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Abstract 

Deep learning is rapidly becoming the technique of choice for automated segmentation 

of nuclei in biological image analysis workflows. In order to evaluate the feasibility of 

training nuclear segmentation models on small, custom annotated image datasets that 

have been augmented, we have designed a computational pipeline to systematically 

compare different nuclear segmentation model architectures and model training 

strategies. Using this approach, we demonstrate that transfer learning and tuning of 

training parameters, such as the composition, size and pre-processing of the training 

image dataset, can lead to robust nuclear segmentation models, which match, and often 

exceed, the performance of existing, off-the-shelf deep learning models pre-trained on 

large image datasets. We envision a practical scenario where deep learning nuclear 

segmentation models trained in this way can be shared across a laboratory, facility, or 

institution, and continuously improved by training them on progressively larger and 

varied image datasets. Our work provides computational tools and a practical 

framework for deep learning-based biological image segmentation using small 

annotated image datasets.  

 

Key terms: Deep Learning, Machine Learning, Nucleus Segmentation, Fluorescence 

Microscopy, High-Content Imaging 
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Introduction 

High-Content Imaging (HCI) uses automated liquid handling, image acquisition and 

image analysis to screen the biological effect of hundreds of thousands of perturbing 

agents, such as RNAi, CRISPR/Cas9, and chemical compounds, by measuring cellular 

phenotypic changes in microscopy-based assays of interest (1,2). Because most cell 

types possess only one centrally positioned nucleus, and the nucleus is used to identify 

individual cells, the precise and automated nuclear segmentation of nuclei stained with 

specific fluorescent dyes is the first essential analysis step in many HCI workflows (3). 

In addition, nuclei tend to have a regular shape, and can be easily visualized with 

fluorescent DNA stains, which are cheap and provide high contrast. Nevertheless, 

notable exceptions to these desirable properties exist: cell types and primary cells can 

have dramatically different nuclear sizes, there can be substantial differences in nuclear 

shape (such as lobulation in polymorphonuclear cells of the immune system), and cells 

can grow tightly packed and/or in colonies thus leading to adjacent or overlapping 

nuclei. This makes it challenging to develop, test and implement robust algorithms that 

can provide accurate and automated nuclear segmentation results for a wide range of 

cell types and in different experimental conditions, even using the same image 

acquisition platform. 

 

In recent years, computational advances in deep Convolutional Neural-Networks 

(CNN) have produced models that match, and sometimes exceed, human levels of 

performance in a variety of classification, clustering, and segmentation tasks in 

biological image analysis (4–6). More specifically, several studies have described novel 

CNN-based approaches for the segmentation of nuclei from fluorescence microscopy 

images (7–13). In particular, some of these efforts focused on training a variety of CNN 

architectures with relatively large and publicly available fluorescent image datasets of 

cells and nuclei, with the goal of ensuring that trained models could be generalized to 

novel image datasets without the need to retrain them (11,12).  
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While the collection and distribution of pre-trained models and large datasets of 

annotated biological images is highly useful because it can in principle avoid the need 

for model training, less is known about the performance of pre-trained models on 

images of primary cells or cell types which possess nuclear shapes previously not 

“seen” by the pre-trained models, and which were acquired on different microscopes 

(9,14). In these cases, it would be useful to test what, if any, are the most effective steps 

for obtaining precise nuclear segmentation by training CNN models on relatively small 

sets of images, which are readily available in most laboratories (9,13,14). Finally, from 

an end-user standpoint, few guidelines exist on how pre-existing nuclear segmentation 

models can be trained or re-trained, fine-tuned, adapted and improved on new image 

datasets acquired on the same instrument (13).  

 

To address these questions, we designed and implemented an end-to-end 

computational pipeline to quickly train and evaluate the performance of machine–

learning-based nuclear segmentation algorithms. This pipeline was first used to 

generate preliminary nuclear labels for about 4,000 nuclei from 4 different cell types and 

a total of 10 images, which were then manually corrected in an interactive fashion, and 

used to train and evaluate the performance of different CNN-based architectures for 

nuclear segmentation. The pipeline was used to explore different training strategies for 

two pre-existing CNN-based image segmentation model architectures: Feature Pyramid 

Network-2-watershed (FPN2-WS) (15), and Mask R-CNN (MRCNN) (16). To mimic 

practical scenarios in the laboratory, we trained and applied these two models to 

segment nuclei in four cell types that have very different nuclear morphology and that 

were acquired at different magnifications on the same high-throughput imaging 

microscope. Our results describe a practical path for researchers to train different CNN 

architectures in a semi-automated manner and indicate that these deep learning models 
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can be efficiently trained with few images to segment heteromorphic nuclei from 

microscopy images.   
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Materials and Methods 

Cells 

HCT116 and U2OS cells were obtained from ATCC (Manassas, VA, USA). MCF10A 

cells were a kind gift of Daniel Haber (Harvard University, MA, USA). Cells were 

grown in 384-well plates (CellCarrier Ultra 384, PerkinElmer, Waltham, MA), fixed in 

4% PFA and stained with DAPI. Primary human eosinophils were obtained from 

healthy donors enrolled under NIH protocol NCT000090662 and purified as previously 

described (17). The protocol was approved by the Institutional Review Board of the 

National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes 

of Health (NIH). Eosinophils were plated in Poly-D-Lysine coated 384-well plates 

(CellCarrier Ultra 384, PerkinElmer, Waltham, MA), then fixed in 4% PFA and stained 

with DAPI. Cells were plated and stained with DAPI either in biological replicate wells 

(i.e., cells were plated on different plates on different days) for MCF10A and HCT116 

cells, or technical replicate wells (i.e., cells were plated on the same plate, on the same 

day, but in different wells) for U2OS and primary eosinophils.  

 

Image Generation 

Fluorescence microscopy images of 384-well plates were acquired on a CV7000S 

spinning disk confocal microscope (Yokogawa, Japan). For all cells, we used a 405 nm 

solid-state excitation laser, a 405/488/568/640 nm quad excitation dichroic mirror, a 

568 nm emission dichroic mirror, a 445/45 nm bandpass emission mirror, and an 

sCMOS camera (2550 X 2160 pixels). For MCF10A and eosinophils, we used a 60X water 

objective (NA 1.2), z-sectioning every 0.5 microns, and camera binning set to 2X2 pixels. 

For U2OS cells we used a single z-plane acquisition with a 20X air objective (NA 0.75) 

and camera binning set to 1X1 pixel. For HCT116 cells we used a single z-plane 

acquisition with a 20X air objective (NA 0.75) and camera binning set to 2X2 pixels. 

Proprietary geometric and shading correction software was run on the fly during 
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acquisition for all cell types. In the case of 3D image acquisition, images were 

maximally projected on the fly. 

 

Computational Pipeline 

The computational pipeline was based on the Snakemake language (18), and developed 

as a reproducible workflow capable of evaluating any number of different nuclear 

instance segmentation models. The analysis workflow was designed to run either on 

High-Performance Computing (HPC) clusters or on a local server equipped with 

NVIDIA™ Graphics Processing Units (GPUs). Snakemake is a generic workflow 

management software, where individual computational tasks are chained together to 

form a pipeline. Each task is configured by a set of input files and parameters, by a call 

to a bash script or a Python script that accepts the input files and processes them, and 

by a set of output files generated by the task. 

 

Ground Truth Labels Generation 

The semantic segmentation labels of nuclei from fluorescence microscopy images used 

both in training and testing of the segmentation models were generated semi-

automatically in two steps. First, preliminary labels were automatically generated using 

either classical image processing techniques, e.g., seeded watershed (19) or existing, 

publicly available DL-models for nuclear segmentation. In particular, since nuclei of 

MCF10A cells displayed high contrast and good separation, ground truth labels 

(instance segmentation masks) for these cells were generated using a simple traditional 

nuclear segmentation pipeline in KNIME (20,21), which included thresholding, gaps 

filling, connected components, and manual separation of a few adjacent nuclei. A set of 

Python scripts was used to convert these preliminary nuclear labels images into a 

format compatible with the interactive, web-based image annotation editing tool 

Supervisely (22). An expert cell biologist corrected nuclear segmentation mistakes using 

a combination of bitmask brushes and polygons to generate a set of high-quality 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.04.14.041020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041020


 
  

 

8 

 

Ground Truth (GT) nuclear labels. As an example, for one of the tests datasets (e.g 

MCF10A_Biological, Semi-Automated, Table S1), the semi-automated correction task 

took about 2 hours for 1,349 nuclei from 7 images. As a control, we also generated a test 

dataset from the same images in which the nuclei were fully manually annotated to 

assess for possible biases introduced by the semi-automated ground-truth generation 

strategy. The manual annotation was carried on using bitmasks brushes in Supervisely. 

