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ABSTRACT 

Background: Cancer risk differs across ancestries and these differences may result 

from differing prevalence of inherited genetic predisposition. Yet, most germline 

genomic studies performed to date have focused on individuals of European ancestry. 

Ancestry-specific analyses of germline genomes are required to inform cancer genetic 

risk and prognosis for each ancestral group. Here, we investigate potentially germline 

pathogenic variants in cancer predisposition genes (CPG) and their somatic effects in 

patients across diverse ancestral backgrounds.  

 

Methods: We performed a retrospective analysis of germline genomic data of 9,899 

patients from 33 cancer types generated by The Cancer Genome Atlas (TCGA) project 

along with matching somatic genomic and transcriptomic data. By collapsing pathogenic 

and likely pathogenic variants to the gene level, we analyzed the association between 

variants in CPGs and cancer types within each ancestry. We also identified ancestry-

specific predisposing variants and their associated somatic two-hit events and gene 

expression levels.  

 

Results: Recent genetic ancestry analysis classified the cohort of 9,899 cancer cases 

into individuals of primarily European, (N = 8,184 , 82.7%), African (N = 966, 9.8%), 

East Asian (N = 649, 6.6%), South Asian (N=48, 0.5%), Native/Latin American (N=41, 

0.4%), and admixed (N=11, 0.1%) ancestries. In the African ancestry, we discovered a 

potentially novel association of BRCA2 in lung squamous cell carcinoma (OR = 41.4 

[95% CI, 6.1-275.6]; FDR = 0.002) along with the previously identified association of 
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BRCA2 in ovarian serous cystadenocarcinoma (OR=8.5 [95% CI, 1.5-47.4]; 

FDR=0.045). Similarly, in the East Asian ancestry, we discovered one previously known 

association of BRIP1 in stomach adenocarcinoma (OR=12.8 [95% CI, 1.8-90.84]; 

FDR=0.038). Rare variant burden analysis further identified 7 suggestive associations 

for cancer-gene pairs in African ancestry individuals previously well described in 

European ancestry including SDHB in pheochromocytoma and paraganglioma, ATM in 

prostate adenocarcinoma, VHL in kidney renal clear cell carcinoma, FH in kidney renal 

papillary cell carcinoma, and PTEN in uterine corpus endometrial carcinoma. Loss of 

heterozygosity was identified for 7 out of the 15 African ancestry carriers of 

predisposing variants. Further, tumors from the SDHB or BRCA2 carriers showed 

simultaneous allelic specific expression and low gene expression of their respective 

affected genes; and FH splice-site variant carriers showed mis-splicing of FH.  

 

Conclusions: While several predisposing genes are shared across patients, many 

pathogenic variants are found to be ancestry-specific and trigger somatic effects. 

Analysis of larger diverse ancestries genomic cohorts are required to pinpoint ancestry-

specific genetic predisposition to inform personalized diagnosis and screening 

strategies.  
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BACKGROUND 

 

Cancer risk differs across ancestries. According to the National Cancer Institute's 

Surveillance, Epidemiology, and End Results (SEER) program, the cancer incidence 

per 100,000 ranges from 449 in race/ethnicity population self-identified as Whites, 453 

in Blacks, 298 in Asian/Pacific Islanders, 315 in American Indian/Alaskan Natives, and 

336 in Hispanics in the US between 2011-2015 [1]. While some of these differences 

may be attributed to non-genetic factors such as access to health care or diet, much 

can likely be explained by differences in the genomic architecture of these ancestries 

and differing frequencies of inherited genetic predisposition. Previous studies revealed 

different carrier rates of pathogenic variants across ancestries, albeit often in a limited 

panel of genes or selected cancer types[2–4].  

 

While multiple large-scale genome-wide association studies have investigated the 

common risk variants contributing to cancer, fewer studies have interrogated rare 

pathogenic variants in non-European ancestries [5–9]. A 2019 systematic review of 

cancer sequencing studies found a total of only 764 reported non-European (minority) 

cases in 27 published studies with reported race/ethnicity [8]. Consequently, germline 

genetic testing in non-white patients often results in higher rates of variants of unknown 

significance (VUSs)[10]. Ongoing efforts are bridging the knowledge gap of cancer 

genetic predisposition in under-studied populations. Meanwhile, systematic cross-

ancestry investigations of predisposing variants across cancer types are urgently 

needed to inform genetic testing for each ancestral group.  
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Herein, we analyzed germline variant data of 9,899 cancer cases across 33 cancer 

types from the Cancer Genome Atlas Project (TCGA) [11] to identify ancestry-specific 

cancer-gene associations where the gene is identified due to an excess of 

pathogenic/likely pathogenic germline variants the TCGA samples. In samples of 

African ancestry, we identified potentially two novel associations, BRCA2 in lung 

squamous cell carcinoma (LUSC) and ovarian serous cystadenocarcinoma (OV). In 

analyses of individuals with East Asian ancestry, we identified one significant 

association for BRIP1 in stomach adenocarcinoma (STAD). Using a complementary 

rare-variant association analysis, we identified seven additional suggestive cancer gene 

associations. Evidence of a somatic second hit event (i.e., loss of heterozygosity [LOH] 

or a biallelic mutation) was found in two-thirds of the tumors with germline predisposing 

variants. Many carriers of ancestry-specific predisposition variants showed altered 

expression of the affected genes, including elevated RET expression and reduced 

tumor suppressor gene expression compared to non-carriers, further supporting these 

genetic factors' contribution to cancer predisposition.  

METHODS 

Study Cohort and Genetic Ancestry Assignment  

We used the clinical data provided by TCGA PanCanAtlas and restricted analyses to 

those with pass-QC blood/normal sequencing data. In addition to excluding cases with 

PanCanAtlas blacklisted germline BAM-files, cases with less than 60% genotype 

concordance between sequencing variant calls and SNP-genotype data were 
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eliminated, where 10,389 cases were left. We further overlapped with the cases 

included in the PanCanAtlas AIM genetic ancestry assignment, resulting in the final set 

of 9,899 samples [11].  

