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Abstract8

When choosing among multi-attribute options, integrating the full information may be computationally costly9

and time-consuming. So-called noncompensatory decision rules only rely on partial information, for example10

when a difference on a single attribute overrides all others. Such rules may be ecologically more advantageous,11

despite deviations from economical optimality. Here we present a study that investigates to what extent12

animals rely on integration versus noncompensatory rules when choosing where to forage. Groups of mice13

were trained to obtain water from dispensers varying along two reward dimensions: probability and volume.14

The choices of the mice over the course of the experiment suggested an initial reliance on integrative rules,15

later displaced by a sequential rule, in which volume was evaluated before probability. Our results also16

demonstrate that while the evaluation of probability differences may depend on the reward volumes, the17

evaluation of volume differences is seemingly unaffected by the reward probabilities.18

Introduction19

Animals confronted with options that differ on a single attribute generally make economically rational choices20

consistent with gain maximization (Monteiro, Vasconcelos, and Kacelnik 2013; Rivalan, Winter, and Nachev21

2017). In multiattribute choice (Pitz and Sachs 1984; Jansen, Duijvenvoorde, and Huizenga 2012; Hunt,22

Dolan, and Behrens 2014) however, where reward attributes must be weighed against each other (price vs.23

quality, risk vs. payoff, etc.), consistent deviations from economical rationality have been described in humans24

(Tversky and Kahneman 1974; Rieskamp, Busemeyer, and Mellers 2006; Katsikopoulos and Gigerenzer 2008),25

non-human animals (Shafir, Waite, and Smith 2002; Bateson, Healy, and Hurly 2003; Schuck-Paim, Pompilio,26

and Kacelnik 2004; Scarpi 2011; Nachev and Winter 2012; Nachev et al. 2017; Constantinople, Piet, and27

Brody 2019). Some deviations from gain maximization can be accounted for by considering the ecological28

circumstances of an animal, which may confer fitness benefits to seemingly irrational choices (Kacelnik 2006;29

Houston, McNamara, and Steer 2007; Trimmer 2013; McNamara, Trimmer, and Houston 2014).30

An animal foraging in its natural environment mostly encounters food items that differ on multiple attributes,31

but only some of those attributes affect the long-term gains. We refer to those attributes as reward dimensions.32

In multidimensional choice the decision task is considerably simplified if differences that are (nearly) equal are33

not evaluated but ignored (Tversky 1969; Pitz and Sachs 1984; Shafir 1994; Shafir and Yehonatan 2014). For34

example, an animal might only consider the one reward dimension (e.g. prey size) that most strongly affects35

the long-term gains. Such decision processes in which one reward dimension overrides the others have been36

described as noncompensatory (Pitz and Sachs 1984; Reid et al. 2015) and can potentially increase speed and37

decrease computation costs at the expense of accuracy. Attributes can be considered sequentially, for example38

ranked by salience, until a sufficient difference is detected on one attribute so that a decision can be reached39

(Brandstätter, Gigerenzer, and Hertwig 2006; Jansen, Duijvenvoorde, and Huizenga 2012). In compensatory40

decision-making (Pitz and Sachs 1984; Reid et al. 2015) on the other hand, choice is affected by multiple41

attributes that are integrated into a common decision currency (utility) (Levy and Glimcher 2012). A fully42
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integrative approach that makes use of all the available information (also referred to as absolute reward43

evaluation Tversky (1969); Shafir (1994); Shafir and Yehonatan (2014)) is equivalent to gain maximization.44

For example, if options differ along the reward dimensions of amount and probability of obtaining this amount,45

maximizing the gain is ensured by selecting the option with the highest expected value, which is the product46

of the amount and probability. Even in two-dimensional reward evaluation, a range of strategies are possible,47

from sequential and other noncompensatory rules, up to full integration.48

When studying animal decision-making, preferences are measured over many choices, especially when options49

differ in reward probability. Although a rational subject should exclusively select the most profitable option,50

animals can persist in choosing less profitable options even after long training, usually at some low frequency.51

The partial preference observed in choice experiments can be explained by profitability matching (Kacelnik52

1984), which states that animals proportionally allocate their effort depending on the relative pay-off of the53

options.54

Scalar Utility Theory (SUT; Kacelnik and Brito e Abreu (1998); Marsh and Kacelnik (2002)) is a framework55

that proposes a proximate mechanism that accounts for partial preferences in the context of reward amount56

and reward variability (Rosenström, Wiesner, and Houston 2016). Based on findings in psychophysics, SUT57

postulates that cognitive representations of stimuli exhibit a scalar property, i.e. they have error distributions58

that are normal with a mean equal to the magnitude of the stimulus and a standard deviation that is59

proportional to the mean. In other words, SUT states that the memory traces of perceived or expected60

outcomes of choices are subject to Weber’s Law (Akre and Johnsen 2014) and that rewards are evaluated61

proportionally rather than linearly (Marsh and Kacelnik 2002; Rosenström, Wiesner, and Houston 2016).62

Therefore, according to SUT choice is modelled by sampling from the internal representations and selecting63

the most favorable sample. This allows for making quantitative predictions about the strength of preferences64

from the contrasts between options.65

In previous experiments we have demonstrated that proportional processing can be used to predict the choice66

behavior of animals when options vary along a single dimension (Nachev, Stich, and Winter 2013; Rivalan,67

Winter, and Nachev 2017). In the present study we extend the application of proportional processing and68

SUT to two-dimensional choice tasks with the aim to test whether (contradictory) information from two69

reward dimensions generates choices more consistent with integrative or noncompensatory decision rules.70

Results71

We performed a series of four experiments (in chronological order) using mice in automated group cages72

(Haupt, Eccard, and Winter 2010; Rivalan, Winter, and Nachev 2017). Cages had four computer-controlled73

liquid dispensers that delivered drinking water as a reward. During each of the 18h-long drinking sessions74

each mouse had access to all dispensers, but received rewards at only two of them. The two rewarding75

dispensers differed on one or both reward dimensions, probability and volume (Rivalan, Winter, and Nachev76

2017). An overview of the differences between choice options in the different experimental conditions is given77

in Table 1. All experiments were conducted with three different cohorts of eight mice each. Cohort 2 was78

housed in a different automated group cage than cohorts 1 and 3 (See Methods for differences between cages).79

Experiment 1: Mice consistently preferred the more profitable option, even with80

a trade-off between reward probability and reward volume81

In the baseline conditions rewards only differed on one dimension (the relevant dimension), but not on the82

other dimension (the background dimension). For example, in the BVP1 (baseline for volume at probability 1)83

condition, both options had the same probability of 0.2, but one option had a volume of 4 µL and the other, a84

volume of 20 µL (Table 1). Based on previous experiments (Rivalan, Winter, and Nachev 2017), we expected85

a baseline difference between 4 µL and 20 µL volumes to result in a similar discrimination performance86

(relative preference for the superior option) compared to a baseline difference between probabilities 0.2 and87

0.5. In the C (congruent) condition one option was superior to the other on both dimensions. Finally, in the88

I (incongruent) condition each of the options was superior to the other on one of the reward dimensions, so89

that the option that had the higher volume had the lower probability and vice versa. Since the differences on90

both dimensions were chosen to be of comparable salience (Rivalan, Winter, and Nachev 2017), we expected91
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Table 1: Overview of the experimental conditions in all four experiments.

