP(xi,zi;θ) is the joint log-likelihood
of sample i. The update for θ(t) can be found explicitly as
follows.
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THEOREM 1 (Closed form EM Update). Given n
independent samples {xi}ni=1 from the same population
defined by G and θ where xi∈{0,1}p, the EM update (9) for

θ
(t+1)
j has the following closed form:

θ
(t+1)
j =

∑n
i=1

∑
zi
1(zij=1,zi(Pj) 6=0)P(zi|xi)∑n

i=1

∑
zi
1(zi(Pj) 6=0)P(zi|xi)

. (10)

Note that if there is no measurement error, i.e., ξ+=ξ−=0,
then (10) reduces to (6). In practice, computing (10) incurs
exponential time because the inner sum goes through all 2p

possible realizations of the latent vector zi. Consequently, this
model is only practically useful when p≤12.

Structure Learning
Given a fixed network G, we have shown that the parameters
can be inferred in any of the models under consideration.
Learning G presents some challenges. Since the number of
possible DAGs is super-exponential in n an exhaustive search
is infeasible for even modest values of n. In this section, we
present a Genetic Algorithm (GA) to approximate the global
maximum to the log likelihood function `. The pseudocode of
our ALgorithm for Oncogenesis Network Estimation, ALONE,
is summarized in Algorithm 1.

Genetic Algorithm Genetic algorithms searches for a global
optimum using a “survival of the fittest” strategy. We begin
with a population of 2C candidate solutions known in the
genetic algorithm literature as chromosomes and evolve them
for T generations. Each chromosome is assigned a fitness
value v which determines its quality. Then, S chromosome
pairs are selected preferentially according to their fitness for
reproduction. The next generation forms by performing a
crossover operation on chromosome pairs. In each generation,
there is a chance that a mutation operation changes each
individual chromosome. Mutations help to maintain the
genetic diversity of chromosomes, thus avoid local optima by
exploring a broader range of potential solutions.

In the setting of our model, chromosomes at generation
t are 2C DAGs, {Gti}

2C
i=1 and the fitness of each DAG is

its maximum likelihood value. Algorithm 1 summarizes the
GA for cancer progression inference. Note that we keep track
of the best network (i.e., highest score value) in over all
generations and return it as the output of the GA.

In the rest of this section, we first show how to represent
DAGs for simplifying application of evolutionary operators.
Then, we elaborate on crossover and mutation operations for
the GA.
DAG Representation. We need to represent DAGs in such a
way that genetic operators of the GA can be easily applied.
The most natural way to encode a DAG G is by using its
adjacency matrix A. However, perturbing the entries in A may
unintentionally introduce directed cycles into the resulting
graph. To avoid this problem, we follow the approach used
by Carvalho (16). Any DAG G admits a topological ordering,
i.e., its vertices can be relabeled so that all edges point from
a lower index to a higher index. The adjacency matrix for a
topologically ordered DAG is thus strictly upper triangular.
Consequently, G can be represented as a pair (O,π), where

 1  4
3
 2

≜ (𝐎 =  000 1000 0    100 0110 0 , 𝛑 = (2,1,4, 3))

𝐀 =  010 0000 0    100 0101 0

Figure 3. DAG representation for the Genetic Algorithm. The DAG
(left) can be decomposed into an upper triangular matrix O along with a
permutation π. πi gives the relabeling for node i.

O is the adjacency matrix for the topological ordering of G,
and π is a permutation vector describing how the vertices
of O should be relabeled to generate A, (see Figure 3).We
consider the ordering O and permutation π as separate
chromosomes and evolve each of them individually. We can
avoid introducing directed cycles by ensuring that our genetic
operators always return an upper triangular matrix. Crossover.
Each crossover operation is defined to take in two DAGs and
produce two offspring so that the number of individuals per
generation remains constant. For the two selected DAGs their
orderings and permutations are crossed over as follows.

• Ordering Crossover: With probability co, the two upper
triangular matrix chromosomes are recombined by
interchanging their rows.

