
Complex dynamics induced by delayed adaptive behavior

during epidemics

Ronan F. Arthur, James H. Jones, Matthew H. Bonds, Marcus W. Feldman

April 14, 2020

Abstract

The behavioral response of individuals to an epidemic, and the timing of their be-

havior change, can have important consequences for epidemic dynamics. While the

importance of behavior-change for epidemic dynamics is broadly recognized, the ap-

proaches to modeling the coupled dynamics of epidemics and behavior change have

been limited. An important mode of behavior change in epidemics is a reduction in po-

tentially infectious contacts. We develop a model for endogenous change of the effective

contact rate of Susceptible-Infectious-Susceptible (SIS) epidemic model by positing a

dynamic utility function associated with the expected number of contacts people have

in the population. This utility function trades off the ideal number of social contacts

with the expected cost of becoming infected. Our analysis of this simple, deterministic

model reveals the existence of a non-zero endemic equilibrium, oscillatory dynamics un-

der some parametric conditions, and complex dynamic regimes that shift under small

parameter perturbations. Time-lag between current epidemic conditions and behavioral

response is essential for the more exotic dynamics. These results suggest that reducing

this lag may reduce both the final-size of the epidemic and the uncertainty associated

with epidemic projections.

1 Introduction

Human behavior-change in response to an epidemic, whether autonomously adopted by

individuals or externally directed by institutions, affects the dynamics of infectious dis-

eases [1, 2]. Prominent examples of important behavior change in response to infectious

disease dynamics include measles-mumps-rubella (MMR) vaccination choices [3], social dis-

tancing in influenza outbreaks [4], condom purchases in HIV-affected communities [5], and

non-pharmaceutical interventions in the SARS epidemic [6]. Social choices, driven by incen-

tives, can affect rates and structure of contact, how people interact with the environment,

and patterns of space, mobility, and migration, with important consequences for infectious
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disease dynamics [7]. Changes in personal health decision-making can be psychologically

motivated by risk perception, from personal susceptibility to disease severity (i.e., morbidity

and mortality), and a perception of self-efficacy, namely the awareness of potential behavior

changes and the ability to make them [8].

Behavior should be considered endogenous to an infectious disease system because it is, in

part, a consequence of the prevalence and severity of the disease, which also respond to

changes in behavior [9]. Individuals have greater incentive to change behavior as prevalence

increases; conversely they have reduced incentive as prevalence decreases [10, 11]. Endoge-

nous behavioral response may then theoretically produce a non-zero endemic equilibrium

of infection. This happens because, at low levels of prevalence, the cost of avoidance of a

disease may be higher than the private benefit to the individual, even though the collec-

tive, public benefit in the long-term may be far greater. However, in epidemic response we

typically think of behavior change as an exogenously-induced intervention. While guiding

positive change is an important intervention, neglecting to recognize the endogeneity of

behavior can lead to the reversal of those changes when they no longer appear necessary

from an individual perspective. This can frustrate efforts to eradicate a disease.

Although there is growing interest in the role of dynamic human behavior in infectious dis-

ease dynamics, there is still a lack of general understanding of the most important properties

of such systems [1, 9, 12]. For example, behavior change was a notable, though intentional,

omission in a prominent CDC model that predicted outcomes of the recent West African

Ebola epidemic in 2014. This model predicted a final size of the epidemic two orders of mag-

nitude greater than what actually occurred [13] and this excess was due, in large measure,

to behavior change. Behavior is difficult to measure, quantify, or predict [9], in part, due

to the complexity and diversity of human beings who make different choices under different

circumstances. It is also highly variable depending on the relative time scales of the disease

and behavioral responses.

Despite these challenges, modelers have adopted a variety of strategies to investigate the

importance of behavior (see Funk et al., 2010 [2] for a general review). An early expansion

of the Kermack-McKendrick Susceptible-Infectious-Removed (SIR) model simply allowed

the transmission parameter (β) to be a negative function of the number infected, effectively

introducing an intrinsic negative feedback to the infected class that regulates the disease

[14]. Modelers have used a variety of tools, including agent-based modeling [15], network

structures for the replacement of central nodes when sick [16] or for behavior change as a

social contagion process [17], game theoretic descriptions of rational choice under changing

incentives as with vaccination [4, 11, 18], branching process for heterogeneous agents and

the effect of behavior during the West Africa Ebola epidemic in 2014 [19], and adaptive
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network-structured sexual behavior that can produce oscillatory dynamics [20].

