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Abstract 18 

 19 

Diverse aerobic bacteria persist by consuming atmospheric hydrogen (H2) using group 20 

1h [NiFe]-hydrogenases. However, other hydrogenase classes are also distributed in 21 

aerobes, including the group 2a [NiFe]-hydrogenase. Based on studies focused on 22 

Cyanobacteria, the reported physiological role of the group 2a [NiFe]-hydrogenase is to 23 

recycle H2 produced by nitrogenase. However, given this hydrogenase is also present in 24 

various heterotrophs and lithoautotrophs lacking nitrogenases, it may play a wider role in 25 

bacterial metabolism. Here we investigated the role of this enzyme in three species from 26 

different phylogenetic lineages and ecological niches: Acidithiobacillus ferrooxidans 27 

(phylum Proteobacteria), Chloroflexus aggregans (phylum Chloroflexota), and 28 

Gemmatimonas aurantiaca (phylum Gemmatimonadota). qRT-PCR analysis revealed 29 

that the group 2a [NiFe]-hydrogenase of all three species is significantly upregulated 30 

during exponential growth compared to stationary phase, in contrast to the profile of the 31 

persistence-linked group 1h [NiFe]-hydrogenase. Whole-cell biochemical assays 32 

confirmed that all three strains aerobically respire H2 to sub-atmospheric levels, and 33 

oxidation rates were much higher during growth. Moreover, the oxidation of H2 supported 34 

mixotrophic growth of the carbon-fixing strains C. aggregans and A. ferrooxidans. Finally, 35 

we used phylogenomic analyses to show that this hydrogenase is widely distributed and 36 

is encoded by 13 bacterial phyla. These findings challenge the current persistence-centric 37 

model of the physiological role of atmospheric H2 oxidation and extends this process to 38 

two more phyla, Proteobacteria and Gemmatimonadota. In turn, these findings have 39 

broader relevance for understanding how bacteria conserve energy in different 40 

environments and control the biogeochemical cycling of atmospheric trace gases. 41 
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Introduction 42 

 43 

Aerobic bacteria mediate the biogeochemically and ecologically important process of 44 

atmospheric hydrogen (H2) oxidation [1]. Terrestrial bacteria constitute the largest sink 45 

of this gas and mediate the net consumption of approximately 70 million tonnes of 46 

atmospheric H2 per year [2, 3]. The energy derived from this process appears to be 47 

critical for sustaining the productivity and biodiversity of ecosystems with low organic 48 

carbon inputs [4–9]. Atmospheric H2 oxidation is thought to be primarily mediated by 49 

group 1h [NiFe]-hydrogenases, a specialised oxygen-tolerant, high-affinity class of 50 

hydrogenases [4, 10–13]. To date, aerobic heterotrophic bacteria from four distinct 51 

bacterial phyla, the Actinobacteriota [10, 12, 14, 15], Acidobacteriota [16, 17], 52 

Chloroflexota [18], and Verrucomicrobiota [19], have been experimentally shown to 53 

consume atmospheric H2 using this enzyme. This process has been primarily linked 54 

to energy conservation during persistence. Reflecting this, the expression and activity 55 

of the group 1h hydrogenase is induced by carbon starvation across a wide range of 56 

species [10, 12, 18, 20–23]. Moreover, genetic deletion of hydrogenase structural 57 

genes results in impaired long-term survival of Mycobacterium smegmatis cells and 58 

Streptomyces avermitilis spores [20, 21, 24, 25]. 59 

 60 

Genomic and metagenomic surveys have suggested that other uptake hydrogenases 61 

are widely distributed among aerobic bacteria and potentially have a role in 62 

atmospheric H2 uptake [4, 26]. These include the widely distributed group 2a [NiFe]-63 

hydrogenases. This hydrogenase class has primarily been investigated in 64 

Cyanobacteria, where it is encoded by most diazotrophic strains; the enzyme recycles 65 

