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Abstract Our understanding of the changes in functional brain organization in autism is17

hampered by the extensive heterogeneity that characterizes this neurodevelopmental disorder.18

Data driven clustering offers a straightforward way to decompose this heterogeneity into19

subtypes of distinguishable connectivity types and promises an unbiased framework to20

investigate behavioural symptoms and causative genetic factors. Yet the robustness and21

generalizability of these imaging subtypes is unknown. Here, we show that unsupervised22

functional connectivity subtypes are moderately associated with the clinical diagnosis of autism,23

and that these associations generalize to independent replication data. We found that subtypes24

identified robust patterns of functional connectivity, but that a discrete assignment of individuals25

to these subtypes was not supported by the data. Our results support the use of data driven26

subtyping as a data dimensionality reduction technique, rather than to establish clinical27

categories.28

29

Introduction30

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental condition of impaired social31

communication and restrictive behaviour, diagnosed in about 1% of children (Lai et al., 2014; Baio32

et al., 2018), that is associated with extensive heterogeneity of behavioural symptoms and neuro-33

biological endophenotypes (Jacob et al., 2019; Lombardo et al., 2019). Functional magnetic reso-34

nance imaging (fMRI) has emerged as a promising technology to identify potential biomarkers of35

functional connectivity (FC) in ASD and other psychiatric disorders (Castellanos et al., 2013). How-36

ever, efforts to characterize the functional brain organization in ASD have so far largely focused37

on case-control comparisons, thus ignoring the presumed heterogeneity of FC alterations (Nunes38

et al., 2019; Hahamy et al., 2015).39

Data driven cluster analysis has long been proposed as a solution to decompose the hetero-40
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geneity of behavioural symptoms in ASD into distinct subtypes (Eaves et al., 1994; Beglinger and41

Smith, 2001), but these subtypes have proven difficult to distinguish in clinical practice (Lord et al.,42

2012) andwere recently abandoned in favour of the broader concept of an autism spectrum (Amer-43

ican Psychiatric Association. and DSM-5 Task Force., 2013). The lack of progress towards repro-44

ducible, brain based biomarkers of ASD (Lombardo et al., 2019) has renewed interest in clustering45

methods to decompose the heterogeneity of brain alterations into distinct subtypes that are hy-46

pothesized to underlie the multitude of behavioural symptoms.47

To date, only a small number of studies have applied brain based subtyping to characterize the48

neurobiological heterogeneity in ASD and relate it to behavioural symptoms (Hong et al., 2019).49

Early work on subcortical volume alterations in ASD distinguished four subtypes, but did not find50

significant differences of behavioural symptoms between them (Hrdlicka et al., 2005). A more re-51

cent multi-modal analysis distinguished three subtypes of structural brain alterations in ASD and52

found that core ASD symptoms could bemuch better predicted from the structural MRI data when53

separate predictionmodels were trained on each subtype compared to the on the full, unstratified54

dataset (Hong et al., 2017). Work on theheterogeneity of FC in individualswith ASD, attentiondeficit55

hyperactivity disorder (ADHD), and NTC distinguished three FC subtypes among regions in the de-56

fault mode network (DMN) and found that each subtype was associated with all three diagnostic57

groups, indicating that these FC subtypes may be shared across diagnostic boundaries (Kernbach58

et al., 2018). An analysis of whole-brain FC in ASD and neurotypical control (NTC) individuals distin-59

guished two subtypes of diverging within- and between-network connectivity, but similarly showed60

that the assignment of individuals to these subtypes was not associated to their clinical diagnosis61

(Easson et al., 2019).62

These initial findings of subtypes in ASD leave several important questions open. Firstly, stud-63

ies have so far interpreted subtypes both as categories that individuals are discretely assigned to64

(Hrdlicka et al., 2005; Hong et al., 2017) and as dimensions that each individual can have a contin-65

uous measure of similarity with (Kernbach et al., 2018; Easson et al., 2019). However, the stability66

of either of these two methods of assigning individuals to subtypes has not been systematically67

established. Secondly, several previous studies have limited their investigation of subtypes to indi-68

viduals who were already diagnosed with ASD (Hrdlicka et al., 2005; Hong et al., 2017; Tang et al.,69

2019a). Whether subtypes associated with ASD symptoms are specifically found among these diag-70

nosed individuals, or are also prevalent in the general population has not been clearly established.71

Behavioural symptoms in ASD overlap with those of other neurodevelopmental disorders and also72

extend into the general population (Constantino and Todd, 2003;Grzadzinski et al., 2011). Similarly,73

neurobiological endophenotypes associated with ASD have been shown to exist among individu-74

als with other neuropsychiatric disorders (Park et al., 2018; Di Martino et al., 2013). It is therefore75

important to investigate whether subtypes identified in mixed samples of both ASD and NTC indi-76

viduals show an association with ASD diagnosis and symptoms. Thirdly, none of the brain based77

ASD subtypes reported in the literature have been replicated to date. The recent failure to replicate78

promising reports of clinically meaningful neuroimaging subtypes in depression (Drysdale et al.,79

2017; Dinga et al., 2019) has highlighted the importance of this limitation for the autism literature.80

In this work, we aim to address these three gaps by applying a straightforward, unsupervised81

subtyping approach to subdivide a heterogeneous sample of both ASD and NTC individuals by82

their network based FC patterns. Firstly, we systematically evaluate the robustness of the subtype83

maps, and the discrete and continuous assignment of individuals to them. Secondly, we determine84

whether diagnosis naive subtypes of FC show an association with clinical ASD diagnosis at the85

network level. And thirdly, we determine the generalizability of our findings by replicating them on86

an independent dataset.87
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Figure 1. Robustness of subtyping outcomes across brain networks. Left: Stability of the FC subtype maps.
Boxplots represent the range of the average similarity between FC subtype maps of the same brain network
that were extracted from separate subsamples of the discovery dataset. Middle: Stability of discrete
assignments of individuals to a FC subtype cluster. Boxplots represent the average overlap between the
clusters an individual was assigned to in two different random subsamples. Right: Stability of continuous
assignments of individuals to a FC subtype across repeated imaging sessions. Bar plots represent the average
Intraclass Correlation between continuous subtype assignments computed on separate longitudinal imaging
sessions. Different bar hues represent the stability of continuous subtype assignments extracted from
out-of-sample subtypes (black), from within-sample subtypes (dark blue), within-sample subtypes in a general
population data set where multiple scan sessions were combined to compute continuous subtype
assignments (lighter shades of blue reflect more combined sessions).