A common approach to incorporating behavior into epidemic models is to track coevolving

dynamics of behavior and infection [17, 21, 22], where behavior represents an i-state of

the model [23]. In a compartment model, this could mean separate compartments (and

transitions therefrom) for susceptible individuals in a state of fear and those not in a state

of fear (e.g., Epstein et al. [17]). In contrast, we develop an approach in which overall

behavior is modulated dynamically and endogenously simple as a function of the current

fraction of the population infected.

Interactions between behavior-mediated transmission and the prevalence of disease depend

on the nature and timing of an outbreak of infectious disease. Given enough time for

response, behavior is prevalence-elastic. If the behavior in question is slow-changing, it

may effectively be regarded as a parameter rather than a variable in a fast-acting outbreak

[9], although it may still be important to the long-term interaction between economics,

the environment, and disease [24]. Continuous-time modeling of epidemics and adaptive

behavior generally assumes perfect instantaneous information and immediate response and

does not allow for delay of information or reactions. However, in reality, information about

the state of an epidemic can take time to collect and distribute, and the reaction to this

information may also be delayed. For example, if behavior responds to mortality rates,

there will inevitably be a lag with an average duration of of the incubation period plus the

life expectancy upon becoming infected. In a tightly interdependent system, reacting to

outdated information can result in an irrational response.

A delay in a behavioral response to an epidemic can take a variety of forms. For example,

in the 2014-15 Ebola epidemic, there were delays in the identification of the virus, delays

in the acquisition of reliable information on suspected and confirmed cases, delays in the

mobilization of international relief efforts by the World Health Organization and affected

governments [25], delays in the establishment of trust between local affected communities

and health authorities [26], delays in the launching of community information and commu-

nication campaigns, and delays in laying the physical infrastructure for the treatment and

isolation of an increasing number of patients. Recognizing the effects of such delays as a

part of the endogenous relationship between disease and behavior is important to improved

understanding of the complexity of disease dynamics.

To address the gap in the literature, we develop and analyze a simple model based on

the principle of endogenous behavior change during epidemics of infectious diseases. We

introduce a dynamic utility function that determines the population’s effective contact rate

at a particular time period. This utility function is based on information about the epidemic

size that may not be current. Results from the model show that the system approaches an
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equilibrium in most cases, although small parameter perturbations can lead the dynamics

to enter qualitatively distinct regimes. This dynamical behavior is similar to models of

ecological population dynamics, and a useful mathematical parallel is drawn between these

systems.

2 Model specifications

To represent endogenous behavior change, we start with a discrete-time Susceptible-Infected-

Susceptible (SIS) model [27], which, when incidence is relatively small compared to the total

population [28,29], can be written in terms of the recursions

St+1 = St − b StIt + γIt (2.1)

It+1 = It + b StIt − γIt (2.2)

St + It = Nt, (2.3)

where at time t, St represents the number of susceptible individuals, It the infected indi-

viduals, and Nt the number of individuals that make up the population, which is assumed

fixed in a closed population. We can therefore remove the time subscript and write N for

the population size. Here γ is the rate of removal from I to S due to recovery. This model

in its simplest form assumes random mixing, where the parameter b represents a composite

of the average contact rate and the disease-specific transmissibility given a contact event.

In order to introduce human behavior, we substitute a dynamic bt for b, which is a function

of both b0, the probability that disease transmission takes place on contact, and a dynamic

social rate of contact ct whose optimal value, c∗t , is determined at each time period t as in

economic epidemiological models [30], namely

bt = b0 c
∗
t , (2.4)

where c∗t represents the optimal contact rate, defined as the number of contacts per unit time

that maximize utility for the individual. Here, c∗t is represented as a function of the number

of infected in the population according to the perceived risks and benefits of social contacts,

which we model as a utility function, assuming there is a constant utility independent of

contact, a utility lost associated with infection, and a utility derived from the choice of
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number of daily contacts with a penalty for deviating from the choice of contacts which

would yield the most utility.