option A option B EVA/EVB

experimenta conditionb volumec probability EVd volumec probability EVd relative value
1 BPV1 4 0.2 0.8 4 0.5 2.0 0.40
1 BPV2 20 0.2 4.0 20 0.5 10.0 0.40
1 BVP1e 4 0.2 0.8 20 0.2 4.0 0.20
1 BVP2 4 0.5 2.0 20 0.5 10.0 0.20
1 C 4 0.2 0.8 20 0.5 10.0 0.08
1 I 4 0.5 2.0 20 0.2 4.0 0.50
2 BPV1 4 0.2 0.8 4 1.0 4.0 0.20
2 BPV2 20 0.2 4.0 20 1.0 20.0 0.20
2 BVP2 4 1.0 4.0 20 1.0 20.0 0.20
2 C 4 0.2 0.8 20 1.0 20.0 0.04
2 I 4 1.0 4.0 20 0.2 4.0 1.00
3 PV1 4 0.2 0.8 4 0.5 2.0 0.40
3 PV2 10 0.2 2.0 10 0.5 5.0 0.40
3 PV3 15 0.2 3.0 15 0.5 7.5 0.40
3 PV4 20 0.2 4.0 20 0.5 10.0 0.40
3 VP1 4 0.2 0.8 10 0.2 2.0 0.40
3 VP2 4 0.5 2.0 10 0.5 5.0 0.40
3 VP3 4 0.7 2.8 10 0.7 7.0 0.40
3 VP4 4 0.8 3.2 10 0.8 8.0 0.40

a conditions in experiment 1 and 4 were identical; only conditions for experiment 1 are shown here for
brevity;

b condition sequences were randomized for each mouse;
c volumes (in microliters) shown are for cohorts 1 and 3. In cohort 2 the volumes were 4.7 instead of 4, 9.4
instead of 10, 14.0 instead of 15, and 20.3 instead of 20 microliters;

d EV: expected value;
e condition BVP1 in experiment 1 was not repeated in experiment 2, but instead the results from experiment
1 were reused in further analyses

the mean discrimination performance in the incongruent condition to be at chance level (0.5), despite the92

difference in expected value (Table 1).93

In experiment 1 and in all subsequent experiments, each mouse had its individual pseudo-random sequence of94

conditions. However, each condition was experienced by each mouse in two consecutive drinking sessions95

(first exposure and reversal), with a spatial reversal of the two reward conditions between the two sessions. In96

order to investigate how the two reward dimensions contributed towards choice, we looked at the contrasts97

between the baselines (when only one dimension was relevant) to the conditions when the two dimensions98

were congruent or incongruent to each other. We used equivalence tests (Lakens 2017) with an a priori99

smallest effect size of interest (sesoi) of 0.1, chosen based on variance observed in a previous study (see Fig.4100

in Rivalan, Winter, Nachev 2017). When using equivalence tests, if the 90% confidence interval (CI) of 105101

the result estimate falls within the equivalence bounds (+sesoi, -sesoi) the effect is statistically smaller than102

any effect deemed worthwhile (Methods). If the 90% CI is not fully bounded by the sesoi, but the 95% CI103

includes the effect size of zero, the results are deemed inconclusive. Therefore, we only considered absolute104

differences of at least 0.1 percentage points to be of biological relevance. Smaller differences, regardless of105

their statistical significance using other tests, were considered to be trivial.106
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Figure 1: Overview of discrimination performance for all mice in all experiments. Experiments 1
through 4 are shown in different panels (1-4). Each colored dot is the mean discrimination performance of an
individual mouse over two presentations of the same condition (first exposure and reversal). The experimental
conditions are described in detail in Table 1. The discrimination performance gives the relative visitation rate
of the more profitable option, or, in the incongruent condition, the option with the higher volume. Dotted
line gives the chance level of 0.5. Data are shown in different colors for three different cohorts of eight mice
each (total n = 24). Data from the same individuals are connected with lines. Cohort 2 (green) was tested in
a different cage set-up than cohorts 1 and 3 (see Methods for details).

4

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.14.040808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040808
http://creativecommons.org/licenses/by/4.0/


sesoi

−0.4

−0.2

0.0

0.2

C − BP C − BV I − BP I − BV

di
ffe

re
nc

e 
in

 d
is

cr
im

in
at

io
n 

pe
rf

or
m

an
ce

A higher volume preferred 
(higher expected value)

higher probability preferred0.00

0.25

0.50

0.75

1.00

di
sc

rim
in

at
io

n 
pe

rf
or

m
an

ce
 in

 in
co

ng
ru

en
t c

on
di

tio
n

cohort

1

2

3

B

Figure 2: Discrimination performance in experiment 1. (A) Difference between discrimination perfor-
mance in the baseline conditions and in the congruent and incongruent conditions. Colored dots show the
individual differences in discrimination performance for the given conditions of each individual mouse (total
n = 24), with different cohorts (n = 8) shown in different colors. Positive differences indicate an increase
in performance and negative differences - a decrease in performance, compared to the baseline. Large blue
circles give the means and the blue vertical lines the 90% confidence intervals from non-parametric bootstraps.
The smallest effect size of interest (sesoi) is represented by the dashed lines. Green whiskers give the 95% CI
from non-parametric bootstraps. When the blue confidence intervals lie completely within the sesoi interval
there is statistical support for equivalence (Lakens 2017). When the green confidence intervals do not cross
the zero line, and the blue confidence intervals are not bounded by the sesoi, there is statistical support for
difference. Discrimination performance in the baseline conditions was calculated from the mean values from
the two different baseline conditions for each reward dimension (volume and probability), i.e. BP was the
mean of BPV1 and BPV2, and BV was the mean of BVP1 and BVP2 (Table 1, Fig. 1). The discrimination
performance in the incongruent condition was calculated as the relative preference for the higher probability
dispenser when contrasted with the probability baseline (I - BP) and for the higher volume dispenser when
contrasted with the volume baseline (I - BV). (B) Discrimination performance in the incongruent condition.
Dashed lines give the sesoi around chance level performance. Remaining notation is the same as in (A). In
this experiment the option with the higher volume was also the more profitable option.

An overview of all experimental results is seen in Fig. 1. Compared to the baselines, mice showed an increase107

in discrimination performance in the congruent condition and a decrease in performance in the incongruent108

condition (Fig. 2A). Contrary to our expectations based on previous work, the trade-off between volume109

and probability chosen for this experiment did not abolish preference in the incongruent condition, with a110

discrimination performance significantly higher than the chance level of 0.5 (0.57, 95% CI = [0.5, 0.63], Fig.111

2B). Thus, in the incongruent condition mice preferred the more profitable option and the subjective contrast112

in probability was not stronger than the subjective contrast in volume.113
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Experiment 2: Some evidence for equal weighing of reward probability and re-114

ward volume115

In previous experiments (Rivalan, Winter, and Nachev 2017), we had shown that the relative stimulus116

intensity (i), i.e. the absolute difference between two options divided by their mean (difference/mean ratio),117

was a good predictor of discrimination performance for both volume and probability differences. Another118

finding from these experiments was that, at least initially, mice responded less strongly to differences in119

volume than to differences in probability, despite equivalence in expected values (Rivalan, Winter, and Nachev120

2017). We aimed to correct for this effect in experiment 1 by selecting options with a higher relative intensity121

for volume (4 µL vs. 20 µL, i = 1.33) than for probability (0.2 vs. 0.5, i = 0.857). However, the results122

from experiment 1 were not consistent with a subjective equality between the chosen volume and probability123

differences. In order to test whether we had over-corrected for decreased sensitivity to volume in experiment 1,124

we replaced the 0.5 probability with a probability of 1 in each experimental condition of experiment 2 (Table125