• Permutation Crossover: With probability cπ , the
permutation chromosomes are recombined using the
cycle crossover algorithm which is a standard crossover
technique for permutations (35).

If no crossover occurs, the two selected chromosomes are
passed down to the next generation unchanged.

Algorithm 1 ALONE: ALgorithm for Oncogenesis Network
Estimation

1: input: Data set D, parameters C, T , and r≥0.
2: output: Inferred graph Ĝ
3: Generate population of random trees: S0={G0

i }
2C
i=1.

4: for t=1 to T do
5: Compute fitness score of each DAG as: vti =

`(Gti;θ̂
MLE
Gt

i
,D)

6: if r=0 then . MDL penalty
7: vti =vti+lognlogp

∑
j∈Gt

i
|Pj |

8: end if
9: vt=

(vt1,v
t
2,...,v

t
2C)∑2C

j vtj
. Selection probabilities

10: for i=1 to S do
11: (Gti,G

t
i+1)← Selection(vt,2) . Select DAGs

12: (Gt+1
i ,Gt+1

i+1)← Crossover(Gti,G
t
i+1)

13: Gt+1
i ←Mutate(Gt+1

i ,r)

14: Gt+1
i+1←Mutate(Gt+1

i+1,r)

15: Gt+1
i ← Π∼(Gt+1

i ); Gt+1
i+1← Π∼(Gt+1

i+1)
16: end for
17: end for
18: Return the Ĝ corresponding to vmax=maxt∈[T ],j∈[2C]v

t
j
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6 Oncogenetic Network Estimation with DBN

A

B C

E

A

C B

E

A

B C

E

∼ ∼
𝐺 𝐺 𝐺

Figure 4. Examples of DAGs from the same equivalence class and their
canonical form. For all θ and x, P(x;θ) is the same for all of the three
network structures shown above. B and C are similar vertices in G1 and G2.
Edge B→C is redundant in G3. By uniquely labeling similar vertices and
removing redundant edges we reach G1 as the canonical form of the other
two DAGs.

Mutation. To maintain diversity in the population, we also
define several mutation operators.

• Edge Mutation: With probability me, either an edge is
added or an existing edge is removed which is achieved by
randomly flipping elements on the upper triangle of O.

• Branch Mutation: A branch is defined as a vertex along with
all of its descendant vertices. With probability mb, a branch
is randomly selected and is moved to another location. This
operation is done by cutting offs all parents of the root and
assigning a random parent to it. Also, all parents of the
other nodes in the branch that are not member of the branch
themselves are cut off.

• Permutation Mutation: With probability mπ , two elements
in the permutation chromosome π are swapped.

Speeding up the GA with DAG Equivalence Classes Since
mutation i activates with probability θi irrespective of which
parent mutations are active, many different network structures
induce the same probability distribution over {0,1}p. We say
that G∼G′ if, for every θ and x, P(x;G,θ)=P(x;G′,θ). It is
clear that ∼ defines an equivalence relation over DAGs.

To make the GA more efficient, we search only one DAG
per equivalence class by defining a canonical form for each
graph.

• An edge e in G is redundant if the graph G′ obtained by
removing e is equivalent to G.

• Vertices A and B are similar if swapping their labels yields
an equivalent network.

• A DAG G=(O,π) is in canonical form if it contains
no redundant edges and every set of similar vertices are
ordered from least to greatest in π.

Figure 4 shows a canonical form and corresponding
DAGs with similar vertices and redundant edge. We show
(Supporting Material C) thatG∼G′ if and onlyG andG′ have
the same canonical form and therefore, the canonical form
represents the equivalence class. To ensure that canonical form
is preserved through generations, we modify our crossover and
mutation operators to only return DAGs in the desired form.
The following propositions answers the practical questions of
how to determine redundant edges and similar vertices.

PROPOSITION 4. Under the Basic DBN (Figure 2a) and
the measurement error (Figure 2c) models, an edge A→B
is redundant if every path from the root (N ) to A contains
another parent of B.