This utility function is thus assumed to take the form

U(ct) = α0 − α1(ct − ĉ)2 − α2(1 − (1 − (
It−∆

N
)b0)ct). (2.5)

Here U represents utility for an individual at time t given a particular number of contacts

per unit time ct, α0 is a constant that represents maximum potential utility achieved at

a target contact rate ĉ. The second term, α1(ct − ĉ)2, is a scaled squared deviation to

represent the penalty for deviating from ĉ. The third term, α2(1 − 1(1 − It−∆

N b0)ct , is the

cost of infection, α2, multiplied by the probability of infection over the course of the time

unit. The time-delay ∆ represents the delay in information acquisition and the speed of

response to that information. We note that (1 − I
N b0)ct can be approximated by

(1 − (
I

N
)b0)ct ≈ 1 − ct(

I

N
)b0, (2.6)

when I
N b0 is small and ct

I
N b0 << 1. We thus assume I

N is small, as in the beginning stages

of an epidemic, and approximate U(ct) in Eqn. 2.5 using Eqn. 2.6. Eqn. 2.5 assumes a

strictly negative relationship between number of infecteds and contact.

We assume an individual will balance the cost of infection, the probability of infection,

and the cost of deviating from the target contact rate ĉ to select an optimal contact rate

c∗t , namely the number of contacts, which takes into account the risk of infection and the

penalty for deviating from the target contact rate. We assume all agents select ct regardless

of infection status, such as in scenarios where individuals are not aware of their own status.

This optimal contact rate can be calculated by finding the maximum of U with respect to

ct from Eqn. 2.5 with substitution from Eqn. 2.6, namely

Ut(c) = α0 − α1(ct − ĉ)2 − α2ct(
It−∆

N
)b0. (2.7)

Differentiating, we have

dU(ct)

dc
= −2α1(ct − ĉ) − α2b0

It−∆

N
, (2.8)

which vanishes at the optimal contact rate, c∗t , given by
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c∗t = ĉ− α2

2α1
b0
It−∆

N
. (2.9)

Therefore, total utility will decrease as It increases and c∗t also decreases. Utility is maxi-

mized at each time step, rather than over the course of lifetime expectations. In addition,

Eqn. 2.9 assumes a strictly negative relationship between number of infecteds at time t−∆

and c∗. While behavior at high degrees of prevalence or expectations of same have been

shown to be non-linear and fatalistic [31,32], in this model, prevalence (i.e., I
N ) is assumed

small consistent with Eqn. 2.6.

We introduce the new parameter α = α2
2α1

b0, so that

c∗t = ĉ− α
It−∆

N
. (2.10)

We can now rewrite the recursion from Eqn. 2.2, using Eqn. 2.4 and replacing ct with c∗t
as defined by Eqn. 2.10, as

It+1 = I2
t (
b0α

N
I(t−∆) − b0ĉ) + It(b0Nĉ− αb0I(t−∆) + 1 − γ) = f(It). (2.11)

When ∆ = 0 and there is no time delay, f(I) is a cubic function, given by

f(It) =
b0α

N
I3
t − (ĉ b0 + b0α)I2

t + (Nb0ĉ+ 1 − γ)It. (2.12)

3 Analytical Results

3.1 Equilibria

To determine the dynamic trajectories of this model without time delay, we solve for the

fixed point(s) Î of It (i.e. value or values of I such that f(It) = It) from Eqn. 2.12; that is,

we solve

It =
b0α

N
I3
t − (ĉ b0 + b0α)I2

t + (Nb0ĉ+ 1 − γ)It. (3.1)

From Eqn. 3.1, it is clear that Î = 0 is an equilibrium, as no new infections can occur in

the next time-step if none exist in the current one. We call this the disease-free equilibrium

at Î0 = 0. Other equilibria are the solutions of

b0α

N
I2 − (b0ĉ+ b0α)I +Nb0ĉ− γ = 0. (3.2)
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Solving this quadratic yields two solutions. The first is

Î1 =
α+ ĉ+

√
α2 + ĉ2 − 2αĉ+ 4 α

b0N
γ

2 α
N

, (3.3)

and the second is

Î2 =
α+ ĉ−

√
α2 + ĉ2 − 2αĉ+ 4 α

b0N
γ

2 α
N

. (3.4)

The discriminant of both of these equilibria is given by ((α− ĉ)2 + 4 α
b0N

γ) and is therefore

always positive. These non-zero equilibria are denoted by Î1 and Î2, respectively.