As an example of one of these test datasets (e.g. MCF10A_Biological, Manual, Table S1), 

the fully manual labelling of nuclei from these images took approximately 12 hours for 

annotating 1,382 nuclei. 

 

The nuclear GT labels for MCF10A cells were used for a first round of supervised 

training for the two deep learning models used in this study, MRCNN and FPN2-WS 

(see below for details). The DL models trained in this fashion were then used in 

inference mode to generate preliminary labels for all other cell types, which were then 

similarly corrected using Supervisely to obtain the semi-automated GT labels. At every 

step of this process, the manual annotator was blinded with respect to the 

algorithm/model that produced the preliminary nuclear labels.  

 

Training/Validation/Testing Strategy 

Images and GT labels for the cell types defined above were divided into two sets: 

training and testing (Table S1). For every given cell type, the training datasets 

(MCF10A_Original, U2OS_Original, HCT116_Original, and Eosinophils_Original) 

(Table S1) were used in both model training and model validation. When we trained the 

models on training datasets from all cell types, as reported in Fig. 5, we had a total of 

4,012 nuclei in 10 full Fields of View (FOVs) (Table S1). After random sampling of 

Regions of Interest (ROIs) from these FOV and ROI augmentation (for a total of 35,000 

ROI’s for most experiments, see Image Augmentation subsection below), we assigned 

80% of the total number of augmented ROIs for model training and assigned the 
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remaining 20% for model validation (see Model Training subsection). The testing 

datasets (MCF10A_Biological, U2OS_Technical, HCT116_Biological, and 

Eosinophils_Technical) (Table S1) were used only for assessing the performance of the 

DL models at inference. We had a total of 3,607 nuclei in 10 FOVs for the testing 

datasets from all cell types (Table S1). All the F1 scores reported in Fig. 2 –5, Tables 1 – 

8, and Fig. S2A were calculated using the testing datasets and semi-automated GT 

labels. F1 scores in Fig. S1B and Table S3 were calculated using testing datasets and 

both manual and semi-automated GT labels. F1 scores in Fig. S2B and Table S4 were 

calculated using both training and testing datasets and semi-automated GT labels.   

 

Image Augmentation 

Image augmentation of FOVs was applied to training datasets to simulate slightly 

different illumination conditions, to enrich the training image dataset, and to avoid 

model overfitting. Multiple augmentation methods from the Python module imgaug (23) 

were used. In particular, our pipeline can be configured to use scaling transformations 

(0.33X, 0.66X, 1X, 1.33X, and 2X), affine transformations (vertical and horizontal flips, 

45°, 90°, 135°, 180°, 225°, 270°, and 315° rotations), contrast transformations (Contrast 

Limited Adaptive Histogram Equalization (CLAHE) (24), gamma correction, and 

saturation), blurring (median blur and gaussian blur), or random noise addition 

(impulse noise, gaussian noise, and dropout). 

 

When only MCF10A cells were used for model training, we first applied the 5 scaling 

transformations to the FOVs and then randomly sampled 7,000 overlapping ROIs of 

size 256 X 256 pixels from each set of scaled FOVs of the grayscale images and from the 

matching ground truth labels images, resulting in a total of 35,000 augmented ROIs. In 

cases when all four cell types were used for model training, each cell type contributed 

8,750 scaled and augmented ROIs, again for a total of 35,000 ROIs (With the exception 

of Fig 4B, where different numbers of ROIs were used for model training). For each 
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scaled ROI, one of the affine transformations was randomly picked and applied. For 

each scaled and rotated or flipped ROI, one of the intensity augmentation methods 

mentioned above was randomly selected with a probability between 0 and 1 and 

applied to the grayscale ROI and to the nuclear label ROI, when appropriate. For the 

MRCNN architecture, the augmented ground truth labels were converted to binary 

mask images. For the FPN2-WS architecture, the labels were further transformed using 

traditional image processing operations (contour generation, distance transform) to 

obtain the normalized distance transform and gaussian blurred grayscale images used 

in this model (See below for further details). Augmented ROIs from all the cell types 

were combined and saved in HDF5 (.h5) file format. 

 

In experiments where the image augmentations were turned off, we assigned a 

probability of 0 to the augmentation classes to disable them. Rotations and flips were 

applied in all training experiments.  

 

Model Description 

Mask R-CNN (MRCNN) 

We used the Matterport implementation of Mask R-CNN (MRCNN) (25) with minor 

modifications. In particular, we added a parser to accept images in .h5 format and set 

the size of the input layer for both model training and inference to 256 X 256 pixels. At 

inference time, full FOVs were first divided into overlapping grids of 256 X 256 pixels, 

where the overlap value was set to 50 pixels, which on average was enough to cover 

one nucleus. Model inference was then run on the ROIs for a single FOV to generate 

nuclear labels with a unique ID. Nuclear segmentation labels with a different ID that 

were overlapping above a certain threshold across two or more ROIs were then merged 

into a nuclear label with a single ID. Nuclear labels with an area below a certain 

threshold were eliminated. Finally, since MRCNN can sometimes predict more than one 
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connected component per nuclear label ID, only the largest connected component for 

every nuclear label ID was retained. 

 

Feature Pyramids Network-2-watershed (FPN2-WS) 

In the FPN2-WS architecture, two feature pyramids networks (FPN) (26) based models, 

each one with one output layer, were trained to predict a normalized distance transform 

image for each nucleus and a gaussian blurred (σ = 1) version of the nuclear label 

border, respectively. In the normalized distance transform the pixels values ranged 

between 0 and 1, such that pixels closer to the nuclear boundary have values closer to 0 

and pixels at the center of the nucleus are closer to 1. The predicted normalized distance 

transform the FPN2-WS model was then thresholded at a value of 0.6. The thresholded 

normalized distance transform and the blurred border images were used as inputs to 

the seeded watershed segmentation algorithm (19) for delineating nuclei .  

 

Model Training  

For all 4 cell types, full FOV of DAPI-stained cells from a single replicate well were used 

as a training dataset (Table S1). One training cycle was defined as a single pass of the 

entire augmented dataset through the network. We decided to use the term “cycle”, as 

opposed to the more traditional term “epoch”, because the original images were 

randomly bootstrapped to generate a training dataset of 35,000 256 X 256 pixels ROIs. 

Unless otherwise stated, the MRCNN and FPN2-WS models were trained for a total of 

25 cycles. The model with the lowest validation loss value over 25 cycles was saved and 

used for inference. The model parameters are available in a dedicated Figshare project 

repository (28). 

 

For MRCNN, we used the same learning rate schedule as previously described in the 

MatterPort implementation of this model (25). In particular, since the MatterPort 
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schedule is defined over 200 iterations, we then distributed the 25 training cycles over 

200 iterations starting with a learning rate of 10e-4.  

 

For the FPN2-WS model, in training experiments involving initializing the network 

with pre-trained weights, e.g., ImageNet, the network parameters/weights of the 

encoder portion were frozen during training for the first 2 cycles. After the two warm-

up cycles, all trainable layers were unfrozen and continued training for the remaining 

23 cycles. We selected a sigmoid activation function, and the Adam optimizer to 

minimize the mean square error of the corresponding network output image (i.e., 

distance transform or blurred contour, respectively). The learning rate was set to a 

constant value of 1e-3. All the training experiments are described in Table S2, where for 

each experiment the initialization, training datasets, number of training cycles, number 

of ROIs, and augmentation strategies are indicated.  