 

Genetic ancestry assignments were provided by the PanCanAtlas Ancestry Informative 

Markers (AIM) working group. The detailed descriptions of ancestry assignment 

procedures are available in the marker publication (accepted draft attached). 

 

Briefly, consensus genetic ancestry for each TCGA case was determined as the 

majority of ancestry assignments that were independently determined by five methods 

across four institutions. These methods include those based on SNP-array genotypes 

used by Broad Institute, University of California San Francisco (UCSF), and Washington 

University (WashU), as well as those based on whole-exome sequencing data used by 

University of Trento and ExAC/Broad Institute. The five methods conducted variations of 

principal component analyses (PCA) on TCGA normal samples to infer genetic 

ancestry. We further provide the PCA plots showing the alignment of the major PCs in 

the UCSF and WashU analyses with the AIM-group consensus genetic ancestry in 

Supp. Figure 1.  

 

For each sample, the percentage of global ancestry of African, European, East Asian, 

Native/Latin American, and South Asian (k=5) was further estimated using ADMIXTURE 

[17] version 1.23 based on the common SNP markers (1000 genome MAF > 1%) in the 

Broad Institute analysis. Samples with the proportion of the secondary ancestry greater 
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than 20% were considered as admixed samples (Supp. Table 1). Sensitivity analyses 

revealed increased power by including admix samples in this cohort. Thus, cases with 

admixed ancestry assignments were grouped to their nearest neighbors (e.g., afr_admix 

to afr) for downstream analyses.  

 

Pathogenic and likely pathogenic germline variant calls 

We downloaded the overall and predisposing germline variant calls previously reported 

by the PanCanAtlas Germline Analyses Working Group (https://gdc.cancer.gov/about-

data/publications/PanCanAtlas-Germline-AWG)[11]. The detailed description of variant 

calling and classification procedures are available in the TCGA PanCanAtlas germline 

publication [11].  

Briefly, germline SNVs were identified using the union of variant calls between 

Varscan[12] and GATK[13]. Germline indels were identified using Varscan, GATK, and 

Pindel[14], and we only retained variants called by at least two out of the three callers or 

high-confidence Pindel-unique calls (at least 30x coverage and 20% VAF). We used the 

GRCh37-lite reference. We further required the variants to have an Allelic Depth (AD) ≥ 

5 for the alternative allele. We then used bam-readcount to quantify the number of 

reference and alternative alleles in both normal and tumor samples. We required the 

variants to have at least 5 counts of the alternative allele and an alternative allele 

frequency of at least 20%. Of these, we included those rare variants with ≤ 0.05% allele 

frequency in 1000 Genomes and ExAC (release r0.3.1). We subsequently retained only 

cancer-relevant pathogenic variants, based on whether they were found in the curated 

cancer variant databases or a 152 curated cancer predisposing gene list. Finally, we 
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manually reviewed all variants using IGV  and filtered out variants with poor support 

sequence reads.  

 

The variants defined by the above pipeline were then classified using an automatic 

pipeline termed CharGer [15] (https://github.com/ding-lab/CharGer) that adopts the 

American College of Medical Genetics and Genomics/Association of Molecular 

Pathology (ACMG/AMP) variant classification guidelines which are designed for 

assessment of germline variants in Mendelian disorders [16]. For the CharGer 

classification pipeline, we defined 12 pathogenic evidence levels and 4 benign evidence 

levels using a number of datasets, including ExAC and ClinVar. The pathogenic 

evidence adds points, whereas benign evidence subtracts points that amount to 

pathogenicity (pathogenic requires the variant to be described as pathogenic by the 

reviewed clinical significance in ClinVar (not including variants showing “Conflicting 

interpretations of pathogenicity”) or other cancer predisposition gene databases, likely 

pathogenic requires CharGer score > 8). To acquire enough CharGer points to be 

classified as likely pathogenic, the variants typically need to be predicted to result in 

truncation in cancer predisposition genes where loss of function (LOF) is a known 

disease mechanism and harbor variants with a dominant (evidence level PVS1, +8 

points) or a recessive (evidence level PSC1, +4 points) mode of inheritance. 

Additionally, evidence level PS1, +7 points, are scored if the variant results in the same 

peptide sequence change as an established pathogenic variant. All other modules will 

each add <2 points.  
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Principal Component Analysis (PCA) 

Birdseed genotype files were downloaded from Genomic Data Commons (GDC) in the 

legacy (hg19) archive onto Institute for System Biology-Cancer Genome Cloud (ISB-

CGC), converted to individual VCF files, and then merged into a combined VCFs 

containing 11,459 samples and 522,606 variants. We conducted PCA as implemented 

by PLINK (v1.9)[18]. Specifically, we retained 298,004 variants with MAF >0.15 for 

population structure analysis. The resulting eigen values and eigen vectors were then 

recorded. PC1 and PC2 accounted for 51.6% and 29.2% of the variations across the 

first 20 PCs, and none of the trailing PCs accounted for more than 3.2%. Thus, we 

subsequently controlled for PC1 and PC2 in the ancestry-specific cancer predisposing 

gene analysis (Supp. Figure 1).  

 

Multivariate regression to identify the enrichment of pathogenic variants  

For each cancer type within each ancestry, we conducted multivariate logistic 

regression analyses considering the case status of the cancer type as the dependent 

variable (using all other cancer cohorts as controls) and the carrier status of each 

predisposing gene as an independent variable. The model corrected for age at the initial 

pathologic diagnosis, gender, the first two principal components (accounted for 80.8% 

variations across the first 20 PCs). All ancestry cohorts are called using the same 

variant calling pipeline, thus avoiding the potential danger of comparing this population 

against other cohorts such as ExAC. We collapsed predisposing (pathogenic and likely 

pathogenic) germline variants to the gene level. Only ancestry-cancer combinations with 
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at least 20 cases and predisposing genes with at least two individuals with predisposing 

variants within the cohort are tested. In total, we tested 33 cancers in European 

Ancestry, 15 cancers in African Ancestry, and 8 cancers in East Asian ancestry that met 

this criterion. No cohorts of the Native/Latin American and South Asian ancestry have 

sufficient sample sizes in TCGA for testing. Among these tested cancers, we tested a 

total of 114 cancer-gene combinations for multivariate regression analysis, of which 101 

were within European ancestry, 9 were in African ancestry, and 4 were in East Asian 

ancestry. P values were calculated using the Wald test and adjusted to FDR using the 

standard Benjamini-Hochberg procedure. 