These equlibria are considered legitimate when 0 ≤ Îk ≤ N for k = [0, 1, 2] as the number

of infected cannot be negative and cannot exceed the total population. Î0 is therefore a

legitimate equilibrium. Î1 is always positive because its constituent components are all

positive. The condition under which Î1 ≤ N is

4
α

b0N
γ ≤ 0. (3.5)

Thus Î1 cannot be less than N, and it can equal N only if γ = 0, a degenerate case as it

would mean there is no recovery and therefore any number of contacts would lead to the

whole population becoming infected.

The condition under which Î2 ≤ N is given by

4
α

b0N
γ ≥ 0. (3.6)

Therefore Î2 < N when neither α = 0 nor γ = 0. The condition under which Î2 is positive

is

ĉ b0 >
γ

N
. (3.7)

3.2 Stability

Assessing global asymptotic stability in epidemic models is an important task of mathe-

matical epidemiology [33,34]. In this model, when ∆ = 0, there are three equilibria for the

recursion equation Eqn. 2.11: the disease-free equilibrium, Î0, which is stable when Î2 > 0,
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Î1, which is unstable and greater than N, and Î2, which is stable and positive when Î0 is

unstable. Recall the condition for the existence of Î2 when γ > 0 is ĉb0 >
γ
N (Eqn. 3.7).

These two scenarios for the three equilibria are illustrated in Figs. 1-2. Calculations for

stability can be found in the appendix.

The basic reproduction number, the number of secondary cases produced by the introduc-

tion of one infected person into an entirely susceptible population, R0, is a fundamental

tool of epidemiology because it delineates a threshold between an epidemic and eradica-

tion [35, 36]. Rt, the reproduction number at time t, is the eigen-value of this system or
It+1

It
[37, 38]. When Rt is greater than 1, the epidemic will continue to grow. When it is

less than 1, it will shrink. Reducing Rt to less than 1 is therefore a central goal of epidemic

intervention. The effect of endogenous behavior change on Rt in this model is illustrated in

Fig. 3.

Figure 1: Return map for system with ∆ = 0 where Î2 is a stable equilibrium

and between 0 and N . Î0 is unstable and Î1 > N . This is valid when ĉb0 >
γ
N

and γ > 0. Rt > 1 if I0 < Î2 unless It becomes greater than Î2 at which point

Rt < 1. The system thereby regulates itself to approach the Î2 equilibrium

when ∆ = 0.
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Figure 2: Return map for system when Î0 is stable, Î2 is negative and unstable,

and Î1 > N and unstable when ĉb0 <
γ
N . Here, Rt < 1 for all legitimate values

of It (i.e. when 0 < It < N).

4 Computational Results

Computer iterations were used to interrogate the parameter space of this model and the

associated dynamics. Parameters include:

• N , the total population

• I0, the initial number of infected individuals

• ∆, the time delay in behavioral response

• b0, the transmissibility parameter

• γ, the probability that an infected individual recovers to the susceptible class

• ĉ, the optimal contact rate when It = 0

• α1, the utility associated with choosing a contact rate equal to ĉ

• α2, the negative utility associated with becoming infected

Under different parameter sets, the system shows five qualitatively distinct kinds of dy-

namical behaviors: 1) monotonic convergence to the disease-free equilibrium Î0 (number of

infected goes to 0); 2) monotonic convergence to the Î2 equilibrium; 3) damped oscillation

that converges to Î2; 4) perpetual oscillation; and 5) a collapse, or sudden extinction of

the epidemic when the number of infecteds crosses 0. In Fig. 3 and Fig. 4 each of these

dynamical classes is demonstrated with small differences in b0 and ∆, respectively.
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In order to identify the critical thresholds between the dynamical classes of results, default

parameters were chosen to remain fixed while each of the other parameters was varied. The

default parameters were

N = 10000, I0 = 1, b0=0.05, γ = 0.08, ĉ = 0.0015, α1 = 0.02, α2 = 0.3, ∆ = 3

We note that γ, b0, ĉ, and ∆ are important to the qualitative landscape of the dynamics.