1). With the two choice options having the same relative intensities (i = 1.33) for both reward dimensions and126

the same expected values, we hypothesized that the discrimination performance in the incongruent condition127

would be at chance level if both dimensions were equally weighed and equally perceived. On the other hand,128

if mice were less sensitive for volume than for probability differences as in our previous experiments, then the129

discrimination performance in the incongruent condition should be skewed towards probability (< 0.5).130
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Figure 3: Discrimination performance in experiment 2. Same notation as in Fig. 2. (A) Difference
between discrimination performance in the baseline conditions and in the congruent and incongruent conditions.
Discrimination performances in the baseline conditions was calculated from the mean values from the two
different baseline conditions for each reward dimension (volume and probability), i.e. BP was the mean
of BPV1 and BPV2, and BV was the mean of BVP1 and BVP2, where the values for condition BVP1
were taken from experiment 1 (Table 1). The discrimination performance in the incongruent condition was
calculated as the relative preference for the higher probability dispenser when contrasted with the probability
baseline (I - BP) and for the higher volume dispenser when contrasted with the volume baseline (I - BV).
(B) Discrimination performance in the incongruent condition. In this experiment both options were equally
profitable and had the same expected value.

In contrast to experiment 1, in experiment 2 mice showed an increase in discrimination performance in the131

congruent condition only when compared to the volume baseline, but not when compared to the probability132

baseline (Fig. 3A). As in experiment 1, the discrimination performance in the incongruent condition was lower133

than in either of the two baselines (Fig. 3A). Although the discrimination performance in the incongruent134

condition was again different from 0.5 (0.41, 95% CI = [0.35, 0.47]), it was lower than chance, thus skewed135

towards probability (Fig. 3B). However, when the data from cohort 2 were excluded, the discrimination136

performance became equivalent to 0.5 (0.48, 95% CI = [0.42, 0.54]). We return to the differences between137

cohorts in the discussion.138

Experiment 3: Probability discrimination decreased with an increase in reward139

volume, but volume discrimination was not affected by changes in reward prob-140

ability141

In the previous experiments we used two different baseline conditions for each dimension (BPV1, BPV2, BVP1,142

and BVP2, Table 1), in order to exhaust all combinations of reward stimuli and balance the experimental143
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design. However, we also wanted to test whether the level of the background dimension despite being the144

same across choice options nevertheless affected the discrimination performance on the relevant dimension.145

If mice use a noncompensatory decision rule, we can predict that regardless of the level of the background146

dimension, the discrimination performance on the relevant dimension should remain constant. Alternatively,147

with absolute reward evaluation the subjective difference between the options is said to decrease as the148

background (irrelevant) dimension increases and therefore the discrimination performance is also expected149

to decrease (Shafir and Yehonatan 2014). This prediction is derived from the concave shape of the utility150

function, which is generally assumed to increase at a decreasing rate with the increase in any reward dimension151

(Kahneman and Tversky 1979; Kenrick et al. 2009; but see also Kacelnik and Brito e Abreu 1998). The same152

prediction can be made if we assume that motivation decreases with satiety, i.e. the strength of preference153

decreases under rich environmental conditions (Schuck-Paim, Pompilio, and Kacelnik 2004), for example154

at high reward volume or probability. In order to test whether the two reward dimensions (volume and155

probability) interact with each other even when one of them is irrelevant (as background dimension that is156

the same across choice options), we performed experiment 3.157

The conditions in experiment 3 were chosen to be similar to the baseline conditions in the previous experiments,158

by having one background and one relevant dimension (Table 1). The relevant dimension always differed159

between the two options. For the probability dimension, we selected the same values of 0.2 and 0.5 (i = 0.86),160

as in the previous experiments. For the volume dimension we selected the values of 4 µL and 10 µL (4.8 µL161

and 9.6 µL in cohort 2, Table 1), because the combination of a higher volume with a probability of 0.8 was162

expected to result in an insufficient number of visits for analysis. Cohort 2 had different reward volumes163

due to differences in the pumping process between the two cages used (Methods), which also resulted in164

a lower relative intensity for volume (0.67 instead of 0.86; we will return to this point in the discussion).165

There were four different levels for each background dimension (volume and probability, Table 1). Each166

mouse had its own pseudo-random sequence of the eight possible conditions. In order to test whether the167

background dimension affected discrimination performance we fitted linear regression models for each mouse168

and each dimension, with discrimination performance as the dependent variable and background level as the169

independent variable. The background level was the proportion of the actual value to the maximum of the170

four values tested, e.g. the background levels for volumes 4, 10, 15, 20 were 0.2, 0.5, 0.75, 1, respectively. We171

defined a priori a smallest effect size of interest (sesoi), as 0.125, which is the slope that would result from a172

difference of 0.1 in discrimination performance between the smallest and the largest background levels (PV1173

and PV4, 0.2 and 1, respectively). A slope estimate (whether positive or negative) within the sesoi interval174

was considered equivalent to zero and demonstrating a lack of an effect of background dimension.175
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Figure 4: Slope estimates for the effect of the background dimension on the discrimination
performance in the relevant dimension. The two choice options always differed along the relevant
dimension (either probability or volume, given on the abscissa) at a fixed relative intensity. The discrimination
performance for each mouse was measured at four different levels of the background dimension, which was set
at the same values on both choice options during a single drinking session, but differed from condition to
condition (Table 1). Each dot is the individual slope estimate over the four different background dimensions,
color-coded for cohort number. The smallest effect size of interest (sesoi, dashed lines) was determined to
be the slope (0.125) that would have resulted in a difference in discrimination performance of 0.1, from the
lowest to the highest level of the background dimension. Large blue circles give the means and the blue
vertical lines the 90%-confidence intervals from non-parametric bootstraps. Green whiskers give the 95% CI
from non-parametric bootstraps.

The results of experiment 3 show that the discrimination performance for probability decreased with increasing176

volumes, although the effect size was small (PV1-PV4, Fig. 1, Fig. 4). In contrast, the discrimination177

performance for volume was independent from probability as the background dimension, since the slope178

was smaller than the sesoi (VP1-VP4, Fig. 1, Fig. 4). These results partially support the hypothesis that179

decision-makers may ignore a reward dimension along which options do not vary.180

Experiment 4: Mice improved their volume discrimination over time181

For laboratory mice that have unrestricted access to a water bottle, the volume of a water reward is not182

usually a stimulus that predicts reward profitability. In previous experiments (Rivalan, Winter, and Nachev183

2017), mice had shown an improved discrimination performance for volume over time. This suggests that184

with experience mice become more attuned to the relevant reward dimension. In order to test whether the185
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discrimination performance for one or both dimensions improved over time, we performed experiment 4,186

which had the same conditions as experiment 1 (Table 1), but with a new pseudo-random order. The same187

mice participated in all experiments (1 to 4), with about seven weeks between experiment 1 and experiment188

4. As in the previous experiments, we also used equivalence tests on the contrasts between the baselines and189

the congruent and incongruent conditions.190
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Figure 5: Difference in discrimination performance between identical conditions in experiment
1 and experiment 4. Same notation as in in Fig. 2. The sequence of conditions was pseudo-random in
each experiment and different for each individual. Positive differences indicate an increase in discrimination
performance with time. Mice were seven weeks old at the beginning of experiment 1 and 13-14 weeks old at
the beginning of experiment 4. The discrimination performance in the incongruent condition was calculated
as the relative preference for the higher volume dispenser.