 

Burden testing of pathogenic variants 

We conducted burden testing of the cohort within each ancestry as defined by the 

TCGA AIM working group. Specifically, we adopted the Total Frequency Test (TFT)[19] 

by collapsing predisposing (pathogenic and likely pathogenic) germline variants to the 

gene level. For each cancer type with at least 20 cases of the tested ancestry with at 

least one predisposing variant carrier, we tested the burden of predisposing variants for 

each gene against all other cancer cohorts as controls. Among the cancers that met the 

sample size criteria described above, we tested a total of 120 cancer-gene 

combinations using rare variant burden testing, of which 104 were within European 

ancestry, 11 were in African ancestry, and 5 were in East Asian ancestry. The resulting 

P values were adjusted to FDR using the standard Benjamini-Hochberg procedure.  

 

gnomAD analysis 
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We analyzed the gene-level and variant-level frequency of the identified genetic 

predisposition using the non-cancer subset of the genome aggregation database 

(gnomAD-non-cancer) cohort (118,479 WES and 15,708 WGS samples) [20,21] 

(http://gnomad.broadinstitute.org) [Date Accessed: February 2020]. For the gene-level 

analysis, we retained rare variants with ancestry-specific minor allele frequency <0. 5%. 

We further retained pathogenic and likely pathogenic variants per ACMG/AMP criteria 

as ascertained by InterVar [22] and annotated using ANNOVAR [23]. Allele frequencies 

were summarized at gene-level within each sub-population in gnomAD using total allele 

counts and maximum allele numbers within each group. 

 

The lolliplot diagrams in Figure 2 were constructed and modified from the PCGP protein 

paint (https://pecan.stjude.cloud/proteinpaint) based on the specified RefSeq transcript. 

 

Expression Analysis 

TCGA level-3 normalized RNA expression data were downloaded from Firehose 

(2016/1/28 analysis archive). The tumor expression percentile of individual genes in 

each cancer cohort was calculated using the empirical cumulative distribution function 

(ecdf), as implemented in R. We annotated germline carriers of predisposition variants 

with extreme mRNA tumor expression (>80th or < 20th percentile) of the affected gene. 

For samples within the same ancestry and same cancer cohort, we then used the two-

sample Kolmogorov-Smirnov test to compare the expression percentile distribution 

between variants of oncogenes and tumor suppressors. The resulting P values were 

adjusted to FDR using the standard Benjamini-Hochberg procedure. 
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For the ancestry-specific variants, we recorded the RNA variant allele fraction (RNA 

VAF) of the mutant allele in the RNA-Seq bam files. For splice site variants, we 

assessed the mis-splicing of the transcript and variants using IGV.  

 

Power and Down-sampling Analysis 

Post hoc power analyses were performed using R-package SKAT[24] and the 

power_logistic function to calculate the number of samples for rare variant association 

with causal percentage = 80%, minor allele frequency < 0.1%, and using OR >1 through 

OR<10. Each calculation was performed using 100 simulations over a target 5kb region. 

 

Additionally, we performed a down-sampling analysis for each tumor type by random 

sampling of subsets of samples with incremental sizes from zero to the total number of 

samples in that tumor type. We identified the number of significantly mutated genes as 

described above within each subset and plotted a smoothed function (loess method) 

against the subset size. Each calculation was performed at ten iterations (Supp. Figure 

2).  

RESULTS 

Ancestry Demographics of TCGA Cohort 

We classified the 9,899 TCGA cases with pass-QC germline data across 33 cancer 

types by genotype-defined ancestries defined by the PanCanAtlas Ancestry Informative 

Markers (AIM) working group (Supp. Figure 1, Methods, Table 1Error! Reference 

source not found.). The European ancestry contained 82.68% (n=8,184) of individuals 
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in this cohort. The remainder of the cohort consisted of 9.76% (n=966) African ancestry, 

6.56% (n=649) East Asian ancestry, 0.48% (n=48) South Asian ancestry, 0.41% (n=41) 

Native/Latin American ancestry, and 0.11% (n=11) mixed ancestry. The largest 

ancestry-specific tumor cohorts are breast invasive carcinoma (BRCA) for the European 

ancestry (n=811) and African ancestry (n=180), liver hepatocellular carcinoma (LIHC) 

for the East Asian ancestry (n=162), and thyroid carcinoma (THCA) for the Native/Latin 

American ancestry (n=11) and the South Asian ancestry (n=11).  

Ancestry-Specific Cancer Predisposing Genes  

Acknowledging the limited power to assess ancestry-specific associations as shown by 

the Post Hoc power analyses (Supp. Figure 2), we sought to identify cancer 

predisposing genes within each ancestry. We considered cancer predisposing genes as 

those statistically enriched for pooled pathogenic and likely pathogenic variants 

(referred to here as predisposing variants) as previously classified[11]). For each 

ancestry-cancer type pair, we conducted multivariate regression analyses correcting for 

onset age, gender, and the first two principal components.  

 

Along with 36 cancer-gene associations (FDR <0.05, Wald test) found in the European 

ancestry, we identified two specific cancer-gene associations in the African ancestry: 

BRCA2 in ovarian cancer (OV) (OR=8.5 [95% CI, 1.5-47.4]; FDR=0.045) and LUSC 

(OR = 41.4 [95% CI, 6.1-275.6]; FDR = 0.002). We also identified one association in the 

East Asian ancestry, BRIP1 in STAD (OR=12.8 [95% CI, 1.8-90.84]; FDR=0.038) 

(Figure 1, Supp. Table 2a). While the association of BRCA2 and LUSC is first 

described in African-American ancestry here, BRCA2 was also recently found to be 
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associated with LUSC in the European ancestry [25]. The association of BRIP1 

predisposition to STAD in the East Asian ancestry was also previously reported for the 

European ancestry [26]. These findings (including novel associations) in a large 

heterogeneous cancer population build on older studies that evaluated individual cancer 

predisposition genes and cancer risk across ancestries.  