 

Model Testing 

For inference, each model was tested on images of nuclei from all cell types obtained 

either from technical (U2OS, eosinophils) or biological replicate wells (MCF10A, 

HCT116) that were not used for model training, and, unless otherwise stated, semi-

automated GT labels were used for scoring (See Table S1).  In Fig. S2B we tested model 

performance on both training and testing image datasets with their associated semi-

automated GT labels to estimate potential model overfitting.   

 

Quantitative Assessment of Nuclear Instance Segmentation Performance  

Given ground truth nuclei IDs and the inference nuclei IDs, the F1 scores were 

calculated at different Intersection over Union (IoU) thresholds. A two-dimensional 

histogram was used to calculate the intersection area (i.e., the number of pixels) 

between all pairs of nuclei from the ground truth labels and the inference labels. The 

union area between every pair of ground truth and inference labels was calculated as 
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the sum of the pixels belonging to either of these labels minus their intersection. For 

every pair of ground truth and inference labels, the IoU was calculated as the ratio 

between the intersection over the union. For any IoU threshold t between 0 and 1, the 

True Positive (TP(t)) statistic was the number of ground truth labels that have an IoU 

value equal or higher than t with one inference label. Similarly, the False Negative 

(FN(t)) statistic was the number of ground truth labels that have an IoU value lower 

than t with all inference labels. Finally, the False Positive (FP(t)) was the number of 

inference labels that have an IoU value lower than t with all ground truth label.  

 

Given TP(t), FN(t) and FP(t), the F1 score at a given IoU threshold t was calculated as: 

 

 1� �  �    � � / �   � � � �  � � �    � ��/2� � 
 

Furthermore, an over-splitting event was defined as a type of error where a nucleus in 

GT is matched with more than one inference nucleus with an IoU of at least 0.1. A 

merge error was defined as a type of error where an inference label was matched to 

more than one GT label with an IoU of at least 0.1. 

 

The IoU used for calculating F1 score can aggressively penalize the performance 

readout of segmentation models for datasets with predominantly smaller objects (e.g., 

circular objects with a radius of 5 pixels). The penalty is more severe at threshold values 

t > 0.6. To illustrate this, consider one dataset in which all objects are perfect circles with 

radius 60 pixels and another dataset in which all objects are also perfect circles with 

radius of 4 pixels. These two datasets, with some approximations, simulate images 

acquired on an optical microscope using 4X and 60X objectives. Also assume that the 

segmentation model always makes one-pixel error along the boundary on both datasets. 

It can be seen that for the dataset with objects with a radius of 60 pixels the IoU will be 

0.967 whereas for the datasets with objects with a radius of 4 pixels the IoU will be 
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0.563. Thus, at an IoU threshold value t=0.6 (IoU[t = 0.6]) the segmentation model will 

appear to be severely underperforming. 

 

Software Repository 

The Snakemake pipeline for models training and testing, the weights for the best 

MRCNN and FPN2-WS models, the images used, and the code used to generate Figs. 2 

– 5, Figs. S1 – S3, Tables 1 - 8, and Tables S3 and S4 are deposited in a dedicated Github 

repository (27), and in a dedicated Figshare project repository (28). 
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Results 

A Practical Framework for Training and Testing Deep Learning Nuclear 

Segmentation Models on Small Annotated Image Datasets  

We sought to test the practical implementation of different Convolutional Neural 

Networks (CNN) image segmentation models and training strategies for the automated 

identification of nuclei from a wide variety of fluorescence microscopy images. To this 

end, we built a computational pipeline (See Materials and Methods for details) to train 

the CNN models starting from a limited number of fluorescence microscopy images (1 

to 7 Fields of View (FOVs) per cell line, depending on the cell line; Table S1), which is a 

typical use case scenario for a single cell biologist/researcher. As a first step in the 

pipeline, a pre-trained CNN model or traditional nucleus segmentation approaches 

were used to generate preliminary sets of labels for the nuclei (Fig. 1A). Depending on a 

variety of factors, these preliminary labels contained gross segmentation mistakes, such 

as false positives, false negatives, splits and merges, which had to be manually 

corrected using an interactive, web-based interface (Fig. 1A, and Materials and 

Methods).  

 

This set of semi-automatically generated ground-truth (GT) labels was then used to 

train CNN models in combination with the original grayscale images of DAPI-stained 

nuclei and to test their performance (Fig. 1B). A set of images and their associated GT 

labels per each cell line was set aside for model training and validation (Fig. 1B and 

Table S1). Since we decided to train the deep learning segmentation models from 

relatively small datasets of images, we decided to bootstrap the datasets by generating 

multiple random overlapping regions of interest (ROIs) from the original full FOVs and 

to augment these ROIs by randomly applying several image transformations (Fig. 1B 

and Materials and Methods for details). Following these steps, the CNNs were trained 

with an equal number of augmented ROIs for each cell line (Fig. 1B) (23). In addition, in 

most model training regimens, and to speed up training and to ensure that the models 
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would reach convergence during training, we also adopted a transfer learning approach 

(29,30), where the models were initialized with weights obtained from training on large 

datasets of everyday images, such as ImageNet (31) or COCO (32) (Fig. 1B). Finally, the 

nuclear segmentation performance of trained models was tested at inference by 

calculating F1 scores at different Intersection over Union (IoU) thresholds for a 

dedicated test set of greyscale images and GT labels that were never used for model 

training (11) (Fig. 1B, Table S1, and Materials and Methods for details).  

 

To test the training pipeline for deep learning nuclear segmentation on different CNN 

architectures, we trained two models widely used in instance segmentation tasks: 

Feature Pyramid Network-2-watershed (FPN2-WS) (15), and Mask-RCNN (MRCNN) 

(16). In particular, and similarly to previously described approaches (11,33), FPN2-WS 

(Fig. 1C) consisted of two separate FPN models to predict a normalized distance 

transform image for the nucleus and a Gaussian blurred image of its border, 

respectively (Fig. 1C). These two images were then thresholded and used as the seed 

and border, respectively, in the seeded watershed segmentation algorithm (19) to obtain 

the final nuclear labels (Fig. 1C).  

 

Testing performance of randomly initialized models trained on images of nuclei 

from a single cell line.  

With this training/testing framework in place, we proceeded to test several different 

training strategies (Table S2). Our baseline for training consisted of randomly initialized 

MRCNN and FPN2-WS models, trained using 35,000 randomly cropped and 

augmented ROIs of 256 x 256 pixels from 7 FOVs containing 1,225 nuclei from the 

epithelial MCF10A cell line, which has a regular nuclear morphology and, for the most 

part, does not form clumps/colonies or occlusions (Fig. 2A, Table S1). We then tested 

the inference performance of the trained MRCNN and FPN2-WS models on previously 

unseen test datasets: (i) MCF10A nuclei from another biological replicate imaged at 60X 
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magnification, (ii) osteosarcoma cell line U2OS nuclei from another technical replicate 

imaged at 20X, (iii) colorectal cell line HCT116 nuclei from another biological replicate 

imaged at 20X, and (iv) primary human eosinophils nuclei from another technical 

replicate imaged at 60X (Fig. 2A and Table S1). These cell types were chosen to test the 

performance of the trained nuclear segmentation architectures on a range of different 

nuclear shapes, sizes, confluencies, and occlusions (Fig. 2A). Not surprisingly, visual 

comparison of the GT nuclear labels (Fig. 2A, GT panels), with the nuclear labels 

predicted by the MRCNN and FPN2-WS trained as indicated above (Fig. 2A, Inference 

panels), revealed the presence of several prediction errors (Fig. 2A, GT XOR Inference 

panels). These included instances of under-segmentation, over-segmentation, missed 

nuclei, and erroneous nuclear borders. These errors were particularly evident in 

HCT116 cells, which tend to grow in clumps, and in primary eosinophils, which have a 

highly lobulated nucleus (Fig. 2A). Accordingly, quantification of these images by 

measuring F1 inference scores at an IoU threshold of 0.7 (IoU[t = 0.7], see Materials and 

Methods for details) (11), showed that MRCNN had reasonably high F1 score values for 