In the comparison between experiment 1 and experiment 4, mice showed an improved discrimination191

performance in both volume baselines, as well as in the incongruent and BPV1 conditions (Fig. 5). There192

was no change in the C condition. When we applied a familywise error control procedure, only the BPV1193

result changed from an increase to inconclusive. Thus, consistent with our prior findings, mice improved194

their volume discrimination over time. The discrimination performance in the congruent condition was better195

than in the probability baseline, but the same as in the volume baseline (Fig. 6A). The discrimination in the196

incongruent condition was lower than in any of the two baselines, but the difference to the volume baseline197

was smaller (Fig. 6A). Finally, compared to experiment 1 the influence of the volume dimension on choice198

was even more pronounced (Fig. 6B).199
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Figure 6: Discrimination performance in experiment 4, with identical conditions to experiment
1. Same notation as in Fig. 2. (A) Difference between discrimination performance in the baseline conditions
and in the congruent and incongruent conditions. The discrimination performance in the incongruent
condition was calculated as the relative preference for the higher probability dispenser when comparing to
the probability baseline and for the higher volume dispenser when comparing to the volume baseline. (B)
Discrimination performance in the incongruent condition. In experiments 1 and 4 the option with the higher
volume was also the more profitable option. Compare to Fig. 2.

Decision models of two-dimensional choice suggest that mice initially relied on200

both reward volume and reward probability, but then developed a bias for reward201

volume202

We based our decision models on the Scalar Utility Theory (SUT, Kacelnik and Brito e Abreu (1998);203

Rosenström, Wiesner, and Houston (2016)), which models memory traces for reward amounts (or volumes) as204

normal distributions rather than point estimates. The scalar property is implemented by setting the standard205

deviations of these distributions to be proportional to their means. Choice between two options with different206

volumes can be simulated by taking a single sample from each memory trace distribution and selecting the207

option with the larger sample.208

As previously explained, the discrimination performance for reward probabilities can be reasonably predicted209

by the relative intensity of the two options (Rivalan, Winter, and Nachev 2017). This suggests that the210

memory traces of reward probabilities also exhibit the scalar property, so that discrimination of small211

probabilities (e.g. 0.2 vs. 0.5, i = 0.86) is easier than discrimination of large probabilities (e.g. 0.5 vs. 0.8, i212

= 0.46). Consequently, discrimination (of either volumes or probabilities) when options vary along a single213

dimension can be predicted by SUT.214

In order to extend the basic model for multidimensional choice situations, we implemented six variations that215

differed in the use of information from the volume and probability dimensions (Table 2), including integrative216
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and noncompensatory models. The information from the different reward dimensions was used to obtain for217

each choice option a remembered value (utility), which exhibited the scalar property. Choice was simulated218

by single sampling from the remembered value distributions with means equal to the remembered values and219

standard deviations proportional to the remembered values. The remembered value in the scalar expected value220

and two-scalar models relied on the full integration of both the volume and the probability dimensions, but221

differed in the implementation of the scalar property, which either affected only the volume dimension (scalar222

expected value) or both dimensions (two-scalar; Table 2). In the randomly noncompensatory model, the223

remembered value for each choice was determined by only one of the reward dimensions, selected at random.224

In the winner-takes-all model, choice was exclusively driven by the more salient of the two dimensions. In the225

last two models the saliences of the reward dimensions were considered sequentially, either probability first,226

or volume first, and a decision was reached if the salience surpassed a given threshold, estimated in previous227

discrimination experiments (Rivalan, Winter, and Nachev 2017).228

If we assume that mice do not change strategies over time, the best model should predict their choices in all229

experiments. We thus used the probability baselines (BPV1 and BPV2) in experiments 1 and 4 to estimate230

the free parameters of the models and then used simulations to predict choices in all remaining experiments.231

For each model we generated 100 choices by 100 virtual mice for each experimental condition in each of232

the four experiments. We then quantified the out-of-sample model fits to the empirical data by calculating233

root-mean-square-errors (RMSE) and ranked the models by their RMSE scores.234

Table 2: Decision-making models.

abbreviationmodel remembered value criterion γ

sev scalar expected
value

πN (v, γv) - 1.05

2scal two-scalar N (π, γπ)×N (v, γv) - 0.65
rnonc randomly

noncompensatory
N (r, γr) θv = 0.5 0.05

wta winner-takes-all N (r, γr) θ = 1 0.7
pfirst probability first N (r, γr) if s(π) > 0.8

then r = π, if
s(v) > 0.8 then
r = v, otherwise
θ = 0.5

0.95

vfirst volume first N (r, γr) if s(v) > 0.8 then
r = v , if
s(π) > 0.8 then
r = π , otherwise
θ = 0.5

0.5

Note: π - probability estimate; v - volume estimate; γ - coefficient of variation; r - either v or π depending235

on the criterion; θv - probability of selecting the volume dimension; θ - probability of selecting the dimension236

with the higher salience; s(r) - salience of dimension r, calculated as max(r)−min(r)
r , where r is the arithmetic237

mean of r over all options.238

There was no single model that could best explain the choice of the mice in all four experiments, but the239

scalar expected value, two-scalar, and winner-takes-all models were in the top-three performing models most240

frequently (Tables 2, 3, see also Appendix 1 Figures A5, A6, A7, and A8). However, due to the unexpected241

differences in performance between cohort 2 and the other cohorts (e.g. Appendix 1 Figure A8), we also242

ranked the models separately for the different mouse groups, depending on which cage they performed the243

experiments in (cohorts 1 and 3 in cage 1 and cohort 2 in cage 2). Indeed, two different patterns emerged244

for the different cages. For the two cohorts in cage 1, scalar expected value and two-scalar were the best245

supported models, followed by the winner-takes-all and volume first models (Table 4. Notably, the volume246

first model was the best performing model in the later experiments 3 and 4, but the worst model in the247
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Table 3: Best performing models ranked by root-mean-square-errors (RMSE).
experiment

rank 1 2 3 4
1 sev sev vfirst 2scal
2 2scal 2scal sev wta
3 wta wta 2scal sev
4 rnonc pfirst wta vfirst
5 pfirst rnonc pfirst rnonc
6 vfirst vfirst rnonc pfirst

earlier experiments 1 and 2. In contrast, the probability first model was the best supported model for cohort248

2, followed by the randomly noncompensatory, scalar expected value, and two-scalar models (Table 5.249

Table 4: Best performing models ranked by root-mean-square-errors (RMSE) for cohorts 1 and 3.
experiment

rank 1 2 3 4
1 sev 2scal vfirst vfirst
2 2scal sev sev 2scal
3 wta wta 2scal wta
4 rnonc rnonc wta sev
5 pfirst pfirst rnonc rnonc
6 vfirst vfirst pfirst pfirst

Table 5: Best performing models ranked by root-mean-square-errors (RMSE) for cohort 2.
experiment

rank 1 2 3 4
1 pfirst pfirst pfirst pfirst
2 rnonc rnonc wta rnonc
3 sev sev 2scal wta
4 wta 2scal sev 2scal
5 2scal wta rnonc sev
6 vfirst vfirst vfirst vfirst