Results88

Subtype maps are stable89

We first aimed at evaluating the robustness of subtype maps. Subtype maps are the spatial FC90

profiles corresponding to each identified subtype in the brain. For this purpose, we repeated the91

subtype analysis on random subsamples of 50% of the discovery dataset. We then matched the92

subtype maps of each seed network across subsamples, based on the highest similarity between93

pairs of maps. The average spatial Pearson correlation between matched subtype maps was r̄ =94

0.65 (0.034SD) across all seed networks and subsamples. We observed small variations across seed95

networks: from r = 0.58 (0.081SD) for the inferior temporal gyrus seed network up to r = 0.796

(0.069SD) for the dorsal motor network (see Figure 1). We thus showed that the subtype maps of97

the identified subtypes were robust to random perturbations in the dataset.98

Discrete individual subtype assignments are not stable99

To evaluate the robustness of discrete assignments of individuals to a subtype, we compared the100

overlap of the subtypes that an individual was part of between pairs of random subsamples. Be-101

cause each subsample contained a random selection of individuals, we constrained our analysis102

to individuals that were included in both subsamples. The overlap was measured by the Dice co-103

efficient (Dice, 1945). The average overlap of discrete subtype assignments was low at Dice = 0.22104

(0.025SD). That is, 22% of the subtype neighbours of an individual in one subsample would on105

average also be subtype neighbours of this individual in another subsample. The range of over-106

lap between subtypes was Dice = 0.2 (0.018SD) for the auditory network to Dice = 0.28 (0.046SD)107

for the medial visual network (see Figure 1). We thus showed that the discrete assignment of an108

individual to a subtype was not robust to random permutations of the data in our simulation.109

Continuous individual subtype assignments are stable110

We evaluated the replicability of continuous, individual subtype assignments for each seed net-111

work. To do so, we computed the intraclass correlation coefficient (ICC, Shrout and Fleiss, 1979)112
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of the continuous assignment across repeated scan sessions. The observed ICC coefficients were113

interpreted (Cicchetti, 1994) as114

poor if less than 0.4115

fair up to 0.59116

good up to 0.74117

excellent if larger than 0.75118

When subtypes and the corresponding individual assignments to these subtypes were computed119

on data from the same individuals (within-sample replicability), the average ICC across seed net-120

works was fair at ICC = 0.46 (0.073SD). The range of the stability of continuous subtype as-121

signments across networks was ICC = 0.3 for the amygdala-hippocampal complex network to122

ICC = 0.63 for the lateral default mode network.123

To evaluate the replicability of continuous subtype assignments, we repeated this analysis in a124

separate, general population dataset, wherein 10 scan sessions were available for each individual.125

In this data set, the average ICC of continuous subtype assignments was fair at ICC = 0.57 (0.094)126

when each assignment was computed on a single session. When estimating continuous assign-127

ments on the average of multiple sessions, the ICC increased markedly: good (ICC = 0.68, SD =128

0.09) for 2 sessions, good (ICC = 0.75, SD = 0.071) for 3 sessions, and excellent (ICC = 0.80, SD =129

0.067) for 4 sessions.130

Finally, we evaluated the replicability of continuous subtype assignments for subtypes thatwere131

computed on independent data (out of sample replicability). To this end, we computed subtypes132

on the discovery sample and estimated continuous subtype assignments for individuals in the lon-133

gitudinal mixed patient-control sample. Here the average ICC was poor at ICC = 0.33 (SD0.072)134

with a range of ICC = 0.23 in the inferior temporal gyrus to ICC = 0.48 in the medial ventral at-135

tention network. We thus showed that the replicability of continuous subtype assignments ranges136

from poor to excellent as a function of the amount of available data per individual and whether137

subtypes and continuous subtype assignments are computed on the same data.138

Subtypes are robust to nuisance covariates and parameter changes139

We then conducted the FC subtype analysis in the discovery dataset for each seed network. FC140

subtypes were identified according to two criteria: an average spatial dissimilarity below 1, and a141

minimumnumber of 20 individuals within each subtype. Across all seed networks, we identified 87142

FC subtypes, with an average of 5 per network. These FC subtypes captured on average 97% of in-143

dividuals in the sample (see also Appendix 1). We tested whether continuous subtype assignments144

were driven by headmotion, age, or recording site and found no significant linear associations with145

these covariates (see also Appendix 1). Lastly, we evaluated whether our results were influenced146

by the choice of the dissimilarity threshold by repeating the subtyping and subsequent analysis147

steps for different levels of dissimilarity thresholds. We found that our results were robust across148

dissimilarity thresholds but that higher thresholds led to the inclusion of smaller proportions of149

the sample (see Fig 1 in Appendix 3).150

Subtypes show association with ASD diagnosis151

We next investigated whether any of the identified FC subtypes naturally captured interindividual152

variance of clinical ASD symptoms. To test this question, we computed the continuous assignment153

of all individuals in the discovery dataset to the identified subtypes. We then tested for a linear154

relationship between continuous subtype assignments and ASD diagnosis (i.e. ASD or NTC) and155

measures of ASD symptom severity (i.e. calibrated ADOS severity scores).156

We identified 11 FC subtypes for which the continuous assignment of individuals were signifi-157

cantly associated with the clinical diagnosis of ASD, after correction for multiple comparisons (padj158

reflects the false discovery rate adjusted p-values, see Methods for details). That is, ASD and159

NTC individuals differed significantly in their continuous assignments with these subtypes. NTC160
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individuals showed significantly stronger assignments than ASD individuals with 5 of the 11 sub-161

types. These protective subtypes originated from seed networks in the ventral motor network162

(T = 3.79, padj = 0.0037, d = −0.42), the auditory network (T = 4.25, padj = 0.0018, d = −0.52), the163

dorsal motor network (T = 4.15, padj = 0.0018, d = −0.49), the medial ventral attention network (T =164

3.49, padj = 0.0091, d = −0.39), and the downstream visual network (T = 3.23, padj = 0.0196, d = −0.38).165

ASD individuals showed significantly stronger continuous assignments than NTC individuals166

with 6 of the 11 subtypes. These risk subtypes originated from seed networks in the ventral motor167

network (T = 2.91, padj = 0.0330, d = 0.32), the dorsal motor network (T = 3.8−, padj = 0.0369, d =168

0.39), the downstream visual network (T = 2.94, padj = 0.0330, d = 0.28), the amygdala-hippocampal169

complex (T = 2.75, padj = 0.0488, d = 0.27), the fronto-parietal control network (T = 2.92, padj =170

0.0330, d = 0.29), and the lateral default mode network (T = 3.17, padj = 0.0204, d = 0.30). We thus171

showed that a subset of the identified FC subtypes naturally captured some variance of the clinical172