The definition of redundant edges in the spontaneous
activation is more complicated and is explained in Section C
of the Supporting Material.

PROPOSITION 5. Vertices A and B are similar if they have
the same set of parents and the same set of children.

Algorithmically, we project back new solution graphs to the
state space of canonical forms by removing redundant edges
and uniquely labeling similar vertices in function Π∼(·) (line
12 of Algorithm 1.)

Controlling Complexity To prevent overfitting, we consider
two types of penalty to control the complexity of the learned
BN. First, if r=0 in Algorithm 1, we perform regularized
MLE by using the Minimum Description Length (MDL)
penalty introduced in (30). MDL penalizes both the number
of parameters of CPDs of a BN and the number of parents of
each node. Since the number of parameters for all of the CPDs
in DBN is one (single parameter θj for each node j), MDL
penalty for DBNs simplifies to lognlogp

∑p
j=1 |Pj | which

penalizes the sum of the number of parents, i.e., number of
edges in the BN.

In another approach represented by r>0 in Algorithm 1, we
limit the number of parents of each node to a given constant
r, i.e., maxj |Pj |≤r. This hard penalty is induced first by
initializing the first generation solutions as trees where the
number of parents is one. Note that mutation is the only
operation that can change the number of parents of nodes
therefore r is passed to the Mutate function (line 11 of
Algorithm 1) to cap the possible increase in the number of
parents.

RESULTS

ALONE is implemented in R and the source code is available
at https://github.com/phillipnicol/ALONE. The number of
solutions per generation of the GA is set to 2C=100
and the evolution continues for T =300 generations in all
experiments. To quantify uncertainty in the estimated graphG,
we report the “mean graph” resulted from running Algorithm
1 on 100 data sets. In the case of simulated data, since
we have the underlying ground truth progression network,
we obtain 100 data sets by sampling from the probability
distribution represented by the DAG. For the real experiment,
we obtain 100 bootstrap data sets by uniform sampling with
replacement from the original given cancer data. Therefore,
in all experiments, we have 100 data sets {Di}100i=1 and
overlay the outcomes of Algorithm 1, i.e., {Ĝi}100i=1 to obtain a
weighted graph whose weights represent the “mean presence”
of an edge, i.e., average number of times each edge was picked
by ALONE.

Comparing DBN-based Models
The genetic algorithm outlined in the previous section can
approximate the maximum likelihood estimated network
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(a) sDAG: Simple DAG, θ=(1,.7,.8,.7,.6,.5,.6,.3,.9,.2,.3,.6,.5).
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(b) cDAG: Complex DAG, θ=(1,.6,.7,.6,.5,.6,.4,.5,.7,.3,.2,.8,.5).

Figure 5. True DAGs of the synthetic experiment. θ is sorted alphabetically and weights wij of edges are the percentage presence, which shows the number
of times that an edge was present in the estimated networks from 100 simulated data sets. We observe that as the distance from the root increases, the recovered
edges become less confident (e.g.,A→C→F→K in the sDAG). Also, as the number of parents increases, the percentage presence of their edges to their shared
child drops. For example, incoming edges to H in the cDAG have smaller weights compared to those for I and G, which are at the same depth as H . Finally,
smaller progression probability θi of a node makes the inference of the incoming edges harder, which can be due to the fact that i is not frequently observed. For
example, in the sDAG θJ <θK and wEJ =32<wFK =56 and similarly in the cDAG θL<θM and wJL=77<wKM =80.

in both the measurement error model (Fig. 2c) and the
spontaneous activation model (Fig. 2b). The spontaneous
activation model is implemented in R while the measurement
error model is partially coded in C++ and is integrated into the
R code using the Rcpp package. Our preliminary experiments
show that the measurement error model has a significantly
longer run-time as a consequence of its exponential time EM
algorithm and cannot handle more than p=12 alterations. In
practice, the spontaneous activation model is both efficient
and robust and therefore all of the reported results assume
universal ε, i.e., ∀i,εi=ε.