H2 released as a by-product of the nitrogenase reaction and inputs the derived 66 

electrons into the respiratory chain [27–30]. However, according to HydDB, group 2a 67 

hydrogenases are also encoded by isolates from at least eight other phyla [26], 68 

spanning both obligate organoheterotrophs (e.g. Mycobacterium, Runella, 69 

Gemmatimonas) and obligate lithoautotrophs (e.g. Acidithiobacillus, Nitrospira, 70 

Hydrogenobacter) [12, 31, 32]. In M. smegmatis, this enzyme has a sufficiently high 71 

apparent affinity to oxidise H2 even at sub-atmospheric levels [12, 23] and is maximally 72 

expressed during transitions between growth and persistence [23, 33]. In common 73 

with the group 1h hydrogenase also encoded by this bacterium, the group 2a 74 
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hydrogenase requires potential electron-relaying iron-sulfur proteins for activity [34] 75 

and is obligately linked to the aerobic respiratory chain [23]. However, it remains 76 

unclear if atmospheric H2 oxidation by the group 2a hydrogenase reflects a general 77 

feature of the enzyme or instead is a specific adaptation of the mycobacterial 78 

respiratory chain.  79 

 80 

In this study, we investigated whether group 2a [NiFe]-hydrogenases play a general 81 

role in atmospheric H2 consumption. To do so, we studied this enzyme in three 82 

species, Gemmatimonas aurantiaca, Acidithiobacillus ferrooxidans, and Chloroflexus 83 

aggregans, that differ in their phylogenetic affiliation, ecological niches, and metabolic 84 

strategies. The obligate chemoorganoheterotroph G. aurantiaca (phylum 85 

Gemmatimonadota) was originally isolated from a wastewater treatment plant and to 86 

date has not been shown to utilise H2 [35, 36]. The obligate chemolithoautotroph A. 87 

ferrooxidans (phylum Proteobacteria) was originally isolated from acidic coal mine 88 

effluent, and has been extensively studied for its energetic flexibility, including the 89 

ability to grow exclusively on H2 [32, 37, 38]. The metabolically flexible C. aggregans 90 

(phylum Chloroflexota), a facultative chemolithoautotroph and anoxygenic 91 

photoheterotroph, was originally isolated from a Japanese hot spring and is capable 92 

of hydrogenotrophic growth [39–41]. The organisms differ in their carbon dioxide 93 

fixation pathways, with A. ferrooxidans mediating the Calvin-Benson cycle via two 94 

RuBisCO enzymes, C. aggregans encoding the 3-hydroxypropionate cycle [38, 42, 95 

43], and G. aurantiaca unable to fix carbon dioxide  [35]. While all three species have 96 

previously been shown to encode group 2a [NiFe]-hydrogenases [4, 38], it is unknown 97 

whether they can oxidise atmospheric H2 oxidation. To resolve this, we investigated 98 

the expression, activity, and role of this enzyme in axenic cultures of the three species.  99 

 100 
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Materials and Methods 101 

 102 

Bacterial growth conditions 103 

Gemmatimonas aurantiaca (DSM 14586), Acidithiobacillus ferrooxidans (DSM 104 

14882), and Chloroflexus aggregans (DSM 9486) were imported from DSMZ. All 105 

cultures were routinely aerobically maintained in 120 mL glass serum vials with treated 106 

lab-grade butyl rubber stoppers, unless otherwise stated. Broth cultures of G. 107 

aurantiaca were grown in 30 mL of NM1 media as previously described [44] and 108 

incubated at 30°C at an agitation speed of 180 rpm in a New Brunswick Scientific 109 

Excella E24 incubator. Cultures of C. aggregans were maintained 110 

chemoheterotrophically in 30 mL of 1/5 PE media, as previously described [39], and 111 

incubated at 55°C at an agitation speed of 150 rpm in an Eppendorf 40 Incubator in 112 

the dark. Cultures of A. ferrooxidans were maintained in 30 mL DSMZ medium 882 113 

supplemented with an additional 13 g L-1 of FeSO4.7H2O (pH 1.2) and incubated at 114 