ASD diagnosis. We did not find an association between continuous subtype assignments and ASD173

symptom severity beyond the effect of the clinical diagnosis (see Appendix 2).174

Subtype associations with ASD diagnosis replicate moderately175

We next investigated how reproducible the discovered association between FC subtypes and ASD176

diagnosis was in an independent dataset. For each of the subtypes that showed a significant associ-177

ation with ASD diagnosis in the discovery dataset, we computed the continuous assignment for the178

individuals in the independent replication dataset. In this way, we tested the out of sample repro-179

ducibility of the observed association effect. We tested different degrees of replication: whether180

the observed effect in the replication sample was significant after correction for multiple compar-181

isons, significant at an uncorrected p < 0.05, whether the estimated magnitude of the effect fell182

within the 90% confidence interval of the effect size estimate in the discovery sample, and whether183

the effect in the replication sample had the same direction as the one estimated in the discovery184

sample. We found that all effects of association with diagnosis in the replication sample had the185

same direction as in the discovery sample. The effect size estimates in the discovery sample were186

correlated at r = 0.91with the effect size estimates in the replication sample. Themagnitude of the187

estimated effects in the replication sample was on average 63% of those estimated in the discovery188

sample, and nine out of eleven effect size estimates fell within the 90% confidence intervals of the189

effect size estimates in the discovery sample. Five of those effects were significant at p < 0.05, and190

two of those were significant at padj < 0.05 (Figure 2 b). We thus showed that the association be-191

tween subtypes and ASD diagnosis observed on the discovery dataset was moderately replicable192

in the independent replication dataset.193

Subtypes with similar risk for ASD show similar spatial patterns of FC alterations194

We noticed that the spatial pattern of protective subtype maps appeared similar, despite repre-195

senting connectivity profiles from different seed networks (Figure 3 a, b). Similarly, the subtype196

maps of risk subtypes all appeared to show below average connectivity. We therefore investigated197

whether subtypeswith the samedirection of associationwith ASDdiagnosis (i.e. protective and risk198

subtypes) shared similar FC profiles andwhether this also extended to the continuous assignments199

of individuals to these subtypes. We found that protective subtypes exhibited a highly convergent200

pattern of FC alterations (r̃spatial = 0.81, where r̃ reflects the median spatial correlation across sub-201

type pairs) that was distinct from those of risk subtypes (r̃spatial = −0.3). The spatial similarity among202

risk subtypes was less pronounced (r̃spatial = 0.3) than that of protective subtypes. This finding ex-203

tended to continuous subtype assignments that were more strongly correlated among protective204

subtypes (r̃ = 0.62) than among risk subtypes (r̃ = 0.21), and anti-correlated between protective and205

risk subtypes (r̃ = −0.25). By dividing all subtypemaps into the 18 seed networks, we observed that206

the shared spatial pattern of protective subtypes was characterized by overconnectivity with uni-207

modal sensory brain networks, and underconnectivity with the basal ganglia and fronto-parietal208

network (green hues, Figure 3 c). By contrast, the shared spatial pattern of risk subtypes was char-209
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Figure 2. Association of continuous subtype assignments and diagnosis. a) Bar plots represent the
standardized group difference (Cohen’s d) of continuous subtype assignments between NTC individuals and
ASD patients. Negative value reflect greater similarity of neurotypical control subjects with the subtype,
positive values reflect greater similarity of ASD patients with the subtype. Error bars reflect the 95%
confidence interval of the effect size estimates. The effect size observed in the independent replication data
set is shown as a blue dot. b) Matrix showing the degree of replication in the independent replication dataset
of the observed association with diagnosis for each of the 11 protective and risk subtypes. Each row
corresponds to a bar-plot in a). From top to bottom, the degrees of replication are: FDR: full replication of the
effect after FDR correction, p < 0.05: replication of the effect for uncorrected statistics, effect within CI:
observed effect size in the replication sample falls within the 95% confidence interval of the observed effect in
the discovery sample, direction: observed effects in the discovery and independent replication sample go in
the same direction. c) Graph illustrating the similarity of continuous subtype assignments across risk and
protective subtypes. The average continuous subtype assignments of the top 10% of individuals with the
highest similarity with a protective (green shades) or risk (red shades) subtype are displayed across all
identified protective (left side) and risk (right side) subtypes. An individual may belong to the top 10% in more
than one subtype. d) Correlation plot of the observed effect sizes in the discovery and independent
replication datasets. The black line represents the correlation of effect sizes, the grey shaded area reflects the
estimated 95% CI of the linear fit.
Figure 2–source data 1. Table of the unthresholded association T-test between continuous subtype assign-
ments and ASD diagnosis on the discovery dataset.
Figure 2–source data 2. Table of the unthresholded association T-test between continuous subtype assign-
ments and ASD diagnosis on the validation dataset.
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acterized by pervasive underconnectivity (red hues, Figure 3 c). We thus showed that subtypes210

associated with a similar risk of ASD diagnosis exhibited similarities of FC alteration and continu-211

ous assignments, and that these similarities were more pronounced for protective subtypes than212

risk subtypes.213

Discussion214

ASD is characterized by a heterogeneity of symptoms and neurobiological endophenotypes (Nunes215

et al., 2019; Dickie et al., 2018; Jacob et al., 2019) among the affected individuals. Data driven,216

unsupervised subtyping appears as a natural approach to decompose the heterogeneity in ASD217

and to identify subtypes of functional brain connectivity. Here, we first sought to evaluate how218

stable and reproducible subtypes of FC are when derived from a heterogeneous sample of both219

neurotypical and autistic individuals. We then investigate whether fully data driven subtypes are220

associated with a clinical diagnosis of ASD. Our results suggest that data driven imaging subtypes221

are moderately reliable on currently available datasets and show a weak to moderate association222

with the clinical diagnosis of ASD, that generalizes to independent replication data.223

Functional connectivity subtypes are stable224

Our systematic evaluation of the robustness of subtype maps, and the discrete or continuous as-225

signments of individuals to them, establishes a foundation on which to understand previous inci-226

dental findings on the robustness (Easson et al., 2019) or non-reproducibility (Dinga et al., 2019)227

of subtype analyses. The FC patterns of the subtypes identified in our analysis were found to be228

robust to perturbations of the discovery data set. This observation fits with previous studies that229

reported stable imaging subtypes in ASD (Hong et al., 2017; Easson et al., 2019; Tang et al., 2019b).230