Inferring Simulated Ground Truths
To test the performance of ALONE in recovering the ground
truth, we applied it to the data generated from four synthetic
networks with various levels of structural complexity. We
considered a simple DAG (sDAG) and a complex DAG
(cDAG) as ground truth progression networks. For each
node we choose θi∈(0,1) uniformly at random once for all
simulated data sets. For simplicity, we fix εj=0.05 and avoid
estimating it. We then generate n=500 samples from the
spontaneous activation model, Figure 2b. We run ALONE with
three as the hard limit on number of parents, i.e., maxj |Pj |≤
r=3.

Figure 5 shows our result for the sDAG and cDAG where
the edge weights are percentage presence (mean presence of
the edge times 100) computed from running the algorithm on
simulated data sets as explained earlier. For both DAGs, there
were only 3 false positive edges that appeared in more than 25
estimated graphs. Therefore, we chose .25 as the threshold for
mean presence in the follow-up experiments with real data.

Finally, Figure 6 is the overlay of the trajectory of the log-
likelihood of the best solution in each generation of the GA
for 100 data sets during the cDAG inference. The black dots
are the mean (over simulated data sets) of the fitness score
of the best solutions in each generation and the gray shadow
encompasses the interquartile range. Figure 6 shows that the
log-likelihood of the best solution improves very quickly at

Generations
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n 
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tte
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0 100 200 300
-4000

-3750

-3500
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Figure 6. Genetic algorithm progression over generations. The graph
is made of the overlay of 100 bootstrapped progression trajectories of
the penalized log-likelihood of the best solution, argmaxi∈[S]v

t
i , in each

generation t of the GA during the cDAG inference. The black dots
are the mean over bootstrap trajectories and gray shadow represents the
corresponding 90% confidence interval.

first and stabilizes after 150 generations. Therefore, we set
maximum number of generations T =300 for the following
analyses on real data.

Inferring Progression of Copy Number Alterations in
Colon Cancer
Our model can work with various types of aberrations
and even hybrid data sets consisting of various types of
aberrations. In this section, we investigate progression of
copy number aberrations (CNAs) in colon cancer. We
use publicly available CNA data detected by comparative
genomic hybridization (CGH) from the Progenetix database
(5, 12) which consists of n=570 samples of gains
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8 Oncogenetic Network Estimation with DBN

and losses of chromosomal arms. The data was pre-
processed in a recent paper (46) and is available online at
https://github.com/RudiSchill/MHN/tree/master/data.

We obtain 100 bootstrap estimates of the graph structure,
and report our the mean graph in Figure 7. For clarity, we drop
the mean presence of edges and represent them visually where
thick, normal, and dashed edges have presence in ranges
[0.75,1], [0.5,0.75), and [0.25,.5) respectively.

Our inference based on the DBN assumption recovers four
initiating CNA events for colon cancer, i.e., -1p, -18q, +20q,
and +Xq. Some of the follow-up events are shared between
these events such as -17p, +13q, -4q. Edge thickness of Figure
7 illustrates the mean presence of each edge in the output of
100 bootstrapped experiments and shows that we are most
confident about the found roots and -18q being the parent
event of -8p and -15q.

Inferring Progression of Mutations in Bladder Cancer
Finally, we use our method to recover the order of driver
mutations in bladder cancer. We use the Bladder Cancer
(BLCA) data from The Cancer Genome Atlas (TCGA)
program (14). BLCA has the highest driver mutation rate per
sample in the TCGA data set (3) and therefore is suitable
to check the scalability of ALONE. Many methods have been
developed to distinguish driver mutations from passengers.
We use the result of a recent study where 26 computational
methods have been applied to the TCGA data to detect driver
mutations (3). As a result, we consider 45 mutations and
n=414 samples. We remove mutations with less than 5%
frequency in samples, which leaves us with p=31 nodes (30
driver mutations and the normal node N ).