Discussion250

The foraging choices of the mice in this study provide evidence both for and against full integration of reward251

volume and probability. In the first two experiments, mice differed in discrimination performance in the252

conditions in which both reward dimensions were relevant (congruent and incongruent conditions) compared253

to the baselines, in which only one of the two dimensions was relevant (Figs. 2, 3). Consequently, the best254

supported models for these two experiments (cohort 2 excluded, see discussion about differences between255

cohorts below) were the models that made use of the full information from both reward dimensions (sev,256

2scal), or from the dimension that was subjectively more salient (wta, Table. 4). Although these models257

were good predictors of choices in experiments 3 and 4 as well, the best-performing model was the one that258

considered the probability dimension only if differences on the volume dimension were insufficient to reach a259

decision (Table 4). Thus, it appears that mice initially used information from all reward dimensions without260
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bias and with experience started to rely more on one reward dimension and disregarded the other when261

both dimensions differed between choice options. Interestingly, in human development the use of integrative262

decision rules has also been shown to decrease with age (Jansen, Duijvenvoorde, and Huizenga 2012).263

In similar and more complex choice situations when options vary on several dimensions, an animal has no264

immediate method of distinguishing the relevant from the background dimensions. Instead it must rely on its265

experience over many visits before it can obtain information about the long-term profitability associated with266

the different reward dimensions. Under such circumstances a decision rule that considers all or the most267

salient reward dimensions initially and prioritizes dimensions based on gathered experience can be profitable268

without being too computationally demanding. Indeed, with the particular experimental design in this study,269

a mouse using a “volume first” priority heuristic would have preferentially visited the more profitable option270

(whenever there was one) in every single experimental condition, including the incongruent conditions.271

Scalar property considerations272

An alternative explanation of our main results is that the mice used the “volume first” heuristic from the273

beginning of the experiment, but only became better at discriminating volumes (their coefficient of variation274

γ decreased) in the last two experiments. This interpretation is supported by the comparison between275

experiments 1 and 4 (Fig. 5), as well as from previous experiments (Rivalan, Winter, and Nachev 2017), in276

which mice improved their volume discrimination over time. However, it is not possible with these data to277

distinguish whether the effect was caused by training or age. Perhaps an increase in mouth capacity (Vora,278

Camci, and Cox 2016) or, potentially, in the number of acid-sensing taste receptors (Zocchi, Wennemuth,279

and Oka 2017) due to growth and aging could allow adult mice to better discriminate water volumes. We280

assumed that mice consumed all water without spilling, but perhaps less experienced mice spill some water.281

Comparing the discrimination performance of older naive and younger trained mice would help clarify this282

confound.283

The increase in discrimination performance for volume between experiments 1 and 4 (Fig. 5) suggests that284

the scalar property only approximately holds, and that the γ for volume is not truly constant over a long285

period of time. This can be seen as evidence against the scalar expected value model, which assumes that the286

same coefficient of variation affects performance along each reward dimension. Instead, the improving volume287

discrimination supports a version of the two-scalar model, in which there are two different scalars (γπ 6= γv).288

Alternatively, there might be only one scalar, associated with dynamic relative weights of the two dimensions289

(which can be implemented as a changing θv in the randomly noncompensatory model, Fig. A2). Yet another290

model extension that can account for the improving volume discrimination would be to introduce an explicit291

sampling (exploration-exploitation balance) method (Sih and Del Giudice 2012; Nachev and Winter 2019).292

In natural conditions reward dimensions rarely remain stable over time and foragers can benefit from making293

sampling choices to gather information about the current state of the environment. Thus, not all choices294

need to be based on expected values and individuals may differ in their sampling rates (Sih and Del Giudice295

2012; Rivalan, Winter, and Nachev 2017; Nachev and Winter 2019). With such an implementation it is not296

the scalar but the frequency of sampling visits that changes over time, causing differences in discrimination297

performance. The biggest challenge is that when it comes to volumes and probabilities, no direct method of298

interrogating an animal’s estimate and coefficient of variation exist, so that researchers have to infer these299

values from choice behavior, which is also affected by motivation and sampling frequency. In contrast, when300

it comes to time intervals, the peak procedure gives us a more direct measurement of the time estimation of301

animal subjects (Kacelnik and Brito e Abreu 1998).302

Interaction between dimensions and noncompensatory decision-making303

Although mice were roughly equally good at discriminating volume rewards at each different probability, the304

discrimination of probabilities decreased at higher volumes (Fig. 4; the estimated effect size was a decrease of305

0.12 between a volume background at 4 µL and at 20 µL). This suggests that the two dimensions interact306

with each other. Absolute reward evaluation (Shafir 1994; Shafir and Yehonatan 2014) and state-dependent307

evaluation (Schuck-Paim, Pompilio, and Kacelnik 2004) are both consistent with this decrease in discrimination308

performance, but not with the lack of effect in the conditions in which the probability was the background309

dimension. With comparable expected values (Table 1) between the two series of conditions, these hypotheses310
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make the same predictions regardless of which dimension is relevant and which is background. An alternative311

explanation is that arriving at a good estimate of probability requires a large number of visits and when312

the rewards are richer (of higher volume), mice satiate earlier and make a smaller total number of visits,313

resulting in poor estimates of the probabilities and poorer discrimination performance. Consistent with this314

explanation, mice made on average (± SD) 474 ± 199 nose pokes at the relevant dispensers at 4 µL, but only315

306 ± 64 nose pokes at 20 µL (Fig. A9, PV1 and PV4, respectively).316

As mentioned earlier, researchers have proposed that with absolute reward evaluation the difference/mean ratio317

in an experimental series like our experiment 3 should decrease with the increase of the background dimension,318

leading to a decrease in the proportional preference for the high-profitability alternative (i.e. discrimination319

performance) (Shafir and Yehonatan 2014). However, this is only the case if the difference is calculated from320

the relevant dimension and divided by the mean utility. We suggest that both the difference and the mean321

should be calculated from the same entity, either utility or one of the reward dimensions. When, as in our322

sev and 2scal models 1, we calculate utility by multiplying the estimates for each dimension together, the323

difference/mean ratio of the utility does not change with the change in the background dimension between324

treatments. In fact, none of our models in experiment 3 exhibited an effect of the background dimension325

on the discrimination performance, with all slopes equivalent to zero (Fig. A10). Thus, our results also326

show that absolute reward evaluation does not necessarily predict an effect of background dimension on327

discrimination performance.328

15

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.14.040808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040808
http://creativecommons.org/licenses/by/4.0/
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Figure 7: Visit durations during rewarded and unrewarded nose pokes for the three cohorts
in all experiments. Columns give the status of the nose poke (rewarded or unrewarded) and rows, the
experiment number (1-4). Data from the three cohorts are represented by differently color-filled density
curves from the observed individual nose poke durations. Note the logarithmic scale on the abscissa.