By contrast, we found that making a discrete assignment of individuals to the identified subtypes231

was not robust to perturbations. Few papers have investigated the robustness of discrete subtype232

assignments explicitly. One recent study attempted to replicate a high profile report of clinically233

predictive FC subtypes among depressed patients (Drysdale et al., 2017) but found that the as-234

serted discrete subtypes were not sufficiently supported by an independent dataset (Dinga et al.,235

2019). The authors concluded that the data instead supported a more parsimonious model of236

continuous neurobiological axes.237

In the wider ASD literature, the robustness of discrete subtype assignments has been more238

comprehensively investigated for symptom based subtypes. Several symptom based subtypes of239

autism have been proposed in attempts to provide more homogeneous diagnostic criteria. How-240

ever, the distinction between these subtypes was also not found to be well supported by replica-241

tion attempts which has led the field to merge sub-diagnoses of autism under the label of autism242

spectrum disorder (Lord et al., 2012; Volkmar and McPartland, 2014).243

We may reconcile the seemingly conflicting findings of robust subtypes on the one hand and244

non-reproducible discrete subtype assignments on the other, when we consider that the similarity245

of an individual with each subtype is a continuousmeasure. For individuals who are equally similar246

to two different subtypes, a small change of the connectivity profile of either of the subtypes may247

be enough for them to be assigned to the other subtype if a discrete choice is forced. By contrast,248

the continuous similarity measure would not change drastically. An emerging body of literature249

therefore conceptualizes subtypes as latent dimensions that can be expressed to varying degrees250

in each individual (Kernbach et al., 2018; Tang et al., 2019b; Easson et al., 2019). Our own results251

support this view: we find that unlike discrete subtype assignments, continuous measures of an252

individuals’ similarity with each subtype are moderately robust and can be very robust whenmore253

data is available per individual to compute the continuous assignment. The ICC of continuous sub-254

types assignments computed on separate data was low but consistent with previous reports of255

the robustness of single session seed based FC measures (Shehzad et al., 2009). When the contin-256

uous subtype assignments were computed based on the average FC of multiple scan sessions per257
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Figure 3. Overview of risk and protective subtype maps. Maps of protective (a) and risk (b) subtypes
(corresponding seed networks are outlined with a thin green boundary on the map). c) Decomposition of the
average protective (green) and risk (red) subtype map into 18 brain networks . d) Spatial correlation between
subtypes. Protective (green) and risk (red) subtypes are denoted by colored bars along the correlation matrix.
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individual, we found high to very high robustness measures that were in line with the well estab-258

lished link between scan length and FC reliability (Gordon et al., 2017). It is reasonable to assume259

that the generalizability of the associations between continuous subtype assignments and clinical260

ASD diagnosis we have reported here could be increased if longer or repeated scan sessions were261

available for the replication sample. Based on our findings we may thus conclude that continuous262

measures of individual subtype assignment that reflect the similarity of an individual with several263

subtypes provide a better representation of the data.264

Subtypes moderately, but reproducibly, associate with ASD diagnosis265

The majority of previous subtyping analyses in ASD have been constrained to patients that were266

already diagnosedwith ASD (Hrdlicka et al., 2005;Hong et al., 2017; Tang et al., 2019b). We have in-267

stead used an unsupervised clustering approach to identify diagnosis-naive subtypes of FC across268

autistic and neurotypical individuals in order to determine whether they would associate with ASD269

diagnosis. Our results showed that these subtypes were significantly associated with a clinical diag-270

nosis of ASD, and that the observed effects were small to moderate, ranging between d = 0.3 and271

d = 0.5 (or from r = 0.15 to r = 0.24 when expressed as a correlation coefficient) on the discovery272

sample, with reduced effect sizes identified in an independent replication sample.273

Our effect sizes are comparable to those reported by other imaging based subtypes in ASD,274

which have all estimated association with diagnosis in their discovery sample (i.e. have not been275

replicated on independent data). A recent study (Kernbach et al., 2018) investigated the hetero-276

geneity of FC in mixed data of ASD, NTC, and attention deficit hyperactivity disorder (ADHD), a277

common comorbidity of ASD individuals (Rommelse et al., 2010). The authors identified one FC278

endophenotype that was weakly associated with ASD (r = 0.15) but extended both to ADHD and279

NTC individuals. Another study on structural imaging subtypes among ASD (Hong et al., 2017) pa-280

tients found that ADOS severity scores could be better predicted from structural cortical alterations281

when individuals were first divided into three subtypes (r = 0.47 compared to r = −0.12 when the282

association was computed without regard for subtypes), although the prediction performedworse283

for calibrated ADOS severity (r = 0.25). The magnitude of the association between data driven sub-284

types and clinical diagnosis in our analyses is therefore comparable to what has been previously285

reported by other imaging based subtypes analyses of ASD. Weak-to-moderate associations be-286

tween data driven subtypes and clinical diagnosis thus seem robust to the employed subtyping287

method, at least in the currently limited number of published studies.288

Very few imaging based subtype analyses have been replicated on independent data, and to289

our knowledge none have so far been replicated successfully (Dinga et al., 2019). The replication of290

our results on independent data therefore establishes a novel benchmark of reliability for imaging291

based subtype analyses in ASD.We found that the observed effect sizes of the association between292

FC subtypes and clinical ASD diagnosis strongly correlated between the discovery dataset and the293

independent replication dataset (r = 0.91), however effect sizes in the replication data were on294

average only 2/3rds the the magnitude of those in the discovery data. This reduction of effect295

sizes on the replication data is expected as it reflects the inherent bias of significance testing to296

select larger effects and further underlines the importance of reporting original findings together297

with independent replications for an unbiased estimate (Vul and Pashler, 2012). Because no other298

imaging subtype analysis in ASD has been independently replicated to date, our results have to be299

interpreted in the context of replication attempts in the ASD case-control literature. The largest300

case-control analysis of FC alterations to date (Holiga et al., 2019) reported FC group differences301

between ASD and NTC individuals with effect sizes between d = 0.46 and d = 0.6, similar in size to302

our own results of FC subtype associations with clinical ASD diagnosis. Using several large replica-303

tion samples, the authors then showed that these results were reproducible in independent data,304

however with similarly depressed effect sizes (i.e. d ≈ 0.2).305

The comparison with the large case-control study by Holiga and colleagues may also serve to306

illustrate the conceptual advantage of a subtyping approach over the traditional case-control de-307
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Figure 4. Comparison of the average protective subtype map to a case-control signature. a) The spatial map
of a large sample size case-control contrast between ASD and NTC individuals (top row), compared to the
average spatial map of the protective subtypes identified on our data (bottom row). Note that because of the
opposite nature of the two contrasts (i.e. ASD > NTC for the case-control contrast and NTC > ASD for the
protective subtype map), the color scale for the case-control map has been inverted for better comparability.
b) Plot of the voxel-wise spatial correlation between the (inverted) case-control contrast map and the average
protective subtype map. The blue to red color gradient reflects the density of voxels represented in each area
of the graph.
.