We run ALONE with 2S=100 solutions per generation for
T =300 generations on 100 bootstrap data sets. The mean
progression network is illustrated in Figure 8, where the
edge thickness represents the mean presence of the edge
according to the same rule described for the colon cancer
results. Note that out of p=31 nodes, only 18 are inferred in
the mean progression network because the remaining 13 are
not connected with enough confident to the rest.

We recover three root mutations with a high mean presence
for the progression of bladder cancer, i.e., TP53, KDM6A, and
KMT2D. From the several children of these roots, three have
a mean presence greater than 50%: RB1, STAG2, and KMT2C.
Finally, roots with meager mean presence (ELF3, ATM, and
CREBBP) and childless PIK3CA are mutations for which
ALONE can not find enough supporting evidence to place them
in the main progression graph. Note that these placements are
possible because of the flexibility given to our model based on
the spontaneous activation assumption.

DISCUSSION

Simulation Study
Investigating the synthetic experiment helps us understand
strengths and weaknesses of ALONE. As we move down the
sDAG, Figure 5a, reconstruction becomes more difficult. On
the other hand, recovering incoming edges of nodes with more
parents are more challenging, e.g., parents of I and L. The
cDAG reconstruction result agrees with the hypothesis that
having fewer parents simplifies the recovery. For example,

for the leaf nodes at the end of the progression network,
M and L, reconstruction is highly probable but inferring
parents of nodes closer to the root with multiple parents,
e.g., F, and K, is harder. Finally, it appears that a smaller
progression probability θi makes recovery of edges to node
i more difficult. This observation could be due to the fact
that smaller θi results in lower frequency of alteration i in the
samples, which makes inferring its parents harder in general.

Colon Cancer
Examining the reconstructed CNA progression network
reveals that it is in line with known biological facts. First of
all, 20q amplification, which is placed as one of the initiating
roots of progression, is known to happen early in many
cancers including colon and is suggested to causally drive
tumorigenesis (51). Chromosome arm 20q harbors multiple
potential oncogenes such as AURKA and SRC and its gain or
amplification have been linked to longer overall survival (40).

Another recovered root is the deletion of 18q which is also
known to have a central role in colon cancer and has been
observed in 70% of colorectal tumors (39). Among genes on
18q, DCC, SMAD2, SMAD4, and CABLES are thought to have
a driving role in colon cancer (29, 39). Although -18q has
been observed in advanced stages of colorectal tumors where
mutations such as APC and KRAS have already occurred, it
seems to be one of the first driving CNAs that happens in
colon cancer (22). We should note that the order in which
chromosomal instability (such as copy number changes) and
mutations occur in colon cancer is not clear (33, 39) and since
we are not analyzing such hybrid data our findings are neutral
in that regard.

Interestingly, ALONE places the -1p aberration as one of the
initiating events. This is in contrast with CBN which places -
1p event in the third (last) level of its inferred DAG (23). Loss
of 1p has been associated with many colon carcinogenesis
pathways and is one of the hot spot defects in the non-
neoplastic mucosa associated with the possible initiation of
colon carcinogenesis (36).

Finally, there have been arguments for the presence of two
mutually exclusive pathways dominated by gains and losses
in colon cancer (26) which is confirmed by our results. In
the reconstructed progression network of Figure 7, with the
exception of +13q and -4q aberrations in the second layer
and +8q in the third layer (which all have both gain and loss
parents) losses and gains appear to progress exclusively in the
colon cancer.