While I0, α1, and α2 may change the location of the non-zero fixed point and may influence

the time it takes to reach equilibrium, they do not affect which fixed point the model is

attracted to or the nature of the dynamics exhibited. The system is dynamically sensitive

to γ, b0, and ∆ and includes critical transitions into distinct classes of dynamical behavior

of increasing complexity as illustrated in Fig. 3.

Tables 1-4 list sets of runs for varying values of b0, γ, ∆, and ĉ respectively. Critical

thresholds for each of these parameters are calculated, beyond which a regime shift to a

distinct qualitative dynamic classification occurs. These thresholds are not fixed for each

of the parameters - they are mathematically interdependent. An example of values for each

parameter that produces each system class is given.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.028407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.028407
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Five classes of dynamics can result from varying bo over critical thresh-

olds from the default parameter settings (listed in Table 1): a) when b0 = 0.005,

there is monotonic convergence to the disease-free equilibrium at Î0 = 0 where

R0 < 1; b) when b0 = 0.01, there is monotonic convergence to the Î2 equilibrium

when R0 > 1, but Rt approaches 1 as the system goes to equilibrium; c) when

b0 = 0.033 there is damped oscillation that overshoots the equilibrium with

progressively smaller amplitude until it reaches the equilibrium where R = 1;

d) when b0 = 0.04, there is perpetual oscillation without consistent period or

amplitude with Rt fluctuating frequently below and above 1 results; and e)

when b0 = 0.05, a collapse of the system occurs.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.028407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.028407
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Four classes of dynamics can result from varying the time delay ∆

while maintaining the default parameters (Table 3), which are set such that Î2

is stable at ∆ = 0: a) when ∆ = 0, there is monotonic convergence to the Î2

equilibrium; b) when ∆ = 1, there is damped oscillation that converges to Î2

(see Fig. 5 for a return map of this system); c) when ∆ = 2, there is perpetual

oscillation with a complex pattern as shown in Fig. 6; and d) when ∆ = 3,

there is collapse, or extinction of the epidemic.
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Figure 5: Return map of dynamics with default parameters, but ĉ = 0.001. The

Î2 equilibrium is indicated by the dark circle. This regime illustrates damped

oscillation that converges to the stable equilibrium.

Figure 6: Return map of dynamics with default parameters, but ∆ = 2. The

Î2 equilibrium is indicated. This regime is perpetual oscillation and shows a

complex pattern of oscillations with a bounded range. More than one It+1

value exists for each It value. The importance of both values makes the system

difficult to predict when ∆ is unknown.
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Table 1: Regime shifts from varying b0, the transmissibility parameter