sign for the investigation of ASD related alterations of FC. An incidental finding of our analysis was308

that protective subtypes converged onto a network of mutually overconnected and predominantly309

unimodal brain networks (see Figure 3). The spatial pattern of this overconnectivity profile is visu-310

ally very similar to the case-control pattern of differences FC ASD and NTC individuals reported311

in the study of Holiga et al (see Figure 4). We computed the spatial correlation between the two312

patterns at r = −0.6, as high or higher than the reported replicability of the case-control pattern313

itself (between r = 0.3 and r = 0.6, depending on the replication sample). Because the case-control314

results of Holiga are at least in part based on the same data that were used in our study, the strik-315

ingly high spatial correlation and the similarity of effect sizes suggests that case-control studies316

may not capture ASD specific FC alteration patterns but are rather driven by the most prevalent317

FC subtypes in the data, that are themselves not strongly linked to ASD. The fact that our analysis318

identified several distinct and non-overlapping FC subtypes that were reproducibly associated with319

moderately increased risk of ASD further illustrates the conceptual limitation of computing group320

averages across data known to be highly heterogeneous (Ecker andMurphy, 2014; Lombardo et al.,321

2019).322

Taken together, our results suggest that unsupervised FC subtypes associate with clinical ASD323

diagnoses at a level similar to case-control studies and have comparable reproducibility. They also324

likely provide a more comprehensive and informative representation of the underlying neurobio-325

logical heterogeneity.326

Limitations327

Our findings are limited by the amount of data available per individual. We found that continuous328

assignments of individuals to subtypes became more stable, the more data was available per indi-329

vidual. One reason for this observation could be that the FC pattern associated with an individual330

is in fact not static across time but rather represents an average of a number of dynamic states331

(Allen et al., 2014). How long an individual spends in each dynamic state can be a reproducible332

trait (Choe et al., 2017) and may provide additional insight into the relationship of connectivity and333
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ASD symptoms (Rashid et al., 2018). It is therefore possible that by averaging longer time series334

for each individual, we get a better approximation of that individual’s preferred dynamic state. A335

promising direction for future research will be the investigation of dynamic FC subtypes in ASD.336

Datasets providing longer time series per individual will facilitate these inquiries.337

Our results have focused only on individuals with ASD. Given the extensive evidence of overlap338

of symptoms (Grzadzinski et al., 2011) and neurobiological phenotypes between ASD and other339

neurodevelopmental disorders (Sha et al., 2019), a fruitful avenue for future research will be to340

extend this approach to investigate cross-diagnostic subtypes of FC (Elliott et al., 2018).341

Conclusions342

Our findings suggest that unsupervised clustering of heterogeneous imaging data is well suited to343

identify subtypes that are reproducibly associated with clinical symptoms. The low to moderate344

effect size of the observed associationmakes it clear that subtypes of FC will not replace or provide345

better clinical categories than the current diagnostic system. The instability of discrete assignments346

of individuals to subtypes and the small tomoderate effect sizes associatedwith these subtypes do347

not lend themselves to make meaningful predictions about the clinical prognosis of an individual.348

However, we find that the associations between subtypes and clinical diagnosis do generalize to349

independent data and that the risk subtypes we identified in our dataset capture non-redundant350

profiles of FC dysfunction. Both of these observations point towards a promising avenue for future351

research: data driven subtyping appears well suited as an efficient method to summarize high352

dimensional, heterogeneous data while retaining clinically meaningful variation. These properties353

make FC subtypes good candidates as features for multivariate, supervised predictive learning354

models to predict clinical diagnosis.355

Methods and Materials356

Discovery sample357

The discovery sample consisted of imaging data from the ABIDE 1 dataset (N = 388, NASD =358

194, Age = 17.04, (7.08), from 7 recording sites) and ASD individuals were matched with neurotyp-359

ical controls on age (AgeASD = 17.0, (7.28); AgeNTC = 17.04, (6.89)) and head motion (FDASD =360

0.17mm, (0.048); FDNTC = 0.16mm, (0.041)). The full ABIDE 1 dataset includes 1112 individuals from361

20 imaging sites (NASD = 539, age = 17.04, (8.04)) of which 948 are male. Due to the strong sex362

imbalance of the data, we limited our analysis to male individuals. After preprocessing of the imag-363

ing data, 557 individuals (272ASD,Age = 16.65, (6.75)) from 13 imaging sites were found to pass364

our quality control criteria. We then matched the NTC and ASD individuals at each site by age365

and head motion through propensity score matching without replacement (Rosenbaum and Ru-366

bin, 1985). The matched sample included 478 individuals (239ASD,Age = 16.67, (6.67)). We further367

excluded the 5 imaging sites with fewer than 20 matched individuals, leaving 388 individuals for368

the final discovery sample.369

Replication sample370

The replication sample consisted of imaging data from the ABIDE 2 dataset (N = 300, NASD =371

150, from 7 imaging sites) and ASD individuals were matched with neurotypical controls on age372

(AgeASD = 12.0, (4.05); AgeNTC = 12.3, (4.59)) and head motion (FDASD = 0.17, (0.053); FDNTC =373

0.16, (0.048)). The full ABIDE 2 dataset includes 1114 individuals from 19 imaging sites (NASD =374

521, Age = 14.86, (9.16)) of which 856 are male. Analogous to the discovery sample we limited375

our analysis to male subjects. After preprocessing of the imaging data, 587 individuals (NASD =376

273, Age = 13.94, (5.9)) from 16 imaging sites were found to pass our quality control criteria. These377

individuals were then matched by age and head motion within each site through propensity score378

matching without replacement. The matched sample included 424 individuals (NASD = 212, Age =379

13.66, (5.25)). We further excluded 9 imaging sites with fewer than 20 matched individuals, leaving380

300 individuals for the final replication sample.381
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Longitudinal sample 1382