30°C at an agitation speed of 180 rpm in a New Brunswick Scientific Excella E24 115 

incubator. To assess whether bacterial growth was enhanced by the presence of H2 116 

for each species, ambient air headspaces were amended with either 1% or 10% H2 117 

(via 99.999% pure H2 gas cylinder). Growth was monitored by determining the optical 118 

density (OD600) of periodically sampled 1 mL extracts using an Eppendorf 119 

BioSpectrophotometer. 120 

 121 

RNA extraction 122 

Triplicate 30 mL cultures of G. aurantiaca, A. ferrooxidans and C. aggregans were 123 

grown synchronously in 120 mL sealed serum vials. Whereas one set of triplicate 124 

cultures were grown in an ambient air headspace, another set was grown in an 125 

ambient air headspace supplemented with H2 to a final concentration of 10% v/v (via 126 

a 99.999% pure H2 cylinder). Cultures were grown to either exponential phase (OD600 127 

0.05 for G. aurantiaca; OD600 0.1 for C. aggregans; OD600 0.05 for A. ferrooxidans) or 128 

stationary phase (Day 10 for G. aurantiaca; Day 4 for C. aggregans; Day 14 for A. 129 

ferrooxidans). For G. aurantiaca and C. aggregans, cells were then quenched using a 130 

glycerol-saline solution (-20°C, 3:2 v/v), harvested by centrifugation (20,000 × g, 30 131 

min, -9°C), resuspended in 1 mL cold 1:1 glycerol:saline solution (-20°C), and further 132 

centrifuged (20,000 × g, 30 min, -9°C). Briefly, resultant cell pellets were resuspended 133 
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in 1 mL TRIzol Reagent (Thermo Fisher Scientific), mixed with 0.1 mm zircon beads 134 

(0.3 g), and subject to beat-beating (five cycles, 4000 rpm, 30 s) in a Mini-Beadbeater 135 

96 (Biospec) prior to centrifugation (12,000 × g, 10 min, 4°C). Total RNA was extracted 136 

using the phenol-chloroform method as per manufacturer’s instructions (TRIzol 137 

Reagent User Guide, Thermo Fisher Scientific) and resuspended in 138 

diethylpyrocarbonate (DEPC)-treated water. RNA was treated using the TURBO DNA-139 

free kit (Thermo Fisher Scientific) as per manufacturer’s instructions. RNA from A. 140 

ferrooxidans was extracted using a previously described extraction method optimised 141 

for acid mine drainage microorganisms [45]. RNA concentration and purity were 142 

confirmed using a NanoDrop ND-1000 spectrophotometer.  143 

 144 

Quantitative RT-PCR 145 

Quantitative reverse transcription PCR (qRT-PCR) was used to determine the 146 

expression profile of all hydrogenase genes present in each species during different 147 

growth phases with and without supplemental H2. cDNA was synthesised using a 148 

SuperScript III First-Strand Synthesis System kit for qRT-PCR (Thermo Fisher 149 

Scientific) with random hexamer primers, as per manufacturer’s instructions. For all 150 

three species, the catalytic subunit gene of the group 2a [NiFe]-hydrogenase (hucL) 151 

was targeted. In addition, the catalytic subunits of the additional [NiFe]-hydrogenases 152 

of C. aggregans (group 3d, hoxH) and A. ferrooxidans (group 1e, hyiB; group 3b, hyhL) 153 

were also targeted. Quantitative RT-PCR was performed using a LightCycler 480 154 

SYBR Green I Master Mix (Roche) as per manufacturer’s instructions in 96-well plates 155 

and conducted in a LightCycler 480 Instrument II (Roche). Primers used in the study 156 

