Genetic characterization of Streptococcus pyogenes emm89 strains isolated in Japan from 2011 to 2019

Yujiro Hirose⁵, Masaya Yamaguchi⁵, Norihiko Takemoto⁶, Tohru Miyoshi-Akiyama⁶, Tomoko Sumitomo⁶, Masanobu Nakata⁶, Tadayoshi Ikebe⁷, Tomoki Hanada⁶, Takahiro Yamaguchi⁸, Ryuji Kawahara⁸, Rumi Okuno⁹, Hitoshi Otsuka⁹, Yuko Matsumoto⁹, Yuji Terashima⁹, Yu Kazawa⁹, Noriko Nakanishi¹, Kaoru Uchida¹, Yumi Akiyama¹, Kaori Iwabuchi¹, Chikara Nakagawa², Kazunari Yamamoto², Shigetada Kawabata³, Masanobu Nakata⁶, Tadayoshi Ikebe⁷, Tomoki Hanada⁶, Takahiro Yamaguchi⁸, Ryuji Kawahara⁸, Rumi Okuno⁹, Hitoshi Otsuka⁹, Yuko Matsumoto⁹, Yuji Terashima⁹, Yu Kazawa⁹, Noriko Nakanishi¹, Kaoru Uchida¹, Yumi Akiyama¹, Kaori Iwabuchi¹, Chikara Nakagawa², Kazunari Yamamoto², Shigetada Kawabata³.

¹ Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
² Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
³ Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
⁴ Division of Microbiology, Osaka Institute of Public Health, Osaka city, Osaka, Japan
⁵ Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
⁶ Division of Public Health Sciences, Yamaguchi Prefectural Institute of Public Health and Environment Yamaguchi city, Yamaguchi, Japan
⁷ Microbiological Testing and Research Division, Yokohama City Institute of Public Health, Yokohama, Kanagawa, Japan
⁸ Department of Microbiology, Fukushima Prefectural Institute of Public Health, Fukushima city, Fukushima, Japan
⁹ Department of Infectious Diseases, Kobe Institute of Health, Kobe, Hyogo, Japan
¹⁰ Department of Bacteriology, Toyama Institute of Health, Imizu, Toyama, Japan
¹¹ Infectious disease research division, Hyogo Prefectural Institute of Public Health Science, Kakogawa, Hyogo, Japan
¹² Department of Health Science, Iwate Prefectural Research Institute for Environmental Sciences and Public Health, Morioka, Iwate, Japan
¹³ Division of Microbiology, Kyoto City Institute of Health and Environmental Sciences, Kyoto city, Kyoto, Japan
¹⁴ Niigata City Institute of Public Health and the Environment, Niigata city, Niigata, Japan

Addresses for correspondence: Yujiro Hirose, Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; Email: yujirohirose@dent.osaka-u.ac.jp
Shigetada Kawabata, Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; Email: kawabata@dent.osaka-u.ac.jp
Genetic characterization of *Streptococcus pyogenes emm*89 strains isolated in Japan from 2011 to 2019

Abstract (142/250 words)

Streptococcal toxic shock syndrome (STSS) caused by *Streptococcus pyogenes emm*89 strains has been increasing in several countries and reported to be linked with a recently emerged clade of *emm*89 strains, designated clade 3. In Japan, epidemiological and genetic information for *emm*89 strains remains elusive. In this study, we utilized *emm*89 strains isolated from both STSS (89 isolates) and non-STSS (72 isolates) infections in Japan from 2011 to 2019, and conducted whole-genome sequencing and comparative analysis, which resulted in classification of a large majority into clade 3 regardless of disease severity. In addition, STSS-associated genes and SNPs were found in clade 3 strains, including mutations of streptokinase (Ska), control of virulence sensor (CovS), serum opacity factor (SOF), sortase (SrtB), and fibronectin-binding protein F1 (PrtF1), and absence of the *hylP1* gene encoding hyaluronidase. These findings provide insights into notable genetic features of *emm*89 strains.

Keywords: *Streptococcus pyogenes, emm*89, clade3, streptococcal toxic shock syndrome, single nucleotide polymorphism
Introduction

Streptococcus pyogenes is a human-specific pathogen known to cause a broad spectrum of diseases ranging from mild throat and skin infections to life-threatening invasive diseases (1, 2). Worldwide, it has been estimated that there are over 111 million cases of streptococcal pyoderma and 616 million cases of *S. pyogenes* pharyngitis, with 663,000 cases of invasive infection each year (3). The most severe manifestation noted is streptococcal toxic shock syndrome (STSS), which results in significant mortality with reported incidence rates ranging from 23% to 81% (4). Current estimates suggest that the incidence of STSS is increasing throughout the world, thus genetic characterization of recently emerged strains is useful for investigating novel therapeutic targets.