N I0 b0 γ ĉ α1 α2 ∆ Î2 Classification

10000 1 0.005 0.08 0.0015 0.02 0.3 3 NA Mon. convergence to Î0

10000 1 0.01 0.08 0.0015 0.02 0.3 3 92.339 Mon. convergence to Î2

10000 1 0.03 0.08 0.0015 0.02 0.3 3 54.750 Damped oscillation to Î2

10000 1 0.04 0.08 0.0015 0.02 0.3 3 43.304 Perpetual oscillation

10000 1 0.05 0.08 0.0015 0.02 0.3 3 35.718 Collapse

Table 2: Regime shifts from varying γ, the removal rate

N I0 b0 γ ĉ α1 α2 ∆ Î2 Classification

10000 1 0.05 0.75 0.0015 0.02 0.3 3 NA Mon. convergence to Î0

10000 1 0.05 0.65 0.0015 0.02 0.3 3 5.315 Mon. convergence to Î2

10000 1 0.05 0.45 0.0015 0.02 0.3 3 15.961 Damped oscillation to Î2

10000 1 0.05 0.2 0.0015 0.02 0.3 3 29.302 Perpetual oscillation

10000 1 0.05 0.1 0.0015 0.02 0.3 3 34.648 Collapse

Table 3: Regime shifts from varying ∆, the time delay parameter

N I0 b0 γ ĉ α1 α2 ∆ Î2 Classification

10000 1 0.05 0.08 0.0015 0.02 0.3 0 35.718 Mon. convergence to Î2

10000 1 0.05 0.08 0.0015 0.02 0.3 1 35.718 Damped oscillation to Î2

10000 1 0.05 0.08 0.0015 0.02 0.3 2 35.718 Perpetual oscillation

10000 1 0.05 0.08 0.0015 0.02 0.3 3 35.718 Collapse

10000 1 0.05 0.08 0.0015 0.02 0.3 4 35.718 Collapse

Table 4: Regime shifts from varying ĉ, the target contact rate

N I0 b0 γ ĉ α1 α2 ∆ Î2 Classification

10000 1 0.05 0.08 0.0001 0.02 0.3 3 NA Mon. convergence to Î0

10000 1 0.05 0.08 0.0003 0.02 0.3 3 3.732 Mon. convergence to Î2

10000 1 0.05 0.08 0.0004 0.02 0.3 3 6.397 Damped oscillation to Î2

10000 1 0.05 0.08 0.0011 0.02 0.3 3 25.056 Perpetual oscillation

10000 1 0.05 0.08 0.0015 0.02 0.3 3 35.718 Collapse
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5 Discussion

This simple model of endogenous behavior change contains a disease-free equilibrium and an

endemic non-zero equilibrium, both of which are stable under different conditions. Several

parameters, including b0, the transmissiblity parameter, Γ, the removal rate, ∆, the time

delay, and ĉ, the target contact rate, are each dynamically influential and can cause a

regime shift through five distinct classes of dynamics found in the computational results,

including monotonic convergence to the disease-free equilibrium, monotonic convergence

to the non-zero equilibrium, damped oscillation to equilibrium, perpetual oscillation, and

collapse.

Our model makes a number of simplifying assumptions. We assume, for example, that all

individuals in the population respond in the same fashion. We assume that the individuals

choose their contact rates according to an optimized utility function, which is homogeneous

across all individuals in the population. Finally, we assume that the utility function is

symmetric around the optimal number of contacts so that increasing or decreasing contacts

above or below the target contact rate respectfully yield the same reduction in utility. These

assumptions allowed us to create the simplest possible model that includes adaptive behavior

and time delay. In Holling’s heuristic distinction in ecology between tactical models, models

built to be parameterized and predictive, and strategic models, which aim to be as simple

as possible to highlight phenomenelogical generalities, this is a strategic model [39].

We note that the five distinct kinds of dynamical trajectories (Fig. 3) seen in these compu-

tational experiments come from a simple set of purely deterministic equations. This means

that oscillations and even erratic, near-chaotic dynamics and collapse in an epidemic may

not necessarily be due to seasonality, complex agent-based interactions, changing or stochas-

tic parameter values, demographic change, host immunity, or socio-cultural idiosyncracies.

This dynamical behavior in number of infecteds can result from mathematical properties

of a simple deterministic system with homogeneous endogenous behavior change, similar

to complex population dynamics of biological organisms [40]. The mathematical consis-

tency with population dynamics suggests a parallel in ecology, that the indifference point

for human behavior functions in a similar way to a carrying capacity in ecology, below

which a population will tend to grow and above which a population will tend to shrink.

For example, the Ricker Equation [41], commonly used in population dynamics to describe

the growth of fish populations, exhibits similar complex dynamics and qualitative state

thresholds. The existence of a non-zero, stable equilibrium in our model is consistent with

economic epidemiology theory: if individuals are incentivized to change their behavior to

protect themselves, they will, and they will cease to do this when they are not [10]. If we

couple this with delayed information, the results can lead to limit-cycle dynamics, consis-
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tent with other negative feedback mechanisms with time delays [42,43]. This is because the

system is reacting to conditions that were true in the past, but not necessarily true in the

present.

Observed epidemic curves of many transient disease outbreaks typically inflect and go ex-

tinct, as opposed to this model that oscillates perpetually or converges to an endemic disease

equilibrium. Our model is meant to demonstrate what effect personal incentives can have on

infectious disease dynamics. Including institutional and public efforts that are incentivized

to eradicate, rather than to optimize personal utility trade-offs, would alter the dynamics

to look more like real-world epidemic curves. This may have a useful implication for policy.

For example, beyond infectious diseases that remain endemic to society, outbreaks may also

flare up once or multiple times, such as the double-peaked outbreaks of SARS in 3 countries

in 2003 [44]. There may be many causes for such double-peaked outbreaks, one of which

may be a lapse in behavior change after the epidemic begins to die down due to decreasing

incentives, as represented in our simple theoretical model [17]. This is consistent with find-

ings that voluntary vaccination programs suffer from decreasing incentives to participate as

prevalence decreases [45, 46].