(Table S1) were designed using Primer3 [46]. Hydrogenase expression data was 157 

normalised to housekeeping genes for each species (16S rRNA gene for G. aurantiaca 158 

and C. aggregans; DNA-directed RNA polymerase subunit beta gene rpoC for A. 159 

ferrooxidans). Threshold cycle values (CT) were normalised to the expression of the 160 

housekeeping gene in exponential phase under ambient air conditions. All biological 161 

triplicate samples, standards, and negative controls were run in technical duplicate.  162 

 163 

Gas chromatography 164 

Gas chromatography measurements were used to determine the capacity of the three 165 

species to use sub-atmospheric concentrations of H2. Briefly, biological triplicate 166 

exponential phase or stationary phase cultures of each species were opened, 167 
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equilibrated with ambient air (1 h), and resealed. These re-aerated vials were then 168 

amended with H2 (via 1% v/v H2 in N2 gas cylinder, 99.999% pure) to achieve final 169 

headspace concentrations of ~10 ppmv. Headspace mixing ratios were measured 170 

immediately after closure and at regular intervals thereafter until the limit of 171 

quantification of the gas chromatograph was reached (42 ppbv H2). For quantification, 172 

2 mL headspace samples were measured using a pulsed discharge helium ionisation 173 

detector (model TGA-6791-W-4U-2, Valco Instruments Company Inc.) calibrated 174 

against ultra-pure H2 gas standards of known concentrations as described previously 175 

[18]. The vials for each species were maintained at their respective growth 176 

temperatures and agitation speeds for the entire incubation period to facilitate H2 and 177 

O2 transfer between the headspace and the culture. Concurrently, headspace mixing 178 

ratios from media-only negative controls (30 mL of media for each species) were 179 

measured to confirm that observed decreases in gas concentrations were biological 180 

in nature. First order rate constants (k values) for exponential and stationary phase H2 181 

consumption were determined using the exponential function in GraphPad Prism 182 

(version 8.0.2). 183 

 184 

Phylogenetic analysis 185 

A phylogenetic tree was constructed to investigate the distribution and evolutionary 186 

history of group 2a [NiFe]-hydrogenases across bacterial phyla. Amino acid 187 

sequences of the catalytic subunit of the group 2a [NiFe]-hydrogenase (HucL) and 188 

related enzymes were retrieved from the National Center for Biotechnology 189 

Information (NCBI) Reference Sequence (RefSeq) database by protein BLAST in 190 

February 2020. The resultant sequences were then classified using HydDB [26], with 191 

sequences matching group 2a [NiFe]-hydrogenases retained and any duplicate and 192 

multispecies sequences removed. The 207 amino acid sequences representative of 193 

genus-level diversity were aligned with reference sequences using Clustal W in MEGA 194 

X [47]. Evolutionary relationships were visualised by constructing a maximum-195 

likelihood phylogenetic tree, with Neighbour-Join and BioNJ algorithms applied to a 196 

matrix of pairwise distances that were estimated using a JTT model and topology 197 

selected by superior log-likelihood value. Gaps were treated with partial deletion, the 198 

tree was bootstrapped with 500 replicates, and the tree was midpoint rooted. 199 

Sequences used in this analysis are listed in Table S2. Additionally, 20 annotated 200 

reference genomes (representative of order-level diversity) were retrieved from the 201 
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NCBI GenBank database and manually analysed for putative group 2a [NiFe]-202 

hydrogenase gene clusters. The web-based software Properon 203 

(doi.org/10.5281/zenodo.3519494) was used to generate to-scale gene organisation 204 

diagrams of these group 2a [NiFe]-hydrogenases. 205 

 206 
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Results 207 

 208 

The expression profile of group 2a [NiFe]-hydrogenases is antithetical to group 209 

1h [NiFe]-hydrogenases 210 

 211 

We used qRT-PCR to quantify the expression of the large subunit of the group 2a 212 

[NiFe]-hydrogenase (hucL). The gene was expressed at moderate to high levels in all 213 

three strains during aerobic growth on preferred energy sources (organic carbon for 214 