 

The top associated predisposing genes and their carrier frequency vary widely across 

ancestries (Figure 1A). For genes with a significant association in the African ancestry, 

we observed a higher carrier frequency compared to other ancestries. For example, in 

LUSC, BRCA2 predisposing variants were found in 2 of the 29 African ancestry 

samples (6.9%), whereas we only found 1 BRCA2 carrier out of the 455 European-

ancestry samples (0.44%). 

  

We next investigated whether the cross-ancestry differences in predisposing gene 

frequencies were also observed in other cohorts. Specifically, we examined the gene-

level rates of individuals carrying pathogenic and likely pathogenic variants in the 

gnomAD non-cancer cohort [20,21] (118,479 WES and 15,708 WGS samples, Methods, 

Supp. Table 3). BRCA2 showed the highest frequency in the African ancestry (0.072%) 

than all other defined ancestries, including non-Finnish European (0.048%) and East 

Asian (0.047%). BRIP1 also showed higher frequency in the East Asian ancestry 

(0.068%) than all ancestries (≤0.045%) except for the non-Finnish European ancestry 

(0.099%).  
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To generate hypotheses for future targeted studies, we investigated additional ancestry-

implicated genes using total frequency testing (TFT) of predisposing variants, fully 

acknowledging potential confounders using this method (Supp. Table 2b). We identified 

7 suggestive (FDR < 0.05 in the TFT analysis) ancestry-specific cancer-gene 

associations in the African ancestry, 6 of which have been previously described 

including SDHB in PCPG[27], ATM in PRAD[28,29], FH in KIRP[30], VHL in KIRC[31], 

PTEN in UCEC[32], and BRCA2 in OV[33]. We also re-discovered the potentially novel 

association of BRCA2 in LUSC described above. In the East Asian ancestry, we 

identified 3 borderline-suggestive associations (FDR = 0.32): RECQL in STAD, BRIP1 

in STAD, and POLE in LIHC. In STAD, RECQL and BRIP1 each affected 2 of the 90 

East Asian ancestry cases, but none of the 294 European-ancestry cases. In LIHC, two 

protein-truncating variants were seen in POLE among 162 East Asian ancestry cases 

compared to none in 179 European-ancestry cases. These suggestive associations 

remain to be established and are only used to identify potential predisposing variants 

with supporting somatic evidence. 

Ancestry-Specific Predisposing Variants 

We next examined ancestry-specific predisposition at the variant level (Figure 2, Supp. 

Table 4) for the 3 significant associations from the multivariate logistic regression 

analyses and the 7 suggestive associations from the TFT analysis. The cancer-gene 

pairs included 15 predisposing variants within the African ancestry and another 6 within 

the East Asian ancestry.  
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Notably, none of the above variants discovered in the African ancestry were observed in 

any other ancestry within that cancer type (Figure 2). Across the pan-cancer TCGA 

cohort, all of the BRCA2 frameshift variants found in LUSC and OV were unique to the 

African ancestry. For other associated genes in the African ancestry, including ATM 

(PRAD), FH (KIRP), and VHL (KIRC), the predisposing variants differ between the 

African and European ancestries (Figure 2B). The African-ancestry-specific 

predisposing variants include splice site variants ATM c.2921+1G>A and FH c.556-

2A>T, protein-truncating variants ATM p.T2333fs and FH p.S187*, and missense 

variants ATM p.R3008C. VHL p.C162F is the only recurrent variant found in two KIRC 

cases.  

 

In the East Asian ancestry, we assessed predisposing variants in BRIP1 (STAD), POLE 

(LIHC), and RECQL (STAD) (Figure 2A and C). These include two BRIP1 variants 

p.I525fs and p.E1222fs and two protein-truncating variants in POLE and RECQL, 

respectively. All six predisposing variants were not shared with any other ancestry in the 

TCGA cohort (Figure 2C). 

 

To further investigate the carrier frequencies of the predisposing variants across 

ancestries, we analyzed the frequency of these variants of the gnomAD non-cancer 

dataset [20,21]. Among the African ancestry-specific predisposing variants, splice-site 

variant ATM c.2921+1G>A (African ancestry Allelic Count [AC]/ Total Allele Number 

[AN]=1/14,878; Allelic Frequency [AF] = 0.0067%) and BRCA2 p.R3128* (African 

ancestry AC/AN = 4/23,610; AF = 0.016%) were the only variants present in the African 
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and non-Finnish European ancestries in gnomAD-non-cancer dataset. All other variants 

were absent within African ancestry and most other ancestries in gnomAD except 

SDHB p.R46X (Finnish European ancestry AC/AN = 2/25,066; AF = 0.007%) and ATM 

p.R3008C (East Asian ancestry AC/AN = 1/17,688; AF = 0.005%). Similarly, only two of 

the six East Asian ancestry-specific predisposing variants, BRIP1 p.E1222Gfs (East 

Asian ancestry AC/AN = 11/19,232; AF = 0.05%) and POLE p.Tyr1078fs (East Asian 

ancestry AC/AN = 1/17,692; AF = 0.005%), were present exclusively in the East Asian 

ancestry of gnomAD-non-cancer dataset. Of note, 7 of the 15 predisposing variants, 

including BRCA2 variants in OV (p.Y1710fs, p.K1202fs) and in LUSC (p.V3082fs), were 

not found in ClinVar [34].  While VHL p.C162F lacks a ClinVar record, the co-localizing 

p.C162W showed three reports of pathogenicity and one report of uncertain significance.  