The first longitudinal test sample was taken from a subset of individuals in ABIDE 2 for whom383

multiple scan sessions were available. In ABIDE 2, longitudinal imaging data are available for 168384

individuals from 4 imaging sites (NASD = 88, Age = 21.24, (15.45)) of which 154 are male. Analogous385

to the discovery and replication sample, we limited our analysis to male individuals. After prepro-386

cessing of the imaging data, 84 individuals (NASD = 42, Age = 14.58, (6.29)) from 3 imaging sites were387

found to pass our quality control criteria. We selected the two imaging sites with the largest num-388

ber of acceptable individuals (ABIDEII-OHSU_1 and ABIDEII-IP_1) and randomly selected individuals389

at each site to enforce equal sized groups of NTC and ASD. Where more than 2 acceptable imaging390

scans were available for an individual, the 2 scans with the lowest average head motion were se-391

lected. The final longitudinal test sample consisted of 68 individuals (NASD = 34, Age = 13.46, (5.79))392

from 2 imaging sites.393

Longitudinal sample 2394

The second longitudinal test sample consisted of individuals in the general population Hangzhou395

Normal University dataset (http://dx.doi.org/10.15387/fcp_indi.corr.hnu1) released by the consor-396

tium for reliability and reproducibility (Zuo et al., 2014). The final sample included 26 individuals397

(Nmale = 14, Age = 24.58, (2.45)) that were each scanned 10 times at 3 day intervals over the course398

of a month. We selected the 26 individuals (out of a total of 30 available individuals) for which all399

resting state scans passed visual quality control.400

Clinical scores and symptom severity401

The individuals from the ABIDE 1 and ABIDE 2 samples included in this study were diagnosed with402

ASD by expert clinicians based on either the Autism Diagnostic Observation Schedule (ADOS) (Lord403

et al., 2000;Gothamet al., 2007) or the AutismDiagnostic Interview - Revised (Lord et al., 1994). The404

ADOS provides a total sum of ratings of observation items in the ADOS subdomains that reflects405

the severity of observed symptoms but is primarily intended for diagnostic purposes. Calibrated406

ADOS severity scores have been proposed as a standardized, research appropriate measure of407

symptom severity that is comparable across ADOSmodules and is less dependent on demographic408

factors such as age (Gotham et al., 2009). Few individuals in the discovery (N=109, 93 ASD) and409

replication (88 ASD) samples had calibrated ADOS severity scores. We therefore also investigated410

associations with the raw ADOS total scores that were available in larger numbers in the discovery411

(N = 213, NASD = 182) and replication (N = 157, NASD = 148) sample.412

Imaging data preprocessing413

All imaging data were preprocessed with the NeuroImaging Analysis Kit (NIAK) version 1.13 (Bellec414

et al., 2011). The preprocessing pipeline was executed inside a Singularity (version 2.6.1) software415

container (Kurtzer et al., 2017) to facilitate the reproducibility of our findings. Preprocessing of416

the functional imaging data consisted of the following steps: Head motion between frames was417

corrected by affine realignment with a reference image (median image across frames). The mag-418

nitude of framewise head displacement (FD) was estimated from the time course of the affine419

realignment parameters (Power et al., 2012). The reference image was then coregistered into the420

MNI152 stereotaxic space (Evans et al., 1994) through an initial affine alignment with the individ-421

ual anatomical T1 image and a subsequent, non-linear coregistration of the T1 image with the MNI422

template. A high-pass temporal filter (0.01 Hz) was fitted to thewhole time series by discrete cosine423

transform to remove slow time drifts. Time frames with excessive headmotion (FD > 0.4mm) were424

then censored by removing the affected frame, as well as the preceding and the two succeeding425

frames from the time series (Power et al., 2012). Nuisance covariates were then regressed from the426

remaining time points: the previously estimated discrete cosine basis functions, the average signal427

in conservativemasks of the whitematter and lateral ventricles, and the first principal components428
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(accounting for 95% of variance) of the six rigid-body motion parameters and their squares (Lund429

et al., 2006; Giove et al., 2009).430

Quality control of imaging data431

We controlled the quality of preprocessed data manually and through quantitative cut off values.432

Datawere visually checked by a trained rater following a standardizedQC protocol (Benhajali et al.,433

2020) with a structured QC tool (Urchs et al., 2018). Individuals were excluded for coregistration434

failure and for incomplete brain coverage of the field of view of the functional data. During the435

visual QC we noticed that a large number of individuals in both the discovery and replication sam-436

ple had incomplete field of view coverage of the cerebellum. We chose to remove all cerebellar437

networks from our analyses in order to include these individuals. Individuals were also excluded438

from the analysis if fewer than 50 time frames remained after motion censoring or if the average439

framewise displacement exceeded 0.3 mm.440

Functional connectivity estimation441

We estimated the seed based FC maps of 18 non-cerebellar seed networks defined in the MIST_20442

functional brain atlas (Urchs et al., 2017). The MIST_20 atlas represents large, spatially distributed443

subcomponents of canonical FC networks. The seed to voxel FC maps were estimated as the Pear-444

son correlation between the average time series signal of a seed network and the time series of445

all gray matter voxels in the brain (excluding the cerebellum). Within each sample separately, the446

individual seed FC maps were centered to the group mean and known sources of variance of non-447

interest were regressed for each voxel at the group level: linear effects of age, head motion and448

imaging site. As a consequence, the individual seed FCmaps in each sample represented the resid-449

ual variance around the group mean after accounting for these factors.450

Subtyping of functional connectivity451

To identify communities of individuals with similar seed FC patterns we computed the spatial cor-452

relation of all pairs of subjects in the discovery sample, separately for each seed network. We453

expressed the dissimilarity between pairs of individual seed FC maps as the absolute value of 1 -454

their spatial correlation. The 18 subject by subject dissimilarity matrices (one per seed network)455

thus contained values between 0 (no dissimilarity or a spatial correlation of 1) to 2 (perfect dissim-456

ilarity or a spatial correlation of -1) with 1 denoting no spatial relationship (a spatial correlation of457

0).458

For each seed network separately, we characterized communities of individuals with similar459

seed FC maps by hierarchical agglomerative clustering of the dissimilarity matrix for each seed460

network using the unweighted average distance linkage criterion (Müllner, 2011). We applied two461

criteria for the identification of seed FC communities: 1) the average dissimilarity between seed462

FC maps in a community could not be greater than 1, and 2) the community had to have at least463

20 members. This allowed for small subsets of individuals with distinct seed FC patterns to not be464

assigned to any communities. Assigning individuals to subtypes in this way is a discrete process465

and we therefore refer to these assignments as discrete subtype assignments.466

Within each seed FC community, we estimated the average seed FC map across all community467

members. This map reflected the subtype of seed FC shared by the community members and we468

refer to these maps as the subtype map.469

Finally, we computed the spatial similarity of each individual in the discovery sample with the470

identified seed FC subtypes by spatial correlation of the individual seed FC map with the corre-471

sponding seed FC subtype map. The estimated spatial correlation coefficient is a continuous mea-472

sure of an individual’s similarity with each of the subtypes and we therefore refer to it as a continu-473

ous subtype assignment. Each individual had continuous subtype assignments for each identified474

subtype, ranging from −1 (perfect anticorrelation of the individual and the subtype seed FC map)475

to +1 (perfect correlation of the individual and subtype seed FC map).476
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Stability analysis477