G. aurantiaca and C. aggregans, ferrous iron for A. ferrooxidans) (Fig. 1). Expression 215 

levels did not significantly differ between strains grown in an ambient air headspace 216 

containing atmospheric H2 or supplemented with 10% H2 (Fig. 1). This suggests 217 

hydrogenase expression is constitutive and occurs even when atmospheric 218 

concentrations of the substrate are available. 219 

 220 

Across all three strains, hydrogenase expression significantly decreased during the 221 

transition from growth to persistence. For G. aurantiaca, high expression was 222 

observed during exponential phase under both H2-supplemented and H2-unamended 223 

conditions (av. 8.4 × 106 copies per gdw) and decreased 51-fold during stationary 224 

phase (av. 1.6 × 105 copies gdw-1; p = 0.012) (Fig. 1a). Hydrogenase expression of A. 225 

ferrooxidans was moderate during growth (av. 1.8 × 106 copies per gdw) and dropped 226 

3.9-fold in stationary phase cultures  (av. 4.5 × 105 copies per gdw; p = 0.013) (Fig. 227 

1b), whereas expression in C. aggregans was very high during exponential growth  228 

(av. 2.9 × 109 copies gdw-1) and fell 15,000-fold during persistence (av. 1.9 × 105 copies 229 

gdw-1; 0.003) (Fig. 1c). Overall, while expression levels greatly vary between species, 230 

these results clearly show the group 2a [NiFe]-hydrogenase is expressed primarily in 231 

growing cells. These expression profiles contrast with the group 1h [NiFe]-232 

hydrogenase, which is induced during long-term persistence in a range of species [10, 233 

18, 20–23].  234 

 235 

Group 2a [NiFe]-hydrogenases oxidise H2 to sub-atmospheric levels 236 

 237 

Hydrogenase activity of the three strains was inferred from monitoring changes in 238 

headspace H2 mixing ratios over time by gas chromatography. In line with the 239 
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expression profiles (Fig. 1), we observed that all three strains oxidised atmospheric 240 

H2 during growth in an ambient air headspace (Fig. S1). These observations extend 241 

the trait of trace gas scavenging to three more species and suggest that group 2a 242 

[NiFe]-hydrogenases broadly have the capacity to oxidise H2 at atmospheric levels.  243 

 244 

We subsequently monitored the consumption of H2 by exponential and stationary 245 

phase cultures in ambient air supplemented with 10 ppmv H2. For G. aurantiaca and 246 

A. ferrooxidans, H2 was oxidised to sub-atmospheric levels under both conditions in 247 

an apparent first-order kinetic process (Fig. 2a & 2b). However, biomass-normalised 248 

first-order rate constants were higher in exponential than stationary phase cells by 23-249 

fold (p = 0.0029) and 120-fold (p < 0.0001) respectively (Fig. 2d). For C. aggregans, 250 

H2 was oxidised at rapid rates in exponentially growing cells, but occurred at extremely 251 

slow rates in stationary cells (Fig. 2c & 2d). These observations support the qRT-PCR 252 

results by showing hydrogenase activity predominantly occurs during growth. It should 253 

be noted that additional [NiFe]-hydrogenases are encoded by both C. aggregans 254 

(group 3d) and A. ferrooxidans (group 1e and 3b). The additional hydrogenases are 255 

expressed at tenfold lower levels for C. aggregans, but at similar levels for A. 256 

ferrooxidans, and hence may contribute to H2 uptake (Fig. S2). It is nevertheless likely 257 

that the group 2a [NiFe]-hydrogenases mediate atmospheric H2 uptake given (i) the 258 

H2 uptake activities of C. aggregans and A. ferrooxidans mimic that of G. aurantiaca, 259 

which lacks additional hydrogenases; (ii) previous genetic studies show group 2a 260 

enzymes mediate high-affinity aerobic H2 uptake in mycobacteria [12, 23]; and (iii) 261 

group 1e and 3b/3d enzymes are likely incapable of atmospheric H2 oxidation given 262 

their respective characterised roles in anaerobic respiration and fermentation [26].  263 