Bladder Cancer
The recovered progression network for bladder cancer reflects
existing biological research. First, bladder cancer is known to
have two histologically different subtypes known as papillary
and non-papillary (27). Papillary tumors are finger-like, which
start in the lining and grow toward the center of the bladder.
Non-papillary tumors also initiate in the lining but are flat in
shape. Both types can be muscle-invasive, which means the
tumor has grown outward, escaped the lining, and infiltrated
bladder muscles, or non-muscle invasive (27). All of the
bladder cases in TCGA are muscle-invasive, but papillary and
non-papillary cases are not known.
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[0%, 20%) [20%, 40%) [40%, 60%) [75%, 100%) [50%, 75%) [25%, 50%)Figure 7. CNA progression network of colon cancer inferred by ALONE. The frequency of each aberration and its percentage are provided inside each

node. Also, the size of each node is approximately proportional to its frequency. The mean presence of thick, normal, and dashed edges are in ranges [0.75,1],
[0.5,0.75), and [0.25,.5) respectively for 100 bootstrapped network estimation. Events -18q and +20q are known important initiating and driving alterations in
colorectal cancer, and -1p has been argued to play a role in colon carcinogenesis. Besides, losses and gains are reported to occur mutually exclusively in colon
cancer. All of these facts have been captured by ALONE.

There are known molecular signature for papillary and
non-papillary bladder cancers. Mutations in TP53, RB1, and
KMT2D (green nodes in Figure 8) are very frequent in non-
papillary subtype while KDM6A, STAG2, and FGFR3 (blue
nodes in Figure 8) are hallmarks of papillary tumors (13, 21,
25, 47). Focusing on the high confident recovered roots (TP53,
KDM6A, and KMT2D) and their descendants, our inferred
progression network of Figure 8 shows separate progression
paths for papillary and non-papillary subtypes. The middle
sub-graph rooted at KDM6A contains KDM6A, STAG2, and
FGFR3 mutations and is mostly separated from the rest of
the network. Therefore we can match it to the progression
of the papillary subtype. Sub-graphs on the right and left
of the figure (rooted at TP53 and KMT2D) are enriched
with molecular hallmarks of non-papillary subtype. Our result
shows the ability of ALONE to infer the cancer progression
network while maintaining subtype-specific biology. This
unsupervised learning of subtype information is in sharp
contrast with the existing state-of-the-art methods that need
subtype information as input and infer progression for each
subtype separately (15, 19, 41).

Another common pre-processing step in cancer progression
inference is to detect sets of fitness-equivalent groups of
mutually exclusive events by statistical tests or biological

priors such as pathways information (15) and then use that
knowledge in the inference engine. It has been reported that
in bladder cancer (KDM6A, KMT2D) and (TP53, CDKN2A)
are mutually exclusive pairs (28, 45). Figure 8 shows that
without manually detecting mutual exclusiveness relations and
taking them as the input for progression inference, ALONE

automatically places the mutually exclusive genes in separate
branches of the inferred progression network.

In addition to detecting mutual exclusivity in data, one
can expect such patterns in biological pathway information as
well. We know that usually single perturbation of a pathway
is enough for the manifestation of a cancer hallmark, and
therefore another mutated gene in the same pathway does
not confer a selective advantage. Thus, patterns of mutual
exclusivity of cancer events arise among genes in the same
pathways. In bladder cancer, high rate of alteration of p53/Rb,
RTK/Ras/PI(3)K, and histone modification pathways are
observed (13). Figure 8 highlights the corresponding pathways
of genes with different outline color for each pathway. It
confirms that the two subtypes (papillary and non-papillary)
both have perturbation in p53, RTK/Ras/PI(3)K, methylation,
and acetylation pathways. The only mutation that is shared
between the two subtypes is EP300, which corresponds to
acetylation.
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Figure 8. Mutation progression network of bladder cancer inferred by ALONE. Focusing on the three high confident roots (TP53, KDM6A, and KMT2D),
the two subtypes of bladder cancer are clearly separated. The middle subgraph (rooted in KDM6A) is enriched for hallmark aberrations of the papillary subtype
(blue nodes), and the other two subgraphs correspond to flat tumors (green nodes). Known mutual exclusive alteration pairs such as (KDM6A, KMT2D) and
(TP53, CDKN2A) are occurring in different subgraphs. Four established highly perturbed pathways of bladder cancer are represented with varying outline colors.
Each subtype has at least one mutated gene from these pathways is its subgraphs, therefore in both subtypes, all of the four pathways are perturbed.
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