One of the responsibilities of infectious disease modelers is to predict and project forward

what epidemics will do in the future in order to better assist in the proper and strategic

allocation of preventative resources. An insight from this model, however, is that prediction

becomes very difficult if we take into account endogenous behavior change because the

system is qualitatively sensitive to small differences in values of key parameters. These

parameters are very hard to measure precisely; they change depending on the disease system

and context and their measurement is generally subject to large errors. To maximize the

ability to predict and minimize loss of life or morbidity, outbreak response should not only

seek to minimize the reproduction number, but also the length of time taken to gather and

distribute information.

In our model, the existence of complex dynamic regimes require a time delay. If behavior

change arises from fear and fear is triggered by high local mortality, such delays seem plau-

sible since death is a lagging epidemiological indicator. Lags mean that people can respond

sluggishly to an unfolding epidemic crisis, but they also mean that people can abandon

protective behaviors prematurely. Developing approaches to incentivize protective behavior

throughout the duration of any lag introduced by the natural history of the infection (or

otherwise) should be a priority in applied research. This paper represents a first step in

understanding endogenous behavior change and time-lagged protective, and we anticipate

further developments along these lines. Important future questions include: How and in

what context do these phenomena occur empirically? What is the relative influence of insti-
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tutional interventions? How can we respond to epidemics in the future to best leverage the

personal incentives to change behavior already inherent in this complex health landscape?
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[29] B. F. Finkenstädt and B. T. Grenfell, “Time series modelling of childhood diseases:

a dynamical systems approach,” Journal of the Royal Statistical Society: Series C

(Applied Statistics), vol. 49, no. 2, pp. 187–205, 2000.

[30] E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. G. Parra, G. J.

Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings, et al., “Adaptive human

behavior in epidemiological models,” Proceedings of the National Academy of Sciences,

vol. 108, no. 15, pp. 6306–6311, 2011.

[31] M. C. Auld, “Choices, beliefs, and infectious disease dynamics,” Journal of Health

Economics, vol. 22, no. 3, pp. 361–377, 2003.

[32] M. H. Bonds, D. D. Keenan, A. J. Leidner, and P. Rohani, “Higher disease preva-

lence can induce greater sociality: a game theoretic coevolutionary model,” Evolution,

vol. 59, no. 9, pp. 1859–1866, 2005.

[33] B. Buonomo, A. d’Onofrio, and D. Lacitignola, “Global stability of an SIR epidemic

model with information dependent vaccination,” Mathematical Biosciences, vol. 216,

no. 1, pp. 9–16, 2008.

[34] M. Y. Li and J. S. Muldowney, “Global stability for the SEIR model in epidemiology,”

Mathematical Biosciences, vol. 125, no. 2, pp. 155–164, 1995.

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.028407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.028407
http://creativecommons.org/licenses/by-nc-nd/4.0/


[35] J. A. P. Heesterbeek, “A brief history of R0 and a recipe for its calculation,” Acta

Biotheoretica, vol. 50.3, pp. 189–204, 2002.

[36] Z. Ma, Y. Zhou, and J. Wu, Modeling and dynamics of infectious diseases, vol. 11.

World Scientific, 2009.

[37] J. Heesterbeek and K. Dietz, “The concept of R0 in epidemic theory,” Statistica Neer-

landica, vol. 50, no. 1, pp. 89–110, 1996.

[38] O. Dieckmann and J. Heesterbeek, Mathematical epidemiology of infectious diseases.

Wiley, New York, 2000.

[39] C. S. Holling, “The strategy of building models of complex ecological systems,” Systems

Analysis in Ecology, pp. 195–214, 1966.

[40] R. M. May, “Simple mathematical models with very complicated dynamics,” Nature,

vol. 261, no. 5560, p. 459, 1976.

[41] W. E. Ricker, “Stock and recruitment,” Journal of the Fisheries Board of Canada,

vol. 11, no. 5, pp. 559–623, 1954.

[42] R. M. May, “Time-delay versus stability in population models with two and three

trophic levels,” Ecology, vol. 54, no. 2, pp. 315–325, 1973.