MCF10A, U2OS and lower ones for HCT116, and primary eosinophils (Fig. 2B and 

Table 1), while the FPN2-WS model had high F1 score values for MCF10A, U2OS, and 

HCT116, but fairly low scores for primary eosinophils, respectively (Fig. 2B and Table 

1). The results of this first set of experiments suggest that training CNN models with 

random initialization using a single cell type does provide, at least in the case of FPN2-

WS, good nuclear segmentation performance on the same cell type, or on cells with 

similar nuclear morphology and confluency characteristics (Fig. 2A, compare MCF10A 

with U2OS). At the same time, the models failed to generalize at inference time on other 

cell types with more heteromorphic nuclei or growth characteristics (Fig. 2A, compare 

MCF10A with HCT116 and primary eosinophils). 
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Improvement of Model Segmentation Performance by Transfer Learning and 

Progressive Enrichment of Training Datasets with Images of Nuclei with Diverse 

Morphology  

We thus tested whether changing the model training strategy would improve the 

performance of these deep learning models on our image inference datasets. In 

particular, to avoid an excessive increase in the number of values and parameters to be 

tested, we decided to not change CNN network architectures, the training optimizing 

algorithms, or the learning rate schedule. Instead, we focused on varying the CNN 

weights initialization (i.e., transfer learning), the composition of the image training 

dataset, the number of training cycles, the size of the training dataset, and the 

augmentation strategy.  

 

We began testing the effect of these changes by initializing the MRCNN and FPN2-WS 

models with weights obtained by training them on the COCO (32) or ImageNet (31) 

datasets, respectively (Fig. 3A and Table 2). As compared to random initialization, pre-

initialization with COCO weights and transfer learning increased F1 inference scores at 

IoU[t = 0.7] of the MRCNN model on the MCF10A, U2OS, and HCT116 cell types, while 

leading to a decrease for the primary eosinophils (Fig. 3A and Table 2). In similar 

experiments using the FPN2-WS model, transfer learning had a marginal increase of F1 

scores on MCF10A, U2OS and HCT116, and a moderate increase of the F1 score in 

eosinophils (Fig. 3A and Table 2). 

 

Having observed a positive effect of transfer learning on nuclear segmentation tasks 

using these models, we then progressively increased the variety of images used in 

training of pre-initialized models to test whether these are capable of learning a set of 

nuclear segmentation features for multiple cell types in sequential or simultaneous 

fashion (Fig. 3B and Table 3). At the end of this process, 35,000 augmented ROIs from a 

total of 10 FOVs of the 4 different cell types for a total of 4,082 nuclei were used in 
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training (Table S1). The F1 scores at IoU[t = 0.7] for MCF10A, U2OS and HCT116 nuclei 

did not appreciably increase or decrease upon training MRCNN and FPN2-WS with 

data from multiple cell types (Fig. 3B and Table 3). On the other hand, for the primary 

eosinophils, the F1 score for MRCNN increased when images from these cells were 

used in training, as compared to when only MCF10A cells were used (Fig. 3B and Table 

3).  

 

These results indicate that using pre-initialization of models with weights from large 

image datasets has a positive effect on nuclear segmentation using the MRCNN model 

on most types tested. In addition, sequential training of deep learning models with 

increasingly varied image training sets does not have a negative impact on the 

performance of the deep learning models tested here, and in the case of primary 

eosinophils, which are polymorphonuclear cells, it can improve the performance of 

MRCNN. 

 

Analysis of Training Parameters Important for Nuclear Segmentation 

Performance 

Image pre-processing, such as aggressive image augmentation, can become a time and 

computing power bottleneck if the DL model training step is relatively fast. In addition, 

DL models can require longer training times if the training dataset is large. We thus 

considered the impact of reducing the number of training cycles (Fig. 4A and Table 4), 

or the number of augmented image ROIs in training datasets for pre-initialized 

MRCNN or FPN2-WS models trained on images from all the cell types (Fig. 4B and 

Table 5). Reducing the number of training cycles by a factor of 4 (Fig. 4A and Table 4, 

1X vs 0.25X) led to a slight decrease in F1 inference scores at IoU[t = 0.7] for MCF10A, 

U2OS and HCT116, while it resulted in a larger decrease for primary eosinophils for 

both MRCNN and FPN2-WS models. Similarly, to test whether we could maintain the 

same F1 inference scores at IoU[t = 0.7] by training the models with fewer ROIs, or if we 
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could improve them by training with more ROIs, we trained pre-initialized MRCNN 

and FPN2-WS with ROIs from images of all the 4 cell types, ranging from 8,750 to 

70,000 to  augmented ROIs, reflecting a 8-fold range of training dataset sizes (Fig. 4B 

and Table 5, 0.25X to 2X) as compared to the number of training ROIs used in the 

previous experiments (1X, 35,000 augmented image ROIs) (Fig. 4B and Table 5). 

Training with twice the original number of ROIs did not lead to an improvement in F1 

inference scores for either model in any of the cell types (Fig. 4B and Table 5). Reducing 

the number of ROIs 4-fold from the original training dataset instead had more diverse 

effects on the F1 inference scores, ranging from negligible (e.g. Fig 4B and Table 5, 

MCF10A and MRCNN) to substantial decreases (e.g. Fig 4B and Table 5, eosinophils 

and MRCNN). Finally, we tested the effect of eliminating one class of augmentation 

operations at a time, or all at the same time, to test the contribution of each type of 

augmentation on the performance of the model (Fig. 4C and Table 6). Surprisingly, for 

both MRCNN and FPN2-WS, and as compared to implementing the full set of 

augmentations, skipping all image augmentations, with the exception of random 

rotations and flips, did not degrade the F1 inference performance at IoU[t = 0.7] of the 

models for any cell type (Fig. 4C and Table 6) and slightly improved F1 inference scores 

for MRCNN in the case of U2OS cells, HCT116  and primary eosinophils.  

 

Having explored a set of model training parameters, we then decided to run replicate 

training experiments to ensure that the model training regimen was stable and to 

estimate the variance in inference performance between runs (Fig 4D and Table 7). The 

results of this set of replicate experiments confirm that training of these models leads to 

reproducible F1 inference performance, and that initialization with pre-trained weights 

(i.e., transfer learning) leads to a significant improvement in F1 inference scores at IoU[t 

= 0.7] with MRCNN and FPN2-WS for several cell types (Fig. 4D and Table 7). In 

addition, they also indicated that skipping image augmentation before MRCNN 

training significantly improved F1 scores for HCT116 and primary eosinophils, without 
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leading to a significant drop in performance for MCF10A or U2OS cells (Fig. 4D and 

Table 7). These results indicate that reducing the number of training cycles and datasets, 

and skipping image augmentation, are viable options to speed-up the training of these 

models, without leading to a reduction in their performance. 

 

Custom Trained Deep Learning Models Match and Exceed the Nuclear 

Segmentation Performance of Pre-trained Models  

We then benchmarked the nuclear segmentation inference performance of MRCNN and 

FPN2-WS against Jacobkie, a pre-trained deep learning model for nuclear segmentation 

(33). Jacobkie has a similar model architecture as FPN2-WS, was trained on a large and 

diverse dataset of 841 images of nuclei from different sources, was ranked2nd out of 

about 10,000 submissions in the 2018 Kaggle Data Science Competition, and it has been 

suggested that this model can be used in inference by end users without pre-training 

(11). In our experiments using Jacobkie on the test images used in this study, visual 

comparison of inferred nuclear segmentation masks indicated that, while Jacobkie was 

generally less precise than MRCNN or FPN2-WS at the pixel segmentation level, it 

indeed achieved a comparable object segmentation performance for MCF10A and 

HCT116 cells, and an inferior performance on U2OS or primary eosinophils (Fig. 5A), 

when compared to the custom trained models. In particular, MRCNN seemed to better 

generalize to irregular nuclear shapes, such as those of primary eosinophils (Fig. 5A). In 

line with the qualitative visual results, comparison of F1 segmentation scores for the 

three segmentation models indicated that MRCNN and FPN2-WS achieved similar or 

better F1 inference scores than Jacobkie for all cell types at IoU[t = 0.7] (Fig. 5B and 

Table 8), which is indicative of instance segmentation precision. MRCNN and FPN2-WS 

showed better F1 scores than Jacobkie at IoU[t = 0.9] which is indicative of 

segmentation precision at the pixel-level, for MCF10A and U2OS (Fig. 5B and Table 8). 