 

We also investigated the presence of the six predisposing variants in the East Asian 

ancestry from the gnomAD non-cancer dataset. Only the POLE p.Y1078fs 

(AC/AN=1/17,692, AF= 0.0056%) and BRIP1 p.E1222fs (AC/AN=11/19,232, 

AF=0.057%) were present exclusively in the East Asian ancestry of gnomAD-non-

cancer dataset. All other East Asian-ancestry variants were not detected in this dataset. 

Of note, none of the six variants were previously reported in ClinVar[34].  

Germline-somatic Two-hit Events 

We next examined the two-hit hypothesis, whereby a somatic second hit of the same 

gene is found in carriers of the germline predisposing variants [35,36]. First, we 

investigated the extent of loss of heterozygosity (LOH) of the predisposing variants 

using our previously developed statistical test [26] (Methods) that compares the variant 
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allele fractions in tumor vs. normal samples. Among the variants observed in the African 

ancestry, we observed significant LOH (FDR <0.05) for both truncating variants in 

SDHB p.R116fs and p.R46* in PCPG (Figure 3A). Three additional variants exhibited 

significant LOH, including BRCA2 p.R3128* (LUSC), BRCA2 p.K1202fs (OV), and FH 

p.S187* (KIRP). We also observed suggestive LOH (FDR < 0.15 or tumor VAF > 0.6) 

for ATM c.2921+1G>A (PRAD) and BRCA2 p.Y1710fs (OV) (Figure 3B). Among the six 

predisposing variants in the East Asian ancestry, only POLE p.E2137* (LIHC) showed 

significant LOH (Figure 3A). 

 

As an alternative mechanism of a somatic second-hit, we identified three biallelic 

mutations where the rare germline predisposing variant was coupled with a second 

somatic mutation of the same gene, all found in African ancestry carriers (labeled in 

Figure 2B, Supp. Table 4b). In a PRAD carrier of ATM, the germline p.L2332fs variant 

was coupled with a somatic p.E2164K mutation; in the KIRC carrier of VHL, the 

germline p.C162F variant was coupled with somatic p.E186* mutation and in a KIRP 

carrier of FH, germline p.S187* variant was coupled with a somatic splice-site mutation 

c.1390+6T>A. Analysis of RNA from the KIRP tumor revealed that the somatic FH: 

c.1390+6T>A causes mis-splicing of 27.6% of the transcripts in tumor RNA, as 

indicated by the number of reads spanning consensus splice site (n=68) and the new 

cryptic splice site (n=26) (Figure 4B). None of the six carriers of predisposing variant in 

East Asian ancestry harbored a biallelic somatic mutation. Overall, the assessment of 

LOH and biallelic mutation supports the variants’ contribution to oncogenesis through 

the two-hit model.  
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Expression Changes in Predisposing Genes  

To examine the transcriptional effects of the predisposing variants, we investigated the 

gene expression in tumor samples of the predisposing variant carriers (Figure 4A). We 

observed 154 overall and 27 non-European ancestry-specific predisposing variants co-

occurring with an extreme expression (> 80% or < 20% in the same cancer cohort) of 

the respective gene, although the current sample sizes preclude us from discovering 

significantly-associated genes compared to non-carriers within each ancestry-cancer 

cohort (Supp. Table 5a).  

 

All of the expression-associated variants were germline heterozygous variants at the 

DNA level. The degree of their variant allele fraction in the tumor RNAseq data (RNA 

VAF) thus indicates the degree of allelic-specific expression (ASE). The African carriers 

of SDHB truncating variants p.R116fs (the corresponding gene’s expression ranks at 

the bottom 0.5 percentile among all PCPG cases [0.5%], RNA VAF= 0.25 and p.R46* 

(9% in PCGP, RNA VAF= 0.80) showed low SDHB expression. The African carriers of 

BRCA2 p.Y1710fs (6% in OV, RNA VAF =0) and p.3082fs (15% in LUSC, RNA VAF =0) 

also exhibited low BRCA2 (Figure 4C). In the OV case, the germline BRCA2 p.Y1710fs 

is coupled with a somatic LOH event, resulting in nearly complete loss of BRCA2 

expression.  

 

Both of the African-ancestry carriers of FH predisposing variants, FH p.S187* (2% in 

KIRP, RNA VAF=0.13) and FH:c.556-2A>T (2% in KIRP, RNA VAF=0.50), showed low 

FH expression. In addition to the biallelic somatic FH:c.1390+6T>A mutation in the 
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carrier of germline FH p.S187* described earlier, we also observed a mis-splicing event 

in a different case carrying germline FH:c.556-2A>T at the RNA level (Figure 4B). 

 

For other ancestries, the tumor from one predisposing variant carrier of the Native/Latin 

American ancestry, NF1 p.Y489C, showed low NF1 mRNA expression (2% in BRCA, 

RNA VAF=0). Overall, RNA VAF of the majority of protein-truncating variants not 

accompanied by LOH varied between 0-0.25 (Supp. Table 5a), suggesting degradation 

of the mutant allele.  

 

Many predisposing truncating variants of tumor suppressors are assumed to lead to 

loss of gene expression through mechanisms such as nonsense-mediated decay 

(NMD). Using the NMD Classifier[37], we revealed all frameshift variants found in the 

African and East Asian ancestries were located in the NMD-competent region (Supp. 

Fig. 3). These results support that a fraction of predisposing variants likely result in 

reduced gene products of tumor suppressors in ancestral groups.  

 

Conversely for the rare tumors with germline variants in oncogenes, the two 

predisposing RET variants are coupled with elevated RET expression in their African 

ancestry carriers, including p.C631Y (84% in KIRC) and p.D634Y (91% in PCGP). 

Power Consideration for Predisposing Gene Discovery 

Given the currently limited sample sizes in most of the minority cohorts, we sought to 

identify the required numbers of samples to discover novel cancer predisposing genes. 