The M protein is a surface protein and one of *S. pyogenes* virulence factors (5). Although *S. pyogenes* typing has been historically conducted on the basis of M protein antigenicity, sequence typing of the *emm* region encoding the hyper-variable region of the M protein has also been widely applied as another method and used to classify the organism into at least 240 *emm* sequence types (6, 7). In recent years, increased incidence of STSS caused by *emm*89 *S. pyogenes* strains has been reported in both Europe and North America, with genome sequence analysis findings of *emm*89 strains used to identify 3 major genetically distinct strain clusters, designated as clade 1, 2 and 3 (8-10). Importantly, concurrent with the period in the early 2000s that featured a significant increase in number and frequency of invasive *emm*89 infections, clade 3 strains emerged and showed rapid expansion (8, 11).

Clade 3 strains are characterized by absence of the *hasABC* locus, which is responsible for synthesis of the hyaluronic acid capsule, as well as the presence of the *nga-ifs-slo* locus variant, associated with increased expressions of NADase and cytolysin (9, 11). Those reports
indicated that most isolates from patients with STSS (STSS isolates) can be classified into clade 3. On the other hand, recent distributions of emm89 clades in pharyngeal and asymptomatic isolates (non-STSS isolates) have not been thoroughly investigated. In Japan, the incidence of STSS caused by emm89 S. pyogenes is increasing (12), though the epidemiology of emm89 S. pyogenes strains, such as clade classification, remains unknown.

Whole genome sequence analysis of S. pyogenes strains can reveal polymorphisms among strains of the same emm type, such as classification of emm89 clades (8). One of the largest contributors to this genome-to-genome variation is small sequence differences, such as single nucleotide polymorphisms (SNPs). In the present study, we examined both STSS and non-STSS isolates of emm89 S. pyogenes in Japan obtained from 2011 to 2019, and conducted whole-genome sequencing and comparative analyses. The results classified most of the emm89 S. pyogenes collected in Japan as clade 3 regardless of disease severity. Furthermore, division of clade 3 strains into STSS- and non-STSS-associated phylogenetic groups was possible based on genome-wide SNP variations. We found both STSS-associated genes and SNPs in the clade 3 strains. These findings provide a fuller understanding of the recently emerged clade 3 of emm89 S. pyogenes, along with useful information for establishing novel strategies for treatment of diseases related to this pathogen.

Materials and Methods

Bacterial isolates

Clinical isolates were sent from multiple medical institutions to public health institutions. The diagnostic criteria used for determining S. pyogenes-induced STSS were based on definitive cases described by the Working Group on Severe Streptococcal Infections (1993) (13). The
clinical isolates from STSS and non-STSS infections were collected during 2011-2019. STSS clinical isolates from sterile sites (89 isolates) and non-STSS clinical isolates from non-sterile sites were examined in this study (Supplementary, Supplementary Dataset 1). The number of STSS isolates collected in this study is estimated about 20-30% of the total number of incident cases reported. *emm* gene sequencing was performed as previously described by Beall *et al.* (14), with modifications as described at the Centers for Disease and Control website (https://www.cdc.gov/streplab/m-proteingene-typing.html).

Ethical statement

The study protocol including use of human subjects was approved by the Ethics Committee of Osaka University Graduate School of Dentistry (Approval No: H29-E16-1). All procedures were performed in accordance with both ethical standards for human experimentation and the latest revised version of the Declaration of Helsinki.