[43] J. R. Beddington and R. M. May, “Time delays are not necessarily destabilizing,”

Mathematical Biosciences, vol. 27, no. 1-2, pp. 109–117, 1975.

[44] J. Wallinga and P. Teunis, “Different epidemic curves for severe acute respiratory syn-

drome reveal similar impacts of control measures,” American Journal of Epidemiology,

vol. 160.6, pp. 509–516, 2004.

[45] P.-Y. Geoffard and T. Philipson, “Rational epidemics and their public control,” Inter-

national economic review, pp. 603–624, 1996.

[46] C. T. Bauch, A. P. Galvani, and D. J. D. Earn, “Group interest versus self-interest in

smallpox vaccination policy,” Proceedings of the National Academy of Sciences of the

United States of America, vol. 100, no. 18, pp. 10564–10567, 2003.

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.14.028407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.028407
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 Appendices

6.1 Stability

To determine stability in this model in the case ∆ = 0, we compute the derivative of the

recursion function given by Eqn. 2.12 at the equilibria

d

dI
(f(I))

∣∣∣
I=Î

= 1 − γ + b0

(
ĉN − 2αI − 2ĉI + 3α

I2

N

)
. (6.1)

For the disease-free equilibrium, Î0, then

d

dI
(f)
∣∣∣
Î=0

= 1 − γ + b0ĉN (6.2)

When the right side of Eqn. 6.2 is greater than 1, this equilibrium is unstable. The condition

for instability then is

ĉ b0 >
γ

N
. (6.3)

This condition also ensures that Î2 is legitimate from Eqn. 3.7. This suggests that the

disease-free equilibrium is unstable when Î2 exists and stable when it does not.

To determine stability of Î1 and Î2, we substitute γ from Eqn. 3.2 into Eqn. 6.1, such that:

d

dI
(f)
∣∣∣
I=Î

= 1 − b0(αÎ + ĉÎ − 2α
Î2

N
) = 1 − b0H(Î), (6.4)

where H(Î) is (αÎ + ĉÎ − 2α Î
2

N ). If 0 < b0H(Î) < 2 then the equilibrium Î is stable. For Î1,

then,

H(Î1) =
(α+ ĉ)N [α+ ĉ+

√
α2 + ĉ2 − 2αĉ+ 4 α

b0N
γ]

2α
− N

2α
[(α+ ĉ)2

+ 2(α+ ĉ)

√
α2 + ĉ2 − 2αĉ+ 4

α

b0N
γ + α2 + ĉ2 − 2αĉ+ 4

α

b0N
γ]. (6.5)

Simplifying, we have

H(Î1) = −N

2α

√
α2 + ĉ2 − 2αĉ+ 4

α

b0N
γ

(
α+ ĉ+

√
α2 + ĉ2 − 2αĉ+ 4

α

b0N
γ

)
. (6.6)
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H(Î1) is thus negative and Î1 is therefore unstable. For Î2, from Eqn. 2.2 with substitution

from Eqn. 2.4 and Eqn. 2.10 we know at equilibrium

γ = b0(ĉ− αÎ

N
)(N − Î). (6.7)

Since (N − I) must be positive for Î2 and γ is positive,

ĉ > α
Î

N
. (6.8)

With some algebra from our definition of H(Î)

b0H(Î) = αÎ(1 − Î

N
) + Î(ĉ− αI

N
). (6.9)

From Eqn. 6.8, H(Î) is positive for values of Î < N . H(Î2) is therefore positive.

To satisfy the condition that b0H(Î2) < 2

b0[(αÎ + ĉÎ − 2α
Î2

N
)] < 2. (6.10)

For Î2

(Î2b0)

√
α2 + ĉ2 − 2αĉ+ 4

α

b0N
γ < 2. (6.11)

Since γ < ĉb0N from Eqn. 3.7

(Î2b0)

√
α2 + ĉ2 − 2αĉ+ 4

α

b0N
γ < (Î2b0)

√
(α− ĉ)2 + 4αĉ < 2 (6.12)

and thus

Î2b0(α+ ĉ) < 2. (6.13)

Substituting for Î2 and using the inequality γ < ĉb0N from Eqn. 3.7

b0Nĉ(α+ ĉ)

2α
< 2. (6.14)

For Î2 to be stable, the inequality from Eqn. 6.14 must be satisfied.
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