 264 

H2 consumption enhances mixotrophic growth in carbon-fixing strains 265 

 266 

The observation that expression and activity of the group 2a [NiFe]-hydrogenase is 267 

optimal during growth suggests this enzyme supports mixotrophic growth. To test this, 268 

we monitored growth by optical density of the three strains in headspaces containing 269 

H2 at either ambient, 1%, or 10% mixing ratios. No growth differences in the obligate 270 

heterotroph G. aurantiaca were observed between the conditions (p = 0.30) (Fig. 3a). 271 

In contrast, H2-dependent growth stimulation was observed for the obligate autotroph 272 

A. ferrooxidans (1.4-fold increase; p = 0.0003) (Fig. 3b) and facultative autotroph C. 273 
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aurantiaca (1.2-fold increase; p = 0.029) (Fig. 3c). This suggests that reductant 274 

derived from H2 oxidation can be used by these bacteria to fix CO2 through the Calvin-275 

Benson and 3-hydroxypropionate cycles, respectively.  276 

 277 

Hydrogenases with common phylogeny and genetic organisation are widely 278 

distributed across 13 bacterial phyla 279 

 280 

Finally, we surveyed the distribution of group 2a [NiFe]-hydrogenases to infer which 281 

other bacteria may oxidise atmospheric H2. We detected the large subunit of this 282 

hydrogenase (HucL) across 171 genera and 13 phyla (Table S2; Fig. S3); this 283 

constitutes a 3.2-fold increase in the number of genera and 1.4-fold increase in the 284 

number of phyla reported to encode this enzyme [4, 26]. The HucL-encoding bacteria 285 

include various known hydrogenotrophic aerobes, such as Nitrospira moscoviensis 286 

(Nitrospirota) [31], Hydrogenobacter thermophilus (Aquificota) [48], Kyrpidia tusciae 287 

(Firmicutes) [49], Sulfobacillus acidophilus (Firmicutes) [50], and Pseudonocardia 288 

dioxanivorans (Actinobacteriota) [51], suggesting these strains may also consume 289 

atmospheric H2. The hydrogenase was also distributed in various lineages of 290 

Bacteroidota, Alphaproteobacteria, Gammaproteobacteria, and Deinococcota for 291 

which H2 oxidation has not, to our knowledge, been reported.  292 

 293 

A maximum-likelihood phylogenetic tree showed the retrieved HucL sequences form 294 

a well-supported monophyletic clade. Most sequences clustered into four major 295 

radiations, Bacteroidota-associated, Cyanobacteria-associated, Proteobacteria-296 

associated (including A. ferrooxidans), and a mixed clade containing sequences from 297 

seven phyla (including G. aurantiaca and C. aggregans) (Fig. 4). Several genes were 298 

commonly genomically associated with hucL genes in putative operons, including the 299 

hydrogenase small subunit (hucS), a Rieske-type iron-sulfur protein (hucE) [34], 300 

hypothetical proteins (including NHL-repeat proteins) [33], and various maturation 301 

factors (Fig. S4). The group 2a [NiFe]-hydrogenases are distinct in both phylogeny 302 

and genetic organisation to the two most closely related hydrogenase subgroups, the 303 

previously described group 2e [NiFe]-hydrogenases of aerobic hydrogenotrophic 304 

Crenarchaeota [26, 52] and the novel group 2f [NiFe]-hydrogenases that are 305 

distributed sporadically in bacteria and archaea (Fig. 4).  306 
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Discussion 307 