We performed post hoc power analyses to detect a rare-variant association in an 
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aggregation test using SKAT[24]. We assumed that a high proportion (80%) of variants 

are casual when focusing on prioritized predisposing variants in accordance with 

ACMG/AMP guidelines (Supp. Table 6a, see Methods)[15,16,22]. The detection of 

rare variants (AF<0.01) with moderate effect sizes (Odds Ratio [OR] >5) with at least 

80% power requires sample sizes exceeding 1,000 samples (n=1014) per cancer type 

(Supp. Figure 2A).  

 

The sample size requirement suggests limited power for ancestry-specific analyses 

using TCGA, one of the largest cancer sequencing cohorts to date. For the largest 

ancestry subgroup in the study, European-ancestry BRCA cases (n=811), there is 67% 

power to detect genes with smaller effect sizes (OR < 3). For all other ancestries, their 

respective largest cohorts afford inadequate power to detect genes with large effect 

sizes (OR=9), including the African ancestry BRCA cohort (n=180, power=36%), the 

East Asian-ancestry LIHC cohort (n=162, power=24.5%), and the Native/Latin 

American-ancestry THCA cohort (n=11, power=<1%). As a reference, most known 

cancer predisposing genes, including ATM, PTEN, STK11, CHEK2, BRIP1, and PALB2, 

have an estimated OR < 10. BRCA1/BRCA2 are exceptions with an OR > 10 for BRCA, 

but also show more moderate OR for other cancer types [38]. Despite limited power, 

this TCGA study includes three-fold more non-European cases (n=1,715) compared to 

the combined number of samples across 27 published non-TCGA sequencing studies 

that report race/ethnicity information from cancer cohorts (n=764 non-Europeans, 10 

cancer types)[8]. Moreover, the majority of these studies focused on somatic alterations, 

and only a handful reported ancestry-specific germline predisposition (Supp. Table 7). 
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Standard power analyses have the caveat of assuming various unknown parameters 

that may be inaccurate. We thus performed a down-sampling analysis using two cancer 

types with at least five significantly associated germline genes in the European-ancestry: 

Pheochromocytoma and Paraganglioma (PCPG) and sarcoma (SARC)[3] (Supp. 

Figure 2B, Supp. Table 6b). We found that the sample size requirements differ for 

each gene and cancer cohort, likely due to varying penetrance. For example, six 

predisposing genes are discovered in both PCPG (n=146) and SARC (n=217) samples 

of the European ancestry, respectively, at their full cohort size. Upon down-sampling the 

cohort size in half, we found VHL, SDHB, RET, and NF1 to be still associated in 73 

PCPG cases, whereas only TP53 remained significantly associated in 108 SARC cases. 

Even while assuming similar penetrance of the predisposing genes across ancestries, 

this analysis implicates that the discovery power is still far from saturation for most 

ancestry-specific cohorts (N < 100). The different predisposition landscapes across 

cancer types should also be accounted for in future study designs.  

 

DISCUSSION 

We report one of the most extensive multi-ancestry investigations of rare cancer 

predisposing genes to date, encompassing 9,899 cancer cases across 33 cancer types. 

In the African ancestry, our results validated six known predisposing genes and 

nominated BRCA2 as a potential predisposing gene for LUSC (Figure 1). In the East 

Asian ancestry, we unexpectedly found  predisposing variants affecting BRIP1 in STAD 

that warrants further investigation. Although the number of germline predisposing 
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variants is small, they were associated with LOH (Figure 3), biallelic mutations (Figure 

2), and gene expression effects in the tumor samples (Figure 4), supporting their 

potential contribution to cancer predisposition in carriers.  

 

Post hoc power analyses highlight the need to expand each ancestral cancer cohort to 

at least 1,000 samples to confidently discover predisposing genes of intermediate or 

large effect sizes (OR > 5, Supp. Figure 2). It is necessary to use caution when 

interpreting the ancestry-specific predisposing gene associations identified herein or 

previous studies of smaller sample sizes, where a handful of carriers may give rise to 

the association in a limited cancer cohort. Further, the suggestive associations 

nominated by the TFT analyses will need to be established by analyses of larger 

cohorts adjusted for potential confounders. Two of the associations we identified in the 

African ancestry were also complemented by familial studies [27,30], providing further 

validation. To design future cancer genomics studies, one must note that the power 

considerations differ for discovering somatic driver genes and germline predisposing 

genes. Current detection powers have potentially reached saturation in detecting 

somatically mutated genes for sample sizes in multiple cancer types of TCGA[3], 

although racial disparities of the sequencing data could potentially limit the 

generalizability of findings [39–41]. We further highlighted the imbalanced dataset limits 

power for germline gene discovery in populations under-represented in research studies. 

In this TCGA cohort, we found multiple significant predisposing genes for the European 

ancestry and seven for the African ancestry, yet did not had a cancer cohort with 
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sufficient testing samples for many other ancestries, including Native/Latin American 

and South Asian that each constitutes a considerable fraction of the US population.  

 

We observed selected predisposing genes shared across ancestries (ex. BRCA2 in 

BRCA/OV and SDHB in PCPG for both the African and European ancestries). 

Predisposing variants, on the other hand, are highly ancestry-specific (Figure 2). Many 

of the predisposing variants found in the African or East Asian ancestry were not 

identified in the much larger European-ancestry population of TCGA (n=8,184) or even 

the gnomAD non-cancer cohort (n=134,187) or submitted to ClinVar by clinical 

laboratories assessing patients for cancer predisposition. Rare variant classification and 

interpretation remain a challenge given the low frequency of observation precluding 

statistical associations. The identification of ancestry-specific predisposing variants 

further highlights this challenge in minority groups, where current germline sequencing 

often results in higher rates of variants of unknown significance (VUSs)[10].  