As for HCT116 and eosinophils, none of the CNN’s showed F1 scores > 0.5, indicative 
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of a failure of these DL models to perform precise segmentation at the pixel-level of 

nuclei having a small area relative to the pixel size of the image (Table S1). 
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Analysis of the Impact of Semi-annotated Ground Truth Labelling Strategy on 

Test Segmentation Performance at the Object- and Pixel-level  

To rule out the possibility that we introduced a bias in favor of the MRCNN and FPN2-

WS in the object-level classification performance by using them as the source of the 

preliminary GT in the semi-automated labelling strategy, we also tested the 

segmentation performance of the three CNN models on the test datasets in which the 

nuclei from the corresponding greyscale images were instead fully manually annotated 

(Fig S1A, S1B and Table S3). The results of these experiments show that MRCNN and 

FPN2-WS F1 scores for the comparison of the GT labels generated by the manual vs. the 

semi-automated method had a minimal difference at IoU[t = 0.7] for all cell types, 

minimal difference at IoU[t = 0.9] for MCF10A and U2OS, a substantial difference at 

IoU[t = 0.9] for the HCT116 and eosinophils nuclei (Fig. S1B and Table S3), which can be 

explained by the fact that the nuclei in these datasets/cell types tend to be very small 

(Table S1), and thus very likely highly penalized in the F1 score even for small (±1-

pixel) errors (See Materials and Methods for details). Overall, these results indicate that 

semi-automated GT labelling may introduce some bias at the pixel segmentation level 

that is particularly evident when trying to segment small nuclei, while it has minimal or 

no effect on the segmentation at the object level. In addition, this also rules out the 

possibility the Jacobkie model was penalized by the semi-automated labelling 

procedure, likely because F1 comparison of the manual vs. semi-automated GT labels 

revealed good concordance for all cell types examined (Fig S2A). 

 

Finally, comparison of the training vs. testing F1 scores for MRCNN and FPN2-WS (Fig. 

S2B and Table S4) revealed minimal differences between these scores at IoU[t = 0.7] for 

either model on all 4 cell types. These results suggest that the training regimens 

described here did not lead to overfitting at the object level. At IoU[t = 0.9], the models 

did not show overfitting at the pixel level for the MCF10A and U2OS training sets (Fig. 

S2B and Table S4). For HCT116 and eosinophils at the same threshold, the models 
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performance was too low (i.e., F1 score < 0.5) to make a conclusion about overfitting at 

the pixel segmentation level, given than the nuclei of these cell types are small relative 

to the pixel size used during image acquisition (Fig. S2B, Table S1 and S4, and Materials 

and Methods). 

 

Dissection of the segmentation errors generated by different nuclear segmentation 

models. 

Finally, we dissected the types of errors underlying the nuclear segmentation F1 scores 

for the three CNN models by examining the frequency of false positives and false 

negatives (Fig. 5A and S3, and Materials and Methods for details). Additionally, we also 

examined additional summary statistics, such as over-splitting and merging events (Fig 

5A and S3, and Materials and Methods for details), which provide additional 

information regarding the strengths and weaknesses of each segmentation model (9). 

The nuclear segmentation error analysis indicated that, while there was no clear pattern 

in terms of false positive detection among the three models (Fig. S3A), the Jacobkie 

model had a tendency to produce a slightly higher rate of false negatives than MRCNN 

or FPN2-WS (Fig. S3B), possibly because the Jacobkie model was not trained on the 

image datasets contained in this study. Similarly, FPN2-WS showed a tendency of over-

split single nuclei (Fig. S3C), and MRCNN to merge two or more nuclei (Fig. S3D) when 

compared to the two other models. Overall, with the exception of the eosinophils, all 

three models kept the percentage of each type of error below 15%, which is considered 

acceptable in HCI applications. Moreover, and as manifested in the F1 score curves (Fig 

5B), these results suggest that MRCNN might be a better model architecture for the 

segmentation of heteromorphic, non-convex shaped nuclei when compared to models 

that incorporate morphological information for segmentation, such as FPN2-WS and 

Jacobkie (Fig 5A, eosinophils). 
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Overall, these results confirm that, while in some cases off-the-shelf, pre-trained nuclear 

segmentation models, such as Jacobkie, can be used for nuclear instance segmentation 

in inference mode without retraining, optimal nuclear segmentation performance on a 

subset of cell types with substantially different morphology would ideally uses transfer 

learning and/or fine-tuning of CNN models on a small number of annotated images. 
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Discussion 

Machine learning approaches have found wide applications in HCI because they can 

learn rapidly from the imaging datasets and they generate close to optimal, and 

parameter-free, solutions to a wide variety of previously non-addressable image 

processing tasks (6). In particular, in supervised CNN-based machine learning tasks one 

of the main challenges is to choose appropriate combinations of suitable machine 

learning model architectures, image pre-processing or post-processing strategies, and 

model training regimens.  

 

The use of CNN segmentation models pre-trained on large and varied datasets of 

images has been proposed as a possible solution to these challenges (11). , While very 

appealing, it is unclear whether this solution would extend to images of nuclei with 

widely different characteristics such as the ones typically present in large training 

datasets. A complementary method is to take a CNN-model, possibly pre-trained on a 

small number of images , and further re-train it for the purpose of fine-tuning using 

transfer learning on a set of previously unseen nuclei (29). While this strategy would 

not necessarily guarantee that CNN segmentation models trained in this way will 

generalize to any previously unseen set of images generated on different instruments or 

in different laboratories, it might provide a solution similar to what in the machine 

learning field is known as federated learning, where the CNN models are continuously 

refined with decentralized data (34). With this framework in place, a lab or an imaging 

core could either adopt a completely new, untrained CNN model, or start from one of 

the available domain-specific pre-trained models, and continuously expand their 

quantitative image segmentation pipelines on images of nuclei from different cell types, 

if necessary, by iterative cycles of model training. The goal of this study was to test the 

feasibility of this approach. 
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We chose a semi-automated ground truth label generation strategy that combines 

generation of preliminary labels by an algorithm, followed by manual correction of 

these labels, to reduce the manual annotation burden on the user (Fig 1A). We note that 

this choice can potentially introduce biases in the CNN models that would be 

particularly evident in the segmentation of small nuclei or other small cellular objects 

(such as mitochondria or vesicles). On the one hand, by comparing semi-automated GT 

labelling with manual GT labelling we observed no difference in F1 scores at IoU[t = 

0.9] for any of four cell lines with morphologically vastly distinct cell nuclei (Fig S1, 

Table S3). On the other, we observed on average a 22% drop in F1 scores for semi-

automated labelling GT vs. manual GT labelling at IoU[t = 0.9] for MCF10A and U2OS 

(Fig S1B, Table S3). As far as small nuclei are concerned (e.g. HCT116 and Eosinophils),  

while the semi-automated GT labelling methods seemed to introduce a bias that 

degraded the performance of the trained models by about 70% on average at the pixel 

level (F1 at IoU[t = 0.9], Fig S1B, Table S3), use of manual GT annotations did not lead to 

substantially better results in absolute terms (e.g. F1 at IoU[t = 0.9] > 0.5, Fig S1B, Table 

S3). Overall, these results indicate that semi-automated GT labelling is a viable 

annotation approach, with the caveat that it can lead to some degradation in precision 

at the pixel segmentation level. Of course, if the highest level of precision at the pixel 

level is desired, users should consider manual GT annotation, with the obvious tradeoff 

of investing a substantially larger amount of hands-on time for this operation. Assisted 

annotation has already been used both for annotating large biological image datasets 

for training of CNN-based nuclear segmentation models (11). In addition, similar semi-

automated labelling strategies have also been used for very large image datasets of 

everyday images, such as the Google Open Images Dataset (35).  