 308 

Overall, these findings overturn the paradigm that atmospheric H2 oxidation is primarily 309 

a persistence-linked trait. We infer that group 2a [NiFe]-hydrogenases are optimally 310 

expressed and active during exponential phase, consume H2 at sub-atmospheric 311 

concentrations, and support mixotrophic growth. Largely concordant findings were 312 

made in three phylogenetically, physiologically, and ecologically distinct bacterial 313 

species. These findings contrast with multiple pure culture studies that have linked 314 

expression, activity, and phenotypes associated with group 1h [NiFe]-hydrogenases 315 

to survival rather than growth [10, 12, 18, 20, 22, 24, 25]. However, a growth-316 

supporting role of atmospheric H2 oxidation is nevertheless consistent with several 317 

surprising recent reports: the measurement of atmospheric H2 oxidation during growth 318 

of several strains [12, 19, 24, 53]; the discovery of an Antarctic desert community 319 

driven by trace gas oxidation [9]; and the isolation of a proteobacterial methanotroph 320 

thought to grow on air alone [54]. Together, these findings suggest that the current 321 

persistence-centric model of atmospheric H2 utilisation is overly generalised and that 322 

this process also supports growth. 323 

 324 

Atmospheric H2 oxidation during growth is likely to primarily benefit bacteria that adopt 325 

a mixotrophic lifestyle. While atmospheric H2 alone can sustain bacterial maintenance, 326 

theoretical modelling suggests this energy source is insufficiently concentrated to 327 

permit growth as the sole energy source [1, 55]. Instead, bacteria that co-oxidise this 328 

dependable gas with other organic or inorganic energy sources may have significant 329 

selective advantages, especially in environments where resource availability is very 330 

low or variable. Likewise, it is probable that many bacteria in natural environments 331 

supplement growth by taking advantage of transient increases in H2 availability. For 332 

example, the metabolic generalist C. aggregans may facilitate its expansion in 333 

geothermal mats by simultaneously utilising geothermal and atmospheric sources of 334 

H2, in addition to sunlight and organic compounds [39, 40, 56]. Similarly, in the 335 

dynamic environment of wastewater treatment plants, G. aurantiaca may be well-336 

suited to take advantage of fermentatively-produced H2 released during transitions 337 

between oxic and anoxic states [36, 57]. 338 

 339 
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The ability to consume atmospheric H2 may also be particularly advantageous during 340 

early stages of ecological succession. Indeed, A. ferrooxidans may initially rely on this 341 

atmospheric energy source as it colonises barren tailings and establishes an acidic 342 

microenvironment conducive for iron oxidation [58]. Hydrogen synthesis in tailings can 343 

further benefit A. ferrooxidans as acid conditions and more complex bacterial consortia 344 

develop. Specifically, acetate-dependent growth of dissimilatory sulfate reducing 345 

bacteria in tailings [59] will initiate endogenous geochemical production of trace 346 

hydrogen (FeS + H2S  FeS2 + H2). As tailings cycle between aerobic (vadose) and 347 

anaerobic (water-saturating) conditions, the H2 available from atmospheric and 348 

geochemical sources respectively may provide a continuous energy source for A. 349 

ferrooxidans. In addition, any environments possessing sulfate and iron, i.e., 350 

‘downstream’ from acid-generating ecosystems (including marine sediments), can 351 

generate hydrogen via bacterial sulfate reduction.  352 

 353 

This study also identifies key microbial and enzymatic players in the global hydrogen 354 

cycle. The group 2a [NiFe]-hydrogenase is the second hydrogenase lineage shown to 355 

have a role in atmospheric H2 oxidation across multiple bacterial phyla. The group 1h 356 

enzyme is probably the main sink of the H2 cycle given it is the predominant 357 

hydrogenase in most soils [4, 11, 60]. However, the group 2a enzyme is moderately 358 

to highly abundant in many soil, marine, and geothermal environments [60], among 359 

others, and hence is also likely to be a key regulator of H2 fluxes. This study also 360 

reports atmospheric H2 oxidation for the first time in two globally dominant phyla, 361 