 

Personalized medicine provides tailored disease diagnosis and treatment plans based 

on an individual's unique genetic profile. The knowledge of different cancer predisposing 

genes and prevalence across ancestries suggests that we need to provide ancestry-

specific interpretations of genetic data. In particular, many of the current guidelines for 

when genetic testing is recommended rely on the underlying likelihood of identifying a 

germline variant. Thus, accurate estimates of germline prevalence may alter 

recommendations for different patient populations. At the current sample sizes for 

minority cohorts, our study is still limited in power to discover and establish ancestry-
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specificity of predisposing genes (Supp. Figure 2). However, we we were able to 

discover many ancestry-specific variants not currently submitted to ClinVar. Further, 

much of the diverse populations within the US, not to mention world-wide, still lack 

representation in existing sequencing cohorts. Ongoing sequencing projects will begin 

to address this disparity within US populations and multiple countries in East Asia and 

Europe [42]. Yet, many populations, such as the diverse African ancestry [43], remain 

underserved although projects like H3Africa are designed to address this problem. 

Additional efforts will be required to deliver the promise of genome-based precision 

medicine for all.   

 

To aid interpretation of low-frequency ancestry-specific variants, evidence of a somatic 

second hit event (i.e., loss of heterozygosity [LOH] or a biallelic mutation) in tumor 

samples can support functionality. Our analysis of the two-hit model identified the 

second somatic events in two thirds (10/15) of the African-ancestry specific 

predisposing variants and in one out of six of the East Asian ancestry-specific 

predisposing variants (Supp. Table 4b). Additionally, some carriers of ancestry-specific 

predisposing variants showed simultaneous extreme expression of the affected genes 

(Figure 3). Such evidence derived from analysis of the somatic genome or 

transcriptome can be further utilized to characterizing rare germline variants[44], 

especially when DNA-level analysis still suffers from limited sample sizes.  

 

Our observation of somatic second hit (Figure 2-3) and transcriptional effects (Figure 

4) coupled with germline variants also adds on to the current literature on germline-
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somatic interactions in cancer [45]. While the majority of cancer genomic studies focus 

exclusively on the germline or somatic genome, pathogenic germline variants are 

associated with different somatic mutational signatures, allele-specific imbalance, or 

somatic drivers [11,26,46–48].  The availability of germline DNA analysis and tumor 

genomic and transcriptomic analyses from the same individual provides critical data to 

the analyses describe here that is not possible in many studies that only analyze 

germline DNA samples alone. Collectively, these findings are providing the roadmaps of 

how germline variants may trigger and collaborate with specific somatic mutations, 

eventually leading to cancer development. In this process, genomes across different 

ancestral populations provide different contexts for developing somatic mutations and 

genomic instability, even when the individual carries the same germline predisposition 

variant. We showcased examples of predisposition-associated LOH and gene 

expression changes in diverse individuals. As sample sizes of sequencing cohorts 

expand, analyzing germline-somatic interactions across ancestry will be pivotal to reveal 

potential ancestry-specific effects.  

 

In summary, we identify ancestry-specific predisposing genes and variants contributing 

to multiple cancer types. The results provide insights into rare genetic predisposition 

and their somatic impacts in cases of African and East Asian ancestries. Continuous 

studies using larger ancestry cohorts will be required to enable adequately-powered 

discovery of predisposing genes, which will, in turn, improve genetic screening and 

diagnostic strategies for diverse populations.  
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FIGURES, TABLES, AND ADDITIONAL FILES 

FIGURES 

 

Figure 1. Cancer predisposing genes identified in each ancestry across 9,899 TCGA 

cases across cancer types in the African ancestry, East Asian, and European ancestries. 

A. Ancestry-specific cancer-gene pairs from TCGA dataset containing cancer 

predisposing variants as identified by multivariate logistic regression analyses. Each 

number represents carrier frequencies of predisposing genes within that cancer cohort. 

Genes with significant associations (Wald test FDR < 0.05) are highlighted with blue 

boxes.  

B. Significant cancer-predisposing gene associations (FDR < 0.05) identified in the 

African and East Asian ancestries. 

 

Figure 2. Ancestry-specific predisposing germline variants. 

Predisposing variants in the significant (regression analysis) and suggestive (rare 

variant burden testing) cancer-gene associations are shown. The variants are labeled 

with carrier counts and colored by their respective carriers' ancestry (European: blue, 

African ancestry: red, East Asian: green).  

A. Predisposing variants identified in the African and East Asian ancestries are shown 

across respective cancer types. For BRCA2, predisposing variants across all cancers 

are shown (top) in comparison with the two cancer types with significant associations in 

the African ancestry (LUSC and OV, bottom). Similarly, predisposing variants 
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contributing to the significant association of BRIP1 in STAD in the East Asian ancestry, 

are shown. 

B. Suggestive predisposing variants identified in the African ancestry are shown for 

ATM, FH, and VHL genes within their associated cancer types. Bi-allelic events in each 

carrier are linked by a grey line bracket where the somatic second-hit mutations are 

marked with a box. 

C. Borderline-suggestive predisposing variants identified in the East Asian ancestry are 

shown for RECQL in STAD and POLE in LIHC. 

 

Figure 3. Loss of heterozygosity (LOH) and transcriptional effects associated with 

ancestry-specific predisposing germline variants. 

A. LOH in ancestry-specific predisposing variants shown by comparing variant allele 

frequency in tumor vs. that in normal samples. Each dot denotes a variant and the 

affected genes are labeled in cases where showed both significant allelic imbalance and 

copy number deletion of the wild-type alleles (in purple). Variants showing significant 

allelic imbalance yet no conclusive evidence of wild-type alleles are considered as other 

LOH and marked in yellow. All other variants are shown in grey.  

B. Count distribution of each type of LOH events across genes in the African ancestry, 

the East Asian ancestry, and the European ancestry. Note given the larger number of 

events, the x-axis for the European ancestry is shown on a different scale.  

 

Figure 4. Expression changes associated with the predisposing variants. 
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A. mRNA gene expression of the affected genes in the carriers of ancestry-specific 

variants as quantiles in their respective cancer cohort. Each dot denotes the gene 

expression level of a predisposing variant carrier colored by ancestry. Non-European 

variants corresponding to the bottom 25% expression in affected tumor suppressor 

genes and top 25% expression in affected oncogenes are further labeled.  

B. Plots of tumor RNAseq alignment highlighting exon (red box) with germline or 

somatic splice site variants in two cases with FH splice site variants as visualized using 

the integrated genome viewer (IGV). 