Our results revealed some striking differences in behavior between cohort 2 and cohorts 1 and 3 (most330

obvious in Fig. 6). The most likely explanation for this is an effect of the specific experimental apparatus.331

As explained in Methods, the precision of the reward volumes was lower in cage 2, which housed cohort332

2. However, it is unlikely that such a small magnitude of the difference (0.33 ± 0.03 µLstep−1 in cage 1333

vs. 1.56 ± 0.24 µLstep−1 in cage 2) could influence volume discrimination to the observed extent. Future334

experiments can address this issue by specifically manipulating the reliability of the volume dimension using335

the higher-precision pump. Instead, we suspect that the difference between cohorts might have been caused336

by the acoustic noise and vibrations produced by the stepping motors of the pumps. The pump in cage 1337

was much louder, whereas the one in cage 2 was barely audible (to a human experimenter). This could have338

made it harder for mice in cage 2 to discern whether a reward was forthcoming, which could have influenced339

their choices (Ojeda, Murphy, and Kacelnik 2018). As a result, mice in cage 2 waited longer before leaving340

the dispenser during unrewarded nose pokes (Fig. 7). This potentially costly delay might have increased341

the relative importance of the probability dimension (decreased θv), resulting in the observed discrimination342

performance in cohort 2. Furthermore, the same line of reasoning can also explain the improving volume343

discrimination: from the first to the fourth experiment there was a shift towards shorter unrewarded nose344

poke durations in the loud cage (cohorts 1 and 3, Fig. 7), suggesting that mice had learned over time to345

abort the unrewarded visits. This could have decreased the relative importance of the probability dimension346
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(increased θv), resulting in better volume discrimination. In an unrelated experiment we tested two cohorts of347

mice in both cages simultaneously and then translocated them to the other cage. The results demonstrated348

that differences in discrimination performance were primarily influenced by cage and not by cohort (Nachev,349

in prep.). Thus, the sound cue associated with reward delivery may be an important confounding factor350

in probability discrimination in mice, as it provides a signal for the reward outcome (Ojeda, Murphy, and351

Kacelnik 2018).352

Conclusion353

In summary, our results show that mice could integrate reward volume and reward probability, which allowed354

them to select the more profitable option when the two reward dimensions varied independently. The resulting355

partial preference was consistent with Scalar Utility Theory. However, we also found that, with time mice356

improved their performance in volume (but not in probability) discrimination tasks and their choices became357

more consistent with a noncompensatory decision rule, in which volume is evaluated before probability.358

Finally, we found that mice could discriminate the same pair of probabilities better when reward volumes359

were smaller, but changes in the reward probability did not affect their volume discrimination performance.360

Animals, Methods, and Materials361

Animals362

The experiments were conducted with C57BL/6NCrl female mice (Charles River, Sulzfeld, Germany, total n363

= 30). Mice were five weeks old on arrival. The mice from each cohort were housed together, before and364

during the experiments. They were marked with unique Radiofrequency Identification tags (RFID: 12 × 2.1365

mm, 125 kHz, Sokymat, Rastede, Germany) under the skin in the scruff of the neck and also earmarked at366

age six weeks. At age seven weeks mice were transferred to the automated group home cage for the main367

experiment. Pellet chow (V1535, maintenance food, ssniff, Soest, Germany) was always accessible from a368

trough in the cage lid. Water was available from the operant modules of the automated group cage, depending369

on individual reward schedules. Light conditions in the experiments were 12:12 LD and climatic conditions370

were 23 ± 2 ◦C and 50–70% humidity.371

Ethics statement372

The experimental procedures were aimed at maximizing animal welfare. During experiments, mice remained373

undisturbed in their home cage. Data collection was automated, with animals voluntarily visiting water374

dispensers to drink. The water intake and health of the mice was monitored daily. Due to the observational375

nature of the study, animals were free from damage, pain, and suffering. The animals were not sacrificed at376

the end of the study, which was performed under the supervision and with the approval of the animal welfare377

officer (Tierschutzbeauftragter) heading the animal welfare committee at Humboldt University. Experiments378

followed national regulations in accordance with the European Communities Council Directive 10/63/EU.379

Cage and dispenser system380

We used automated cages (612 × 435 × 216 mm, P2000, Tecniplast, Buggugiate, Italy) with woodchip381

bedding (AB 6, AsBe-wood, Gransee, Germany), and enriched with two grey PVC tubes and paper towels as382

nesting material. The cage was outfitted with four computer-controlled liquid dispensers. The experimental383

set-up is described in detail in Rivalan, Winter, and Nachev (2017). Briefly, mice were detected at the384

dispensers via infrared beam-break sensors and RFID-sensors. Water delivery at each dispenser could be385

controlled, so that it could be restricted or dispensed at different amounts on an individual basis. Mice were386

therefore rewarded with droplets of water from the dispenser spout that they could remove by licking. We387

changed cage bedding and weighed all animals on a weekly basis, always during the light phase and at least388

an hour before the start of the testing session. Data were recorded and stored automatically on a laptop389

computer running a custom-written software in C#, based on the .NET framework. Time-stamped nose390

poke events and amounts of water delivered were recorded for each dispenser, with the corresponding mouse391
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identity.392

A second automated group cage (cage 2) was made for the purposes of this study, nearly identical to the one393

described above (cage 1). The crucial modification was that the stepping-motor syringe pump was replaced394

with a model that used disposable plastic 25-mL syringes instead of gas-tight Hamilton glass syringes (Series395

1025). Thus, the pumping systems in the two cages differed in the smallest reward that could be delivered396

and in the precision of reward delivery (mean ± SD: 0.33± 0.03 µLstep−1 in cage 1 vs. 1.56± 0.24 µLstep−1
397

in cage 2). The precision of each pump was estimated by manually triggering reward visits at different preset398

pump steps (17 and 42 in cage 1, 3 and 12 in cage 2) and collecting the expelled liquid in a graduated glass399

pipette placed horizontally next to the cage. Each dispenser was measured at least 20 times for each pump400

step value.401

Experimental schedule402

The general experimental procedure was the same as in Rivalan, Winter, and Nachev (2017). The water403

dispensers were only active during a 18h-long drinking session each day, which began with the onset of404

the dark phase and ended six hours after the end of the dark phase. The reward properties (volume and405

probability) were dependent on the experimental condition. Rewards were drawn from fixed pseudo-random406

repeating sequences. These sequences were: 11101111101101111110 for 80%, 11011101110101101110 for 70%,407

10110101101001001010 for 50%, 10010100100001001000 for 30%, and 10001000010001000000 for 20%, where408

1 is a rewarded nose poke and 0 is an unrewarded nose poke.409

Although individual mice shared the same dispensers inside the same cage, they were not necessarily in the410

same experimental phase or experimental condition. The three cohorts (1-3 in chronological order) were411

tested consecutively, with cohort 2 housed in cage 2 and the other cohorts housed in cage 1. If after any412

drinking session during any experimental phase a mouse drank less than 1000 µL of water, we placed two413

water bottles in the automated cage, gently awakened all mice and allowed them to drink freely until they414

voluntarily stopped.415

Exploratory phase416

At the beginning of this phase there were ten mice in each cohort, except for cohort 2, in which one mouse was417

excluded due to the loss of the RFID tag after implantation (the mouse was in good health condition). The418

mice were transferred to the automated cages 1-2 hours before the first drinking session of the exploratory419

phase. The purpose of this phase was to let mice accustom to the cage and learn to use the dispensers to420

obtain water. Therefore, each nose poke at any dispenser was rewarded with a constant volume of 20 µL.421

The criterion for advancing to the following training phase was consuming more than 1000 µL in a single422

drinking session. Mice that did not reach the criterion remained in the exploratory phase until they either423

advanced to the following phase or were excluded from the experiment (n = 1 mouse in cohort 2).424