Before we investigated the three aspects of FC subtypes (subtype maps, and discrete and contin-478

uous assignments) in detail, we wanted to determine the robustness of these metrics to perturba-479

tions of the discovery data. We used two approaches: 1) to determine the robustness of discrete480

subtype assignments and subtypemaps, we conducted a stratified subsampling schemeonour dis-481

covery sample, 2) to determine the robustness of continuous subtype assignments, we computed482

the within subject stability of continuous subtype assignments across repeated scan sessions for483

individuals in the longitudinal sample.484

We randomly selected 1000 stratified subsamples of half of our discovery sample while preserv-485

ing the equal ratio of ASD patients and NTC. Within each subsample, we repeated the full subtype486

characterization procedure: group level regression of nuisance sources of variance, characteriza-487

tion of communities of similar residual seed FC maps, estimation of seed FC subtype maps. The488

number of unique pairs of subsamples was large (≈ 500.000) and there was considerable overlap489

of individuals between subsamples. Therefore, we randomly selected 1000 unique pairs of sub-490

samples to estimate the robustness of the subtype community membership and subtype maps to491

perturbations in the data.492

We determined the robustness of discrete subtype assignments by computing the similarity of493

the communities an individual was assigned to within two subsamples using the Dice coefficient494

(Dice, 1945). For each pair of subsamples A and B, we first identified the intersect of individuals495

(i.e. those individuals that were present in both subsamples). For each individual we then com-496

puted the Dice coefficient of the communities it was assigned to in sample A and sample B. The497

Dice coefficient here computes the ratio of twice the number of individuals shared between both498

communities over the total number of individuals in both communities. Thus, if all community499

neighbours of an individual in sample A were also community neighbors of that individual in sam-500

ple B, then the Dice coefficient will be 1. Conversely, if none of the community neighbours of an501

individual in sample A were community members of that individual in sample B, then the Dice co-502

efficient will be 0. We computed the average Dice coefficient across all individuals shared between503

a pair of subsamples.504

We determined the robustness of the subtype maps by examining the spatial correlation of505

subtype maps extracted in each pair of subsamples. For each pair of subsamples A and B, we506

computed the spatial correlation of all subtype maps in sample A with all subtype maps in sample507

B. If subtype maps were robustly identified, then we would expect that for each subtype map in508

sample A we can find at least one subtype map in sample B that is very similar. We therefore509

searched (with replacement) for each subtype map in sample A the subtype map in sample B with510

the highest spatial correlation. Since the number of subtypes extracted in each subsample was511

determined by the data, we allowed for subtype maps in sample B to be a match for multiple512

subtype maps in sample A. We then took the average of the maximal spatial similarity between513

subtype maps of sample A and B as a measure of the robustness of the subtype maps.514

We computed the robustness of the continuous subtype assignments as the intraclass corre-515

lation coefficient between repeated scan sessions of the same individual. We first investigated516

the robustness of assignments to subtypes that had been identified on data from a separate scan517

session but of the same sample (within sample robustness). Using the longitudinal sample 1, we518

identified FC subtypes for each network on scan session 1, and computed seed based FC maps519

for all individuals on the remaining two scan sessions. Independently for each scanning session520

we then centered the seed FC maps to the group mean and regressed covariates of non-interest521

for each voxel. The residual seed FC maps were then used to compute the continuous subtype522

assignments for the FC subtypes identified on scan session 1. The replicability of these continu-523

ous subtype assignments across the two remaining scan sessions was then estimated with the524

intraclass correlation coefficient.525

Using the longitudinal sample 2, we tested whether continuous subtype assignments were526
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more robust if they were computed on larger amounts of data per individual. Again, we identi-527

fied FC subtypes for each network on the first scan session and computed individual seed FCmaps528

on the remaining nine scan sessions. Within each scan session, the individual seed FC maps were529

then centered to the group mean and nuisance covariates were regressed. Two average residual530

seed FC maps per individual were then computed by averaging across sets of 2, 3, and 4 scan531

sessions. We then computed the continuous subtype assignments with the FC subtypes and es-532

timated their replicability for the different number of averaged scan sessions with the intraclass533

correlation coefficient.534

Finally, we computed the out of sample robustness of continuous subtype assignments based535

on the repeated scan session in the longitudinal sample 1 with the FC subtypes identified on the536

complete discovery sample. Again, the robustness was measured with the intraclass correlation537

coefficient of continuous subtype assignments across scan sessions.538

Association with autism diagnosis539

We explored whether seed FC subtypes existed for which the presence of an autism diagnosis540

explained a significant amount of variance of the continuous subtype assignments. We tested541

this for each subtype by comparing the means of continuous subtype assignments between ASD542

individuals and NTC with a general linear model with diagnosis as the explanatory factor. As we543

had taken care to ensure equal sizes of individuals in both diagnostic categories, we did not use544

a correction for unequal variances. The estimated p-values were corrected at a false discovery545

rate (FDR) of 5% across all subtypes using the Benjamini and Hochberg method (Benjamini and546

Hochberg, 1995). We report the standardized group difference (Cohen’s d) between diagnosis and547

continuous subtype assignments as a measure of the effect size of the association with the clinical548

diagnosis. We continued investigating subtypes for which a significant difference of continuous549

subtype assignments between ASD patients and NTC was found in the discovery sample.550