 

To test feasibility of training DL models on a limited number of representative images, 

we used an automated computational pipeline to run a total of 76 supervised model 

training experiments for CNN tasked to perform segmentation of cell nuclei from 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.04.14.041020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041020


 
  

 

28 

 

fluorescence microscopy images of fixed cells stained with the DNA stain DAPI. To test 

the usage of nuclear segmentation algorithms in a typical heterogenous laboratory 

setting, we ran training and inference experiments on a panel of 4 cell types with 

substantial differences in image acquisition conditions (i.e., magnification and camera 

binning), nucleus morphology, and degree of confluency. Overall, the FPN2-WS model 

performed extremely well on 2 of the 4 cell types tested, with or without pre-

initialization, and just by training it with images from one cell type (Fig. 2A, Table 2). 

MRCNN did not perform as well as FPN2-WS in these starting conditions, but it 

showed comparable or better performance on most cell types when transfer-learning 

(29) and a training set containing images of the 4 cell types were adopted (Fig. 3A and 

3B, Tables 2 and 3). Paradoxically, in the case of MRCNN, adding image augmentation 

or increasing the number of ROIs used per cell type slightly deteriorated the 

segmentation performance of the model. While these approaches might sufficient for 

deep learning-based nuclear segmentation on images acquired in other contexts, our 

results underscore the importance of testing different training parameters to identify 

the most important ones, and to potentially reduce the computational load and/or time 

required for model training. Future efforts to improve the performance of MRCNN on 

images of nuclei from different cell types, acquired on different fluorescence 

microscopes, with different microscopy modalities, or different sample types (e.g. 

histological tissue sections) could take advantage of more advanced transfer learning 

approaches such as model weight transfusion (30).  

 

Furthermore, comparison of the performance of MRCNN and FPN2-WS trained on our 

dataset with Jacobkie, a state-of-the-art pre-trained CNN model (11), indicates that 

using pre-trained models is an effective, lower-effort trade-off on images of nuclei of 

certain cell types, but that training and testing of CNN models on the images of interest 

becomes necessary if the final goal is to obtain higher pixel-level precision, such as in 

the case of MCF10A and U2OS cells (Fig 5A and 5B, Table 8), or if the nuclei in question 
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are substantially different from the ones present in the original training set, such as 

primary eosinophils (Fig 5A and 5B, Table 8). As a caveat, we also note that if the size of 

the nuclei is small relative to the pixel size of the images, such as in the case of HCT116 

and eosinophils (Table S1), neither training DL models ex-novo, nor using a state-of-the 

art out of the box DL model, seems to achieve a satisfactory performance at the pixel 

level (Fig 5A and 5B, Table 8). Other potentially useful applications for the use of 

transfer learning in nuclear segmentation might include the use of other fluorescence 

markers to identify nuclei in live cell experiments, such as the core histone H2B-GFP or 

the DNA stain SiR-DNA, and to more precisely segment nuclei in cell types that tend to 

grow in patches/colonies, such as iPS and mESC cells, where nuclei are packed tightly 

together. Moreover, when we compared the out-of-the box inference runtime of 

MRCNN versus Jacobkie, the MRCNN model was 14-fold faster than Jacobkie (data not 

shown). Of course, in the end, users will need to carefully evaluate the tradeoffs 

involved in using out-of-the box models, which provide ease of use and but potentially 

lower accuracy on hard to segment or nuclei with an unusual morphology, versus 

adopting the transfer learning strategy proposed, which involve substantial 

computational work for model training to achieve higher segmentation performance in 

these cases. Ultimately, we see these two approaches not as mutually exclusive, but 

rather as complementary. To this end, we recommend that end-users first test the 

inference performance of a pre-trained state-of-the-art nuclear segmentation model such 

as Jacobkie on the images of interest, and, if these results are not satisfactory, then edit 

the preliminary nuclear labels and fine-tune the pre-trained model by transfer learning 

to improve its performance. 

 

We hope that the training pipeline described here, and this practical set of guidelines, 

will help researchers to test novel model architectures and novel image pre- and post-

processing steps aimed at the segmentation of nuclei and other biological structures 

from microscopy images. In the future, we expect it will be feasible to expand this set of 
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observations to 3D images of nuclei, and to the segmentation of other cellular organelles 

and sub-structures, such as mitochondria, vesicles, or nuclear bodies.  
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Figures and Tables Legend 

Fig. 1) Deep Learning nuclear segmentation pipelines. A) Schematic representation of 

the semi-automated approach to generate Ground Truth (GT) labels. Either a traditional 

image processing algorithm, or a pre-trained CNN segmentation model were used to 

generate a set of preliminary labels for the nuclei. These were manually corrected using 

a web-based interface to generate a set of GT nuclear labels. B) Workflow of the CNN 

model training and testing strategies. Random overlapping regions of interest (ROIs) 

are oversampled (bootstrapped) from full fields of view (FOVs) of grayscale images and 

of GT labels images. These ROIs were then augmented by randomly applying a variety 

of affine, translational, intensity and blurring transformations. The augmented dataset 

of ROIs is then split 80%-20% for training and validation, respectively, of the deep 

learning nuclear segmentation models. Trained models are then tested by running 

inference on a set of images not seen at training or validation. Test model performance 

is scored using the corresponding GT labels for the test dataset and F1 scores are 

generated. C) Schematic of the Feature Pyramid Network-2-watershed (FPN2-WS) 

model architecture. FPN2-WS uses two deep learning models to predict a normalized 

nucleus distance transform image, and a blurred nucleus border image, respectively. 

These images are then used as the seed and border for a traditional seeded watershed 

segmentation algorithm.  

 

Fig. 2) Nuclear segmentation inference performance of the baseline training strategy 

for the MRCNN and FPN2-WS model architectures. A) The MRCNN and FPN2-WS 

models were trained on the MCF10A cell line image dataset (35,000 bootstrapped and 

augmented ROIs) using random initialization, and applied inference on test images of 

nuclei from the indicated cell types. The images represent pseudocolored nuclear labels 

for the ground truth (GT) annotations and for the model inference results on test 

images. Additionally, the GT XOR Inference panels represent pseudocolored full labels 

for false negatives at an Intersection over Union (IoU) threshold of 0.7 (IoU[t = 0.7]). For 
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true positive and false positive objects at the same threshold, only the difference at the 

pixel-level between GT and inference labels is shown in magenta. Scale bar: 20 μm. B) 

Line plot of the test F1 Score at increasing Intersection over Union (IoU) thresholds (See 

Materials and Methods for details) for the MRCNN and FPN2-WS models trained as 

indicated in A). IoU[t = 0.7] is indicative of object-level segmentation performance on 

test images and is indicated by the dashed grey vertical line in the plot.  

 

Fig. 3) Transfer learning can improve the inference performance of nuclear 

segmentation models. A) Dot plot of the test F1 Score at IoU[t = 0.7] indicative of 

object-level segmentation performance for the nuclear segmentation models trained 

either as indicated in Fig. 1A) (35,000 bootstrapped and augmented ROIs obtained from 

the MCF10A cell line training dataset were used, Randomized weights), or by using the 

same training data and by initializing the models with weights obtained by pre-training 

MRCNN on the COCO dataset, or the FPN2-WS on the ImageNet dataset, respectively. 

B) Dot plot of the test F1 Score at IoU[t = 0.7] for the nuclear segmentation models 

trained either as indicated in Fig. 3A) (35,000 bootstrapped and augmented ROIs 

obtained from the MCF10A cell line training dataset were used, pre-initialized weights), 

or by using a combination of equal numbers of bootstrapped and augmented ROIs  

from the training datasets of other cell types, as indicated on the x-axis, for a total of 

35,000 ROIs in each case.  