Training phase425

In this phase the reward volume was reduced to 10 µL and the reward probability was reduced to 0.3 at all426

dispensers. These reward values ensured that mice remained motivated to make several hundred visits per427

drinking session. The training phase was repeated for two to three days until at least eight mice fulfilled428

the criterion of consuming more than 1000 L of water in one drinking session. The purpose of the training429

phase was to introduce mice to the reward dimensions (volume and probability) that would be used in the430

following discrimination experiments. In cohorts 1 and 2, mice were excluded from the experiment if they did431

not reach the criterion in two days, or, alternatively, if more than eight mice had reached the criterion, mice432

were excluded at random to ensure a balanced number of mice per dispenser. These mice were returned to433

regular housing and available for reuse in other experiments.434

Autoshaping phase435

We introduced an autoshaping phase for the mice in cohort 3, because after two days only six of them436

had advanced to the training phase. The unusually low number of visits made by mice that did not pass437

the exploratory phase suggested that the noise produced by the pumping systems might scare naive, shy438
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mice away from the dispensers. In order to ensure that all mice were successfully trained, we designed the439

autoshaping phase so that rewards at all four dispensers were delivered at regular intervals (7 µL every440

minute), regardless of the behavior of the mice. After two days, all mice had made at least 200 nose pokes441

and the cohort was then moved to the previous phase before autoshaping, either exploratory or training. Two442

days later all mice successfully completed the training phase and two mice were randomly selected out of the443

experiment, bringing the number of mice to eight. We therefore updated our training procedure to always444

begin with the autoshaping phase, followed by the exploratory phase and the training phase.445

General procedure in the main experiments446

After eight mice had successfully passed the training phase, they proceeded with experiment 1 from the447

main experiments (1-4). In all of the main experiments mice had a choice between four dispensers, where448

two were not rewarding and the other two gave rewards with volumes and probabilities that depended on449

the experimental condition (Table 1). In most conditions one of the rewarding dispensers (high-profitability450

dispenser) was more profitable than the other (low-profitability dispenser). The sequence of conditions was451

randomized for each individual, so that any given mouse was usually experiencing a different experimental452

condition than all other mice. On any given day two of the dispensers were rewarding for four mice and the453

other two were rewarding for the other four mice. Within each group of four, each pair of mice shared the454

same high and low-profitability dispensers, which were spatially inverted between pairs of mice. This pairing455

was done to increase the throughput of the experiments, while controlling for potential social learning effects456

and distributing mice evenly over the dispensers to minimize crowding effects.457

As a control for positional biases, each condition was followed by a reversal on the next day, so that the high458

and low-profitability dispensers were spatially inverted for all mice, whereas the two non-rewarding dispensers459

remained unchanged. Reversal was followed by the next experimental condition, with random distribution of460

the dispensers among the pairs of mice following the constraints described above. Over the 50 total days in461

the main experiment (twice the number of conditions shown in Table 1, because of reversals, plus experiment462

4), each mouse experienced each dispenser as a high-profitability dispenser between 11 and 14 times. In463

the event of an electrical or mechanical malfunction, data from the failed condition and its reversal were464

discarded and the failed condition was repeated at the end of the experiment. Such a failure occurred once in465

cohort 1, four times in cohort 2 and did not occur in cohort 3. After experiments 1 and 2, mice were given466

another training phase (rewards with 10 µL and 0.3 probability) for a single day, before they proceeded with467

the next experiment. After experiment 3 mice were given water ad libitum from a standard water bottle for468

four days, followed by one day in the training phase, before proceeding with experiment 4. At the end of469

experiment 4 mice were returned to the animal facility.470

Data analysis471

On average (mean ± SD), mice made 477 ± 163 nose pokes per drinking session (Fig. A9), with an average472

proportion of ± 0.1 nose pokes at the rewarding dispensers. In order to focus on post-acquisition performance473

(Rivalan, Winter, and Nachev 2017), we excluded the first 150 nose pokes at the rewarding dispensers. We474

then calculated the discrimination performance for each mouse and each condition of each experiment. Since475

each condition was repeated twice (first exposure and reversal), we calculated the discrimination performance476

as the total number of nose pokes at the high-profitability dispenser divided by the sum of the total number477

of nose pokes at the high- and at the low-profitability dispensers. Nose pokes at the non-rewarding dispensers478

were ignored. In the I condition of experiment 2 in which the profitability was equal (relative value = 1,479

Table 1), the dispenser with the higher reward volume was treated as the “high-profitability” dispenser.480

When comparing discrimination performances, we used the two one-sided procedure (TOST) for equivalence481

testing (Lauzon and Caffo 2009; Lakens 2017). First, we picked a smallest effect size of interest (sesoi) a482

priori as the difference in discrimination performance of 0.1 units in either direction. (The sesoi can be483

graphically represented as the [-0.1, 0.1] interval around the difference of zero, or as [-0.6, 0.6] around the484

chance performance of 0.5.) Then, we estimated the mean differences and their confidence intervals (CIs)485

from 1000 non-parametric bootstraps using the smean.cl.boot function in the package Hmisc (Harrell and486

Dupont 2019). For a single equivalence test the 90% CI is usually constructed, i.e. 1 − 2α with α = 0.05,487

because both the upper and the lower confidence bounds are tested against the sesoi (Lauzon and Caffo488

19

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.14.040808doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.040808
http://creativecommons.org/licenses/by/4.0/


2009; Lakens 2017). Thus, equivalence was statistically supported if the 90% CI was completely bounded489

by the sesoi interval around the effect size of zero (the null hypothesis). A difference was considered to be490

statistically supported if the 95% CI did not contain zero and the 90% CI was not completely bounded by491

the sesoi interval. If the 95% CI contained zero, but the 90% CI was not completely bounded by the sesoi,492

then results were inconclusive. Researchers have shown that in order to correct for multiple comparisons in493

equivalence tests, it suffices to only apply a familywise correction of the α for the problematic cases where494

the type I error is most likely (Davidson and Cribbie 2019), i.e. when equivalence is supported, but the495

mean difference is close to the sesoi bound. The families of tests, for which multiple comparisons occur in496

our study, are the four contrasts in each of experiments 1, 2, and 4 (three families), the tests on the two497

slopes in experiment 3, and the six before-after contrasts between experiment 1 and 4. For each of these498

five families the α was divided by k2/4, where k was the number of problematic cases in each family (Caffo,499

Lauzon, and Röhmel 2013). However, the number of problematic cases did not exceed two in any of the test500

families, which resulted in the corrected alpha equal to the original value of 0.05. Furthermore, even with k501

equal to four, two, and six (the total number of tests in each test family), only a single result changed from502

non-equivalent to inconclusive. We therefore report the uncorrected 90% and 95% CIs.503

Data analysis and simulations were done using R (Team 2019). All data and code is available in the Zenodo504

repository: https://doi.org/10.5281/zenodo.3726829.505

Simulations506

Environment507

Each of the experimental conditions was recreated in the simulations as a binary choice task between the508

high-profitability and the low-profitability options. We did not simulate the two non-rewarding options.509

Upon a visit by a virtual mouse, a choice option would deliver a reward with its corresponding volume and510

probability (Table 1). The virtual environment was not spatially and temporally explicit. Thus, no reversal511

conditions were simulated and the test of each experimental condition consisted in a sequence of 100 choices.512

All experimental conditions in all four experiments were tested.513

Virtual mice514

For simplicity and in order to simulate post-acquisition discrimination performance, we assumed that each515

mouse had a precise estimate of each of the two reward dimensions for both choice options. The virtual mice516

thus began each experimental condition in a learned state and (further) learning was not simulated.517

From its memory traces a virtual mouse generated one remembered value distribution for each choice option,518

according to one of six different rules (models, Table 2). Action selection was then implemented by taking a519

single sample from each distribution and selecting the option with the larger sample.520