Within the set of subtypes that showed a significant association with ASD diagnosis we investi-551

gated whether spatial similarity with the subtype map explained additional variance of the sever-552

ity in clinical symptoms. Because symptom severity and the clinical ASD diagnosis were highly553

correlated, and because healthy individuals had compressed or missing scores for most severity554

measures, we only tested this association in individuals with a diagnosis of ASD. We investigated555

the linear relationship between continuous subtype assignments and severity estimates for the556

calibrated ADOS severity scores (Gotham et al., 2009) and also for the raw ADOS total scores. We557

reported the correlation between symptom scores and continuous subtype assignments as amea-558

sure of the effect size of the association with symptom severity after correction for multiple com-559

parisons using FDR.560

Replicability561

We tested the replicability of the associations between seed FC subtypes and ASD diagnosis in an562

independent replication sample. Within the replication sample we computed individual seed FC563

maps for the 18 non-cerebellar MIST_20 seed networks, centered the seed FC maps to the replica-564

tion sample group average and regressed variance of non-interest due to age, head motion and565

imaging site for each voxel. For the residual seed FC maps, we computed the continuous subtype566

assignment scores with the subtypes identified in the discovery sample. For those subtypes that567

showed significant associations with ASD diagnosis in the discovery sample, we then investigated568

the difference in continuous subtype assignment scores between ASD and NTC individuals in the569

replication sample.570

Robustness of findings to changes in the subtyping pipeline571

Although we did not explicitly specify the number of subtypes to be identified for each seed net-572

work, it was implicitly determined by the maximum dissimilarity parameter and the structure of573

the subject by subject dissimilarity matrix. In order to understand how robust our findings were to574
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changes in this parameter, we repeated all analysis steps (i.e. the identification of subtypes, the test575

for associations with ASD symptoms, and the generalization to the independent replication data)576

for different values of the maximum dissimilarity parameter. To measure the spatial similarity of577

subtype maps identified for different dissimilarity parameters we computed their pairwise spatial578

correlation. We then compared the number of identified subtypes and the observed associations579

with ASD symptoms and their generalization to independent data qualitatively.580
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Appendix 1725

Subtypes capture majority of individuals in the dataset726

Subtypes for each seed network were identified according to two criteria: the average spa-
tial dissimilarity within a subtype was no larger than 1 and at least 20 individuals were part
of the subtype. Across all 18 seed networks, we identified 87 FC subtypes in the discovery
dataset. In each seed network we identified between 3 (medial visual network) and 6 sub-
types (lateral visual network) that satisfied these criteria (the median number of subtypes
was 5). On average across networks, 97% of the individuals in the discovery dataset were as-
signed to a subtype (see also Figure 5). The largest number of individuals not assigned to any
subtype was 19 in the inferior temporal gyrus network, and all individuals were assigned to
subtypes in the ventral somatomotor and perigenual anterior cingulate seed networks. The
average number of individuals in a subtype was N̄ = 79.4, (13.2SD). We thus show that the
majority of individuals in the discovery dataset contributed to the identified 87 FC subtypes.
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Subtypes are not driven by nuisance covariance738

To ensure that subtypes were not driven by variation of non interest, we tested for linear
associations between the continuous assignment of individuals to each subtype, and head
motion and age by Pearson correlation. We also tested whether recording sites were over-
represented in subtypes above chance level with a chi-square test. We found no signifi-
cant linear relationship between continuous assignments of individuals to subtypes and
in-scanner head motion, and age for in any seed network. In addition, we found that the
distribution of imaging sites across subtypes did not differ significantly from chance. We
thus show that subtypes in the discovery dataset were not significantly driven by variance
sources of non-interest.
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Appendix 2748

No added effect of ASD symptom severity beyond diagnosis749

We also investigated whether any of the identified subtypes captured variation due to ASD
symptom severity beyond the observed effects of ASD diagnosis. The distinction between
the effects of ASD diagnosis and additional effects of ASD symptom severity is necessary
because ASD symptom severity measures are by definition strongly correlated with ASD di-
agnosis. Calibrated ADOS symptom severity scores were available for 109 individuals from
four recording sites in the discovery dataset (NYU, UCLA, KKI, USM). Of those, only 16 were
NTC. In the independent replication dataset, calibrated ADOS severity scores were available
for 88 individuals from five recording sites (NYU_1, OHSU_1, SDSU_1, KKI_1, GU_1). All of
the 88 individuals were ASD individuals. We therefore limited our analysis to ASD patients.
When controlling for the effect of clinical diagnosis in this way, we did not find significant ad-
ditional effects of symptom severity in any subtypes. Repeating this analysis for the ADOS
raw total scores (that were available for 182 and 148 ASD individuals in the discovery and
replication sample respectively) likewise resulted in no significant association with continu-
ous subtype assignments for the identified risk and protective subtypes. We thus showed
that beyond the effects of clinical ASD diagnosis, there was no significant added effect of
symptom severity captured by the FC subtypes.
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Appendix 3766

Effects are robust to changes in the subtyping method767

We identified subtypes of FC that satisfied two criteria: a maximal average dissimilarity of
the connectivity patterns of individuals contributing to the subtype, and a minimal num-
ber of individuals. Although this process did not explicitly specify the number of subtypes
to be identified, we sought to understand how robust our findings were to changes in the
subtyping criteria. We therefore repeated the complete subtype analysis (i.e. identification
of subtypes, association with ASD diagnosis, and generalization on independent data) for
different values of maximal within-subtype dissimilarity. This analysis revealed that sub-
type maps remained highly similar across different values of the dissimilarity criterion with
subtypes for the most part contracting and only rarely splitting into subcomponents (see
Figure 4). We found highly consistent spatial patterns of protective and risk subtypes and
effects of association with clinical ASD diagnosis did generalize to the independent replica-
tion dataset at equal rates. We thus conclude that our findings were robust to changes in
the parameters of the subtyping analysis.
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Appendix 3 Figure 1. Overview of the robustness of subtype associations with ASD diagnosis to
changes in the distance cutoff parameter. a) Average percentage of sample assigned to any subtype
(black line) and average number of identified subtypes (orange line) for different levels of distance
cutoff parameters. Shaded areas show range of values across all seed networks. Note that both the
number of subtypes and the average percentage of the sample described by these subtypes sharply
drops off for increasingly stringent FC distance thresholds (black to light grey shaded values on the
horizontal axis). b) Correlation of the effect size of subtype association with ASD diagnosis in the
discovery and replication data for different levels of distance threshold parameters. Lighter colors
reflect more stringent distance cutoff thresholds. Note that the reproducibility of the observed effect
sizes remains largely unaffected for small changes of the distance threshold parameters. c) Average
subtype maps of protective (top row) and risk (bottom row) for different levels of cutoff parameters.
The shaded squares correspond to distance cutoff levels in a) and b). Note that the spatial pattern of
the average subtype maps are highly preserved across different thresholds. d) Breakdown of subtype
maps across different levels of thresholds illustrated by the example of the dorsal somato-motor
seed network. Rows correspond to subtypes and columns correspond to threshold levels. Note that
the spatial pattern of individual subtype maps are highly preserved across increasingly stringent
threshold levels and that subtypes are rarely split into subsets but rather the total number of
subtypes is reduced (x denotes subtypes removed by an increase in the distance threshold). e)
Breakdown of subtypes across threshold levels illustrated by the example of the subject by subject
dissimilarity matrix of the dorsal somato-motor seed network. Grey shaded overlays reflect the
subtype solutions at different dissimiliarity thresholds.
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