C. Tumor RNA expression for the BRCA2 gene. The first two rows correspond to 

samples with a germline predisposing variant coupled with or without somatic LOH 

event, respectively. The third row corresponds to an unrelated sample without any 

BRCA2 alteration. All three coverage plots are scaled together to show lower 

expression in the two samples harboring BRCA2 alterations. 

TABLES 

Table 1. The demographic distribution of TCGA PanCancerAtlas cohort 

 

ADDITIONAL FILES  

Supplementary Figures 

Supp. Figure 1.  Principal component analyses (PCA) of germline TCGA samples to 

infer genetic ancestry as performed by PanCanAtlas Ancestry Informative Markers (AIM) 

working group 
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Supp. Figure 2. Power analysis for ancestry-specific sample sizes to discover 

predisposing genes. 

A. The number of samples required to detect rare variant associations with varying 

effect sizes (OR = 2,3,5,7,9) at corresponding statistical power. The total number of 

samples assumes an equal number of cases and controls (e.g. For 811 TCGA-BRCA-

EUR samples, n=1,622). Cancer types with the largest cohort sizes for each of the 

studied ancestries in TCGA are shown by a dotted line. 

B. Down-sampling analysis to identify counts of significantly associated predisposing 

genes at different sample sizes by incrementally increasing the sample size from zero to 

the current cohort sizes. 

 

Supp. Figure 3. Nonsense-mediated decay prediction for predisposing frameshift 

variants in African and East Asian ancestries 

 

Supplementary Tables 

Supp. Table 1. The demographic information of TCGA PanCanAtlas cohort with 

separate admixture populations 

 

Supp. Table 2a. Ancestry-specific cancer-gene associations discovered from 

multivariate regression analyses.  

 

Supp. Table 2b. Ancestry-specific cancer-gene associations discovered from rare 

variant burden testing (Total Frequency Test- TFT).  
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Supp. Table 3. Frequency of predisposing variants in TCGA PanCanAtlas and 

gnomAD-non-cancer subset across all ancestries. 

 

Supp. Table 4a. Ancestry-Specific Predisposing Variants as identified from Supp. 

Table.2 

 

Supp. Table 4b. Summary of somatic second hit mutations in carriers of germline 

predisposing variants. 

 

Supp. Table 5a.  Statistical analysis of gene expression in tumor samples of the variant 

carriers vs. non-carriers within each ancestry-cancer combination 

 

Supp. Table 5b. Tumor RNAseq variant allele fractions and the somatic second hit 

events in germline predisposing variants with extreme expression within that cancer 

type. 

 

Supp. Table 6a.  Post hoc power analyses to detect rare-variant associations in an 

aggregation test using SKAT. 

 

Supp. Table 6a.  Down-sampling analysis for PCGP and SARC (cancers with at least 5 

significantly associated germline genes in the European ancestry). 
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Supp. Table 7.  Prior studies that report ancestry-specific germline predisposition. 
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Cancer European African Native/Latin 
American

East  
Asian

South 
Asian Admix Total

Total Number 
(%)

8184  
(82.68%)

966  
(9.76%)

41  
(0.41%)

649  
(6.56%)

48  
(0.48%)

11  
(0.11%)

9899  
(100%)

ACC Adrenocortical Carcinoma 82 2 0 2 0 0 86

BLCA Bladder Urothelial Carcinoma 329 21 1 43 2 0 396

BRCA Breast Invasive Carcinoma 811 180 5 53 8 1 1058

CESC Cervical Squamous Cell Carcinoma and 
Endocervical Adenocarcinoma 208 31 1 22 0 0 262

CHOL Cholangiocarcinoma 30 2 0 2 0 0 34

COAD Colon Adenocarcinoma 343 58 0 12 0 0 413

DLBC Lymphoid Neoplasm Diffuse Large B-cell 
Lymphoma 23 0 0 15 1 0 39

ESCA Esophageal Carcinoma 126 4 0 44 0 0 174

GBM Glioblastoma Multiforme 292 37 0 2 1 0 332

HNSC Head and Neck Squamous Cell 
Carcinoma 439 50 6 7 5 1 508

KICH Kidney Chromophobe 56 4 0 1 1 0 62

KIRC Kidney Renal Clear Cell Carcinoma 306 54 2 7 1 0 370

KIRP Kidney Renal Papillary Cell Carcinoma 207 63 0 6 1 0 277

LAML Acute Myeloid Leukemia 125 14 0 2 0 0 141

LGG Brain Lower Grade Glioma 455 23 4 10 3 0 495

LIHC Liver Hepatocellular Carcinoma 179 18 0 162 1 1 361

LUAD Lung Adenocarcinoma 416 52 1 9 0 0 478

LUSC Lung Squamous Cell Carcinoma 455 29 0 11 0 0 495

MESO Mesothelioma 78 0 0 0 1 0 79

OV Ovarian Serous Cystadenocarcinoma 348 30 1 7 5 0 391

PAAD Pancreatic Adenocarcinoma 158 9 0 11 0 1 179

PCPG Pheochromocytoma and Paraganglioma 146 20 0 3 4 0 173

PRAD Prostate Adenocarcinoma 411 59 0 9 2 1 482

READ Rectum Adenocarcinoma 135 6 0 1 0 0 142

SARC Sarcoma 217 18 0 6 0 2 243

SKCM Skin Cutaneous Melanoma 448 1 2 12 0 0 463

STAD Stomach Adenocarcinoma 294 15 0 90 0 0 399

TGCT Testicular Germ Cell Tumors 107 4 0 3 0 0 114

THCA Thyroid Carcinoma 359 33 11 52 11 3 469

THYM Thymoma 96 8 0 12 0 0 116

UCEC Uterine Corpus Endometrial Carcinoma 382 112 7 30 1 1 533

UCS Uterine Carcinosarcoma 43 9 0 3 0 0 55

UVM Uveal Melanoma 80 0 0 0 0 0 80
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