Remembered value models521

All six models implemented the scalar property from the Scalar Utility Theory (SUT, Kacelnik and Brito e522

Abreu (1998); Rosenström, Wiesner, and Houston (2016)), because the remembered value was modelled as a523

normal distribution with a standard deviation proportional to its mean. However, the models differed in the524

way information from the two reward dimensions was used (either through integration of the full information525

or by one dimension overriding the other).526

These models were:527

1. Scalar expected value model. There is a single memory trace for each option and it consists in the simple528

product of the estimate for the volume and the estimate for the probability (expected value). The529

scalar property is implemented as πN (v, γv), where π is the probability estimate. N (µ, σ) is a normal530

distribution with mean µ and standard deviation σ, v is the volume estimate, and γ is a free parameter,531

the coefficient of variation. This model thus utilizes information from all dimensions for every decision.532

2. Two-scalar model. There are traces for each dimension for every option, where each trace exhibits the533

scalar property independently and the value is obtained by simple multiplication of the traces for each534

dimension: N (π, γπ)×N (v, γv). This model also utilizes information from all dimensions for every535
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decision. Although it allows each dimension to have its own scalar factor, e.g. γπ 6= γv, for the sake of536

simplicity we assume that they are both equal.537

The memory traces in the remaining models are identical to the traces in the two-scalar model, but these538

models usually consider only a single dimension.539

3. randomly noncompensatory model. Each decision is based on a single dimension, selected with probability540

θv = 0.5.541

4. Winner-takes-all model. Each decision is based only on the dimension with the highest salience. The542

salience for a vector of estimates from memory traces (mean values) along one dimension, e.g. volume543

v = (v1, v2, ..., vn), is calculated as max(v)−min(v)
v , where n is the number of options. In the case of544

n = 2, the salience is equivalent to the previously described relative intensity measure. For dimensions545

of equal salience the model reverts to random choice.546

The last two models are examples of a lexicographic rule, in which the dimensions are checked in a specific547

order. If the salience of a dimension is higher than a given threshold, then a decision is made based only on548

this dimension. Otherwise the next-order dimension is checked. If all dimensions have saliences below the549

threshold, the model reverts to random choice. The value of the threshold was set at 0.8, the psychometric550

function threshold for probability (Rivalan, Winter, and Nachev 2017), but we also performed sensitivity551

analyses on the threshold values (Fig. @??fig:senspfirst), Fig. @??fig:sensvfirst)).552

5. Probability first model. Probability is checked first, then volume.553

6. Volume first model. Volume is checked first, then probability.554

Model fits555

All models described above share the same free parameter, the scalar factor γ. In order to obtain baseline556

estimates for γ for each of the models (Table @ref(tab:conds_tab)), we focused on the probability baseline557

discrimination performances of all mice in experiments 1 and 4 (conditions BPV1 and BPV2). We performed558

a grid search sensitivity analysis by varying γ with steps of 0.05 in the range of (0.05, 2). We generated 100559

decisions by 100 mice for each cell in this grid and then used locally weighted scatterplot smoothing (loess) to560

fit a model for each condition. The free parameter values that resulted in the smallest RMSEs compared to561

the observed baseline data were selected for the comparison of the six models (Table 2). We also performed a562

sensitivity analysis for different values of the free parameters θv in the randomly noncompensatory model563

and of the thresholds for volume and probability in the volume first and probability first models, in the564

range of (0, 1), with a step of 0.05. The resulting free parameter estimates (across animals) were then used565

in out-of-sample tests of the six models. For each of the experimental conditions in the four experiments566

(Table @ref(tab:conds_tab)) and for each of the six models we simulated 100 choices by 100 (identically567

parametrized) mice. Over the 100 choices we calculated the discrimination performance for each mouse568

and then used the median of the individual discrimination performances as the model prediction. We then569

quantified the model fits to the empirical data by calculating root-mean-square-errors (RMSE), excluding the570

BPV1 and BPV2 conditions in experiments 1 and 4. Finally, we ranked the models by their RMSE scores.571
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Figure A1: Sensitivity tests for the models that only had γ as a free parameter. Dots give the
discrimination performances calculated from 1000 choices for each value of γ tested [0.05 , 2] and for each
of the baseline conditions “BPV1” (purple) and “BPV2” (yellow). Lines give the corresponding fits based
on locally weighted scatterplot smoothing (loess). The dashed line gives the empirical mean discrimination
performance from the baseline conditions “BPV1” and “BPV2” and the green arrows point to the value of
gamma that resulted in the smallest root-mean-square-errors (RMSEs). These values were then used in the
main simulations (Table 2). The different panels give the results for the scalar expected value (A), two-scalar
(B), and winner-takes-all (C) models.
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Figure A2: Sensitivity tests for the randomly noncompensatory model. Same notation as in Fig.
A1. The different panels give the different values of the probability with which the volume dimension was
chosen (θv). For a non-biased randomly noncompensatory model we set θv = 0.5.
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Figure A3: Sensitivity tests for the probability first model. Same notation as in Fig. A1. The different
panels give the different values of the salience threshold that needed to be reached for one option to be
preferred over the other. We set the value of the threshold for both the volume and probability dimensions to
0.8, based on the psychometric function threshold for probability (Rivalan, Winter, and Nachev 2017).
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Figure A4: Sensitivity tests for the volume first model. Same notation as in Fig. A1. The different
panels give the different values of the salience threshold that needed to be reached for one option to be
preferred over the other. We set the value of the threshold for both the volume and probability dimensions to
0.8, based on the psychometric function threshold for probability (Rivalan, Winter, and Nachev 2017).
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Figure A5: Comparison of discrimination performance in all six simulation models and in the
three mouse cohorts in Experiment 1. Columns give the condition names (Table 1) and rows, the
model number (Table 2). Empirical data from the three cohorts are represented by differently color-filled
density curves from the observed discrimination performances. Simulation data are represented by an empty
thick-lined density curve. The dashed line gives the median of the empirical data and the dotted line - the
median of the simulated data. The discrimination performance gives the relative visitation rate of the more
profitable option, or, in the incongruent condition, the option with the higher volume.
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Figure A6: Comparison of discrimination performance in all six simulation models and in the
three mouse cohorts in Experiment 2. Same notation as in Fig. A5.
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Figure A7: Comparison of discrimination performance in all six simulation models and in the
three mouse cohorts in Experiment 3. Same notation as in Fig. A5.
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Figure A8: Comparison of discrimination performance in all six simulation models and in the
three mouse cohorts in Experiment 4. Same notation as in Fig. A5.
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Figure A9: Total number of nose pokes for each experimental condition in the three cohorts in
all experiments. Rows show different experiments (1-4). Each symbol represents the total number of nose
pokes for a single mouse over one of the two experimental days of the given condition.
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Figure A10: Slope estimates for the effect of the background dimension on the discrimination
performance in the relevant dimension for different decision models. The two choice options
always differed along the relevant dimension (either probability or volume) at a fixed relative intensity. The
discrimination performance for 100 virtual mice making 100 decisions each was measured at four different
levels of the background dimension. Symbols and whiskers give means and 98% confidence intervals estimated
from bootstraps. The smallest effect size of interest (dashed lines) was determined to be the slope that would
have resulted in a difference in discrimination performance of 0.1, from the lowest to the highest level of the
background dimension. Compare to Fig. 4.
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