 

Fig. 4) Deep learning segmentation models can be efficiently trained with less data, 

fewer training cycles, and fewer image pre-processing steps. A) Dot plot of the test F1 

Score at IoU[t = 0.7] indicative of object segmentation performance for the nuclear 

segmentation models trained with images of nuclei from all cell types as indicated in 

Fig. 3B) (1X, 25 cycles, 35,000 bootstrapped and augmented ROIs obtained from all the 

cell types training datasets, pre-initialized weights), or by reducing the number of 

training cycles and keeping the other training parameters constant (0.25 - 0.75X, 6.25 - 
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18.75 cycles, See Materials and Methods for the definition of training cycles). B) Dot plot 

of the test F1 Score at IoU[t = 0.7] for the nuclear segmentation models trained either 

from all cell types as indicated in Fig. 3B) (1X, 35,000 bootstrapped and augmented ROIs 

obtained from all the cell types training datasets), twice as many ROIs (2X, 70,000 total), 

or fewer ROIs (0.125X - 0.5X, 4,375 - 17,500 total). C) Dot plot of the test F1 Score at IoU[t 

= 0.7] for the nuclear segmentation models trained on 35,000 bootstrapped ROIs 

obtained from all the cell types training datasets that were only augmented by ROI 

rotations and flips (None), or were augmented with all but one of the other selected 

class of augmentation operations (Min_Blur - Min_Scaling) as indicated on the x-axis. 

D) Dot plot and crossbar plot for the mean and 95% confidence interval crossbar for the 

test F1 Score at IoU[t = 0.7]. Nuclear segmentation models were independently trained 

with 35,000 bootstrapped ROIs obtained from all the cell types training datasets, for 25 

cycles, and as indicated on the x-axis. n = 15 for the MRCNN Full/Random 

combination, and n = 4 for all other combinations.  

 

Fig. 5) Nuclear segmentation inference performance of the best training strategy for 

the MRCNN and FPN2-WS model architectures, and comparison to the pre-trained 

Jacobkie model architecture. A) The MRCNN and FPN2-WS models were trained as 

indicated in Fig. 4D) (None/Pre-initialized for MRCNN, Full Augmentation/Pre-

initialized for FPN2-WS, 35,000 bootstrapped ROIs obtained from all the cell types 

training datasets, 25 cycles). The Jacobkie model was run using the pre-trained weights 

from the Kaggle Data Science competition (See Materials and Methods for details). The 

images represent pseudocolored test nuclear labels for the semi-automated ground 

truth (GT) annotations and for the models test inference results. Additionally, the GT 

XOR Inference panels represent pseudocolored full labels for false negatives at IoU[t = 

0.7]. For true positive and false positive objects at the same threshold, only the 

difference at the pixel-level between GT and inference labels is shown in magenta. Scale 

bar: 20 μm. B) Line plot of the test F1 Score at increasing IoU thresholds for the 
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MRCNN and FPN2-WS models trained as indicated in A), and for the pre-trained 

Jacobkie model. IoU[t = 0.7] is indicative of object-level segmentation performance and 

is indicated in the plot by the dashed grey vertical line. 

 

Table 1) F1 Scores at IoU[t = 0.7] and IoU[t = 0.9] for the baseline strategy for the 

MRCNN and FPN2-WS models. MRCNN and FPN2-WS were trained only on the 

MCF10A cell line training image dataset using random initialization, as indicated in Fig. 

2. The table indicates the test F1 scores for MRCNN and FPN2-WS object-level 

segmentation (IoU[t = 0.7]) and pixel-level segmentation (IoU[t = 0.9]) for each 4 cell 

types. The best F1 value for each IoU/Cell Type combination is indicated in bold. 

 

Table 2) F1 Scores at IoU[t = 0.7] for MRCNN and FPN2-WS models with different 

pre-initialization strategies. MRCNN and FPN2-WS were trained only on the MCF10A 

cell line training image dataset using random initialization or transfer learning with 

pre-trained model weights, as indicated in Fig. 3A. The table indicates the test F1 scores 

for MRCNN and FPN2-WS object-level segmentation (IoU[t = 0.7]) for each 4 cell types 

in the training conditions examined. The best F1 value for each Cell Type/Model/Pre-

initialization combination is indicated in bold. 

 

Table 3) F1 Scores at IoU[t = 0.7] for the MRCNN and FPN2-WS models trained on 

increasingly diverse image datasets. MRCNN and FPN2-WS were trained only on the 

MCF10A cell line training image dataset, or on progressively more complex image 

datasets, as indicated in Fig. 3B. The table indicates the test F1 scores for MRCNN and 

FPN2-WS object-level segmentation (IoU[t = 0.7]) for each 4 cell types in the training 

conditions examined. The best F1 value for each Cell Type/Model/Image Training Set 

combination is indicated in bold. 

 

Table 4) F1 Scores at IoU[t = 0.7] for the MRCNN and FPN2-WS models trained for an 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.04.14.041020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041020


 
  

 

38 

 

increasing amount of times. MRCNN and FPN2-WS were trained only on image 

datasets from all cell types training image dataset for increasing number of epochs, as 

indicated in Fig. 4A. The table indicates the test F1 scores for MRCNN and FPN2-WS 

object-level segmentation (IoU[t = 0.7]) for each of the 4 cell types in the training 

conditions examined. The best F1 value for each Cell Type/Model/Training length 

combination is indicated in bold. 

 

Table 5) F1 Scores at IoU[t = 0.7] for the MRCNN and FPN2-WS models trained on 

augmented ROIs datasets of increasing size. MRCNN and FPN2-WS were trained on 

augmented ROI image datasets of different sizes from all cell types, as indicated in Fig. 

4B. The table indicates the test F1 scores for MRCNN and FPN2-WS object-level 

segmentation (IoU[t = 0.7]) for each of the 4 cell types in the training conditions 

examined. The best F1 value for each Cell Type/Model/Training Dataset Size 

combination is indicated in bold. 

 

Table 6) F1 Scores at IoU[t = 0.7] for the MRCNN and FPN2-WS models trained on 

differently augmented ROIs datasets. MRCNN and FPN2-WS were trained on ROI 

image datasets augmented with different strategies, as indicated in Fig. 4C. The table 

indicates the test F1 scores for MRCNN and FPN2-WS object-level segmentation (IoU[t 

= 0.7]) for each of the 4 cell types in the training conditions examined. The best F1 value 

for each Cell Type/Model/Training Dataset Augmentation Strategy combination is 

indicated in bold. 

 

Table 7) F1 Scores at IoU[t = 0.7] for repeated training runs of MRCNN and FPN2-WS 

models. MRCNN and FPN2-WS were repeatedly trained as indicated in Fig. 4D. The 

table indicates the mean test F1 scores for MRCNN and FPN2-WS object-level 

segmentation (IoU[t = 0.7]) for each of the 4 cell types in the training conditions 

examined. The best mean F1 value for each Cell Type/Model/Training Regimen 
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combination is indicated in bold. 

 

Table 8) F1 Scores at IoU[t = 0.7] and 0.9 for the best training strategy for the MRCNN 

and FPN2-WS, and comparison with the pre-trained Jacobkie model. MRCNN and 

FPN2-WS were trained on an image dataset that included all cell types, as indicated in 

Fig. 5. The table indicates the test F1 scores for MRCNN and FPN2-WS object-level 

segmentation (IoU[t = 0.7]) and pixel-level segmentation (IoU[t = 0.9]) for each of the 4 

cell types. The best F1 value for each IoU/Cell Type combination is indicated in bold. 
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Supplementary Figures and Tables Legend 

Fig. S1) Comparison of the inference performance at testing for the MRCNN and 

FPN2-WS, and for the Jacobkie model using testing labels that were either semi-

automated or manually annotated. A) MRCNN and FPN2-WS were trained as 

indicated in Fig. 5), and Jacobkie model was run using the pre-trained weights from the 

Kaggle Data Science competition (See Materials and Methods for details). The images 

represent pseudocolored test nuclear labels for the manual ground truth (GT) 

annotations and for the model inference results, as shown in Fig 5A. Additionally, the 

GT XOR Inference panels represent pseudocolored full labels for false negatives at an 

Intersection over Union (IoU) threshold of 0.7. For true positive and false positive 

objects at the same threshold, only the difference at the pixel-level between the manual 

GT and inference labels is shown in magenta. Scale bar: 20 μm. B) Line plots of the test 

F1 Score values obtained using either the manual GT labels or the semi-automated GT 

labels for the same greyscale images, respectively, at increasing IoU thresholds for the 

MRCNN and FPN2-WS models trained as indicated in A), and for the pre-trained 

Jacobkie model. IoU[t = 0.7] is indicated by the dashed grey vertical line.  