Proteobacteria and Gemmatimonadota, and uncovers A. ferrooxidans as the first H2-362 

scavenging autotroph. Until recently, atmospheric H2 oxidation was thought to be 363 

primarily mediated by heterotrophic Actinobacteriota [1, 10–12], but it is increasingly 364 

apparent that multiple aerobic lineages are responsible [4, 17–19, 22, 34]. Some six 365 

phyla have now been described that are capable of atmospheric H2 oxidation and, 366 

given the group 2a [NiFe]-hydrogenase is encoded by at least eight other phyla, others 367 

will likely soon be described. It is possible that atmospheric H2 oxidation extends to 368 

other important groups, such as nitrite-oxidising Nitrospirota [31], methane-oxidising 369 

Proteobacteria [54], and potentially even oxygenic phototrophs; while Cyanobacteria 370 

are known to recycle endogenously-produced H2 [27, 62, 63], it should be tested 371 

whether they can also scavenge exogenous H2. Indeed, while atmospheric H2 372 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.040717doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040717
http://creativecommons.org/licenses/by-nc-nd/4.0/


oxidisers were only recently discovered [10, 14, 64], it is now plausible that these 373 

bacteria may represent the rule rather than the exception among aerobic H2 oxidisers. 374 
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Footnotes 375 
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Figures 592 
 593 

Figure 1. Expression of the group 2a [NiFe]-hydrogenase in three bacterial 594 

strains during growth and survival. The normalised transcript copy number of the 595 

large subunit gene (hucL) are plotted for (a) Gemmatimonas aurantiaca (locus 596 

GAU_0412), (b) Acidithiobacillus ferrooxidans (locus AFE_0702), and (c) Chloroflexus 597 

aggregans (locus CAGG_0471). Copy number was analysed by qRT-PCR in cultures 598 

harvested during exponential phase and stationary phase, in the presence of either 599 

ambient H2 or 10% H2. Error bars show standard deviations of three biological 600 

replicates (averaged from two technical duplicates) per condition. Values denoted by 601 

different letters were determined to be statistically significant based on a one-way 602 

ANOVA with post-hoc Tukey’s multiple comparison (p < 0.05).  603 

 604 

 605 
 606 
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Figure 2. Hydrogenase activity in three bacterial strains during growth and 607 

survival. H2 oxidation by cultures of (a) Gemmatimonas aurantiaca, (b) 608 

Acidithiobacillus ferrooxidans, and (c) Chloroflexus aggregans. Error bars show the 609 

standard deviation of three biological replicates, with media-only vials monitored as 610 

negative controls. Dotted lines show the atmospheric concentration of hydrogen (0.53 611 

ppmv). (d) Biomass-normalised first-order rate constants based on H2 oxidation 612 

observed in exponential and stationary phase cultures. Error bars show standard 613 

deviations of three biological replicates and statistical significance was tested using a 614 

two-way ANOVA with post-hoc Tukey’s multiple comparison (** = p < 0.01; **** = p < 615 

0.0001). 616 

 617 

 618 
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Figure 3. Effects of H2 supplementation on growth of three bacterial strains. The 619 

final growth yield (OD600) of (a) Gemmatimonas aurantiaca, (b) Acidithiobacillus 620 

ferrooxidans, and (c) Chloroflexus aggregans is shown in ambient air vials containing 621 

H2 at either ambient, 1%, or 10% concentrations. Error bars show the standard 622 

deviation of three biological replicates and statistical significance was tested using a 623 

one-way ANOVA with post-hoc Tukey’s multiple comparison (* = p < 0.05; ** = p < 624 

0.01; *** = p < 0.001). 625 

 626 

 627 
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Figure 4. Radial phylogenetic tree showing the distribution and evolutionary 629 

history of the group 2a [NiFe]-hydrogenase. Amino acid sequences of the catalytic 630 

subunit of the group 2a [NiFe]-hydrogenase (hucL) are shown for 171 bacterial genera. 631 

The taxon names of the three study species, G. aurantiaca, A. ferrooxidans, and C. 632 

aggregans, are coloured in blue. The tree was constructed using the maximum-633 

likelihood method (gaps treated with partial deletion), bootstrapped with 500 634 

replicates, and rooted at the mid-point.  635 
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