 

Fig. S2) Quality control measurements for the semi-automated GT label annotation 

strategy and for model overfitting. A) Line plots of the F1 Score values at increasing 

IoU thresholds comparing the manual GT labels with the semi-automated GT labels for 

the same greyscale images. IoU[t = 0.7] is indicated by the dashed grey vertical line in 

the plot. B) Line plots of the training F1 Score vs. the testing F1 Score at increasing IoU 

thresholds using the semi-automated GT labels for the training and testing datasets of 

greyscale images, for the MRCNN and FPN2-WS models trained as indicated in Fig 5. 

IoU[t = 0.7] is indicated by the dashed grey vertical line.  

 

Fig. S3) Analysis of the segmentation errors types generated by the MRCNN, FPN2-

WS, and Jacobkie models. Bar plots of the percentage of errors types generated by the 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted October 22, 2020. ; https://doi.org/10.1101/2020.04.14.041020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041020


 
  

 

41 

 

nuclear segmentation models at test inference (As shown in Fig. 5). A) False positives. 

B) False Negatives. C) Merges. D) Oversplitting. Notice that each the y-axis of each plot 

facet has been scaled for each error type and each cell line tested, to make possible an 

internal comparison of the three models on the same cell line. Also, notice that, by 

definition, certain types of errors can be counted two or more times (See Materials and 

Methods for details).  Thus, the sum of error percentages for each model and cell line 

does not necessarily sum to 100%. 

 

Table S1) Characteristics of the training and testing image datasets used in this work. 

 

Table S2) List of all model training conditions with references to the other Figures 

and Supplementary Figures presented in this work.  

 

Table S3) F1 Scores at IoU[t = 0.7] and IoU[t = 0.9] for the inference performance 

comparison between semi-automated and manually annotated testing labels. 

MRCNN and FPN2-WS were trained on an image dataset that included all cell types, as 

indicated in Fig. 5 and S1. The table indicates the test F1 scores for MRCNN and FPN2-

WS object-level segmentation (IoU[t = 0.7]) and pixel-level segmentation (IoU[t = 0.9]) 

for each of the 4 cell types. The best test F1 value for each IoU/Cell Type combination is 

indicated in bold. 

 

Table S4) Training and Testing F1 Scores at IoU[t = 0.7] and IoU[t = 0.9]. MRCNN and 

FPN2-WS were trained on an image dataset that included all cell types, as indicated in 

Fig. 5. The table indicates the training and testing F1 scores for MRCNN and FPN2-WS 

object-level segmentation (IoU[t = 0.7]) and pixel-level segmentation (IoU[t = 0.9]) for 

each of the 4 cell types. The best training or testing F1 value for each IoU/Cell Type 

combination is indicated in bold. 
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Table 1 

Model MCF10A/0.7 MCF10A/0.9 HCT116/0.7 HCT116/0.9 U2OS/0.7 U2OS/0.9 Eosinophils/0.7 Eosinophils/0.9 

FPN2-WS 0.97 0.97 0.84 0.2 0.94 0.92 0.48 0.21 

MRCNN 0.82 0.75 0.63 0.07 0.84 0.65 0.72 0.06 
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Table 2 

Model Initialization MCF10A HCT116 U2OS Eosinophils 

FPN2-WS Random 0.97 0.84 0.94 0.48 

FPN2-WS Pre-initialized 0.98 0.85 0.97 0.58 

MRCNN Random 0.82 0.63 0.84 0.72 

MRCNN Pre-initialized 0.97 0.88 0.97 0.63 
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Table 3 

Model Training Set MCF10A HCT116 U2OS Eosinophils 

FPN2-WS MCF10A 0.98 0.85 0.97 0.58 

FPN2-WS MCF10A-HCT116 0.98 0.88 0.94 0.37 

FPN2-WS MCF10A-HCT116-U2OS 0.99 0.86 0.96 0.36 

FPN2-WS All 0.98 0.87 0.97 0.46 

MRCNN MCF10A 0.97 0.88 0.97 0.63 

MRCNN MCF10A-HCT116 0.97 0.88 0.93 0.53 

MRCNN MCF10A-HCT116-U2OS 0.97 0.87 0.94 0.59 

MRCNN All 0.97 0.9 0.94 0.8 
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Table 4 

Model Epochs MCF10A HCT116 U2OS Eosinophils 

FPN2-WS 0.25X 0.98 0.85 0.95 0.35 

FPN2-WS 0.5X 0.98 0.86 0.97 0.45 

FPN2-WS 0.75X 0.98 0.87 0.97 0.38 

FPN2-WS 1X 0.98 0.87 0.97 0.46 

MRCNN 0.25X 0.93 0.87 0.91 0.76 

MRCNN 0.5X 0.96 0.87 0.93 0.78 

MRCNN 0.75X 0.97 0.9 0.93 0.77 

MRCNN 1X 0.97 0.9 0.94 0.8 
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Table 5 

Model Set Size MCF10A HCT116 U2OS Eosinophils 

FPN2-WS 0.125X 0.97 0.81 0.88 0.41 

FPN2-WS 0.25X 0.96 0.84 0.93 0.38 

FPN2-WS 0.5X 0.98 0.86 0.97 0.43 

FPN2-WS 1X 0.98 0.87 0.97 0.46 

FPN2-WS 2X 0.99 0.86 0.97 0.44 

MRCNN 0.125X 0.96 0.77 0.9 0.53 

MRCNN 0.25X 0.97 0.84 0.94 0.6 

MRCNN 0.5X 0.97 0.88 0.94 0.78 

MRCNN 1X 0.97 0.9 0.94 0.8 

MRCNN 2X 0.98 0.91 0.96 0.68 
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Table 6 

Model Augmentation MCF10A HCT116 U2OS Eosinophils 

FPN2-WS Full 0.98 0.87 0.97 0.46 

FPN2-WS Min-Blur 0.98 0.86 0.97 0.37 

FPN2-WS Min-Contr 0.98 0.8 0.96 0.54 

FPN2-WS Min-Noise 0.98 0.86 0.97 0.33 

FPN2-WS Min-Scaling 0.98 0.88 0.95 0.45 

FPN2-WS None 0.98 0.83 0.96 0.53 

MRCNN Full 0.97 0.9 0.94 0.8 

MRCNN Min-Blur 0.97 0.88 0.95 0.75 

MRCNN Min-Contr 0.96 0.89 0.97 0.77 

MRCNN Min-Noise 0.98 0.85 0.96 0.79 

MRCNN Min-Scaling 0.98 0.88 0.97 0.82 

MRCNN None 0.97 0.91 0.97 0.82 
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Table 7 

Model Initialization Augmentation MCF10A U2OS HCT116 Eosinophils 

FPN2-WS Random None 0.98 0.96 0.82 0.54 

FPN2-WS Random Full 0.98 0.96 0.86 0.43 

FPN2-WS Pre-initialized None 0.98 0.96 0.84 0.53 

FPN2-WS Pre-initialized Full 0.98 0.97 0.87 0.42 

MRCNN Random None 0.87 0.89 0.68 0.81 

MRCNN Random Full 0.24 0.12 0.21 0.42 

MRCNN Pre-initialized None 0.97 0.97 0.91 0.82 

MRCNN Pre-initialized Full 0.97 0.96 0.87 0.75 
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Table 8 

 

Model MCF10A/0.7 MCF10A/0.9 HCT116/0.7 HCT116/0.9 U2OS/0.7 U2OS/0.9 Eosinophils/0.7 Eosinophils/0.9 

FPN2-WS 0.98 0.96 0.87 0.14 0.97 0.94 0.46 0.21 

MRCNN 0.97 0.95 0.9 0.4 0.97 0.95 0.83 0.39 

Jacobkie 0.96 0.03 0.85 0.07 0.84 0.3 0.23 0 
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