Genomic DNA sequencing

Isolates were cultured overnight in screw-capped glass tubes (Pyrex, Iwaki Glass. Tokyo, Japan) filled with Todd-Hewitt broth (BD Biosciences, San Jose, CA, USA) and supplemented with 0.2% yeast extract (BD Biosciences) (THY) at 37°C in an ambient atmosphere. Bacterial cells were lysed with 10 units/ml mutanolysin (Sigma, St. Louis, MO, USA), 10 mg/ml lysozyme (Wako, Osaka, Japan), and 0.5 mg/ml achoromopeptidase (Wako), and genomic DNA was extracted from overnight cell cultures using a Maxwell® RSC instrument with a Maxwell® RSC PureFood GMO and Authentication Kit (Promega Corporation, Madison, WI, USA). Paired-end libraries were generated from extracted DNA with a Nextera® XT DNA kit (Illumina, San Diego, CA, USA). Libraries were sequenced with Illumina instruments (HiSeq X and Miseq) and paired-end sequence reads (150 bp and 301 bp, respectively) were obtained.
Data preprocessing and phylogenetic tree visualization

For subsequent genetic analyses, obtained sequence data were preprocessed to remove adapters and low-quality sequences with BBduk (https://github.com/BioInfoTools/BBMap). Next, obtained data were assembled de novo using a Unicycler (https://github.com/rrwick/Unicycler). Assembled contig and complete genome sequences (Supplementary Dataset 2) were analyzed using the kSNP3 program, version 3.1.1 (15), which is able to identify pan-genome SNPs in a set of genome sequences and estimate phylogenetic trees based upon those SNPs. The Kchooser program in kSNP3 was used to estimate the optimum k-mer values. Maximum likelihood trees were visualized using the Geneious Prime 2019.2 software package (Biomatters, Auckland, New Zealand).

Detection of single nucleotide polymorphisms

Preprocessed reads were also aligned to the genome of MGAS23530, an emm89 clade 2 reference strain, using the Bowtie2 package (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml). Since the genome of that strain lacks prophages, and integrative and conjugative elements (8), the resultant polymorphism calls were made relative to only the core chromosome. Single nucleotide polymorphisms (SNPs) identified relative to the 1,709,394 nucleotides of MGAS23530 were concatenated and visualized using Geneious Prime 2019.2. A chi-square test was then used to determine associations between amino acid substitutions caused by SNPs and STSS.

Screening of bacterial strains for hyaluronidase activity

After culturing overnight, 10 μL of *S. pyogenes* was inoculated onto the surface of a hyaluronan agar plate containing Todd-Hewitt broth (BD Biosciences), 1% yeast extract (BD Biosciences), 400 μg/mL hyaluronic acid sodium salt (Wako), 1% bovine serum albumin
(Sigma), and 2% Noble agar (BD Difco, Franklin Lakes, NJ, USA). Following overnight incubation, agar plates were flooded with 2 N acetic acid solution and further incubated for 15 minutes. Strains exhibiting a halo zone around the colony were deemed positive for hyaluronidase activity. *S. pyogenes* strain 5448 (serotype M1, negative for hyaluronidase activity) and strain 4063-05 (serotype M4, positive for hyaluronidase activity) were employed as positive and negative controls, respectively (16).

Data access

Data for the 161 sequenced *emm*89 genomes were deposited into the DDBJ sequence read archive (DRA) under accession number DRA009110.

Results

High-isolation rates of *emm*89 *S. pyogenes* clade 3

An important feature for characterization of clade 1, 2, and 3 is the *nga* promoter region sequence (Figure 1A). That sequence of *emm*89 clade 3 strains is identical to the *nga* promoter region present in pandemic *emm*1 strains (11). Furthermore, the *nga* promoter region sequence of clade 3 strains is associated with elevated production of *S. pyogenes* NADase and streptolysin O, secreted cytolytic toxins that contribute to its invasive phenotype (11, 17). Clade 3 *emm*89 strains also lack the *hasABC* region required for synthesis of the hyaluronic acid capsule (Figure 1B). We classified all *emm*89 strains into clade 1, 2, or 3 based on both the *nga* promoter region sequence and presence of *hasABC* genes. Regardless of disease severity, nearly all (96.9%) of the strains were determined to be clade 3 (Supplementary Dataset 1), while only 5 showed characteristics of clade 2 strains and no clade 1 strain was detected. Chi-square test results indicated that clade 3 is not associated with STSS (Table 1).
STSS- and non-STSS-associated phylogenetic groups among emm89 clade 3 strains

We constructed kSNP trees using 161 emm89 assembled contigs and 49 other S. pyogenes complete genome sequences (Figure 1C) (for information regarding strains used in this study see Supplementary Dataset 1 and 3). As control genomes of the emm89 strains, 3 reference genomes from representative pre-epidemic (clade 1, MGAS11027; clade 2, MGAS23530) and epidemic (clade 3, MGAS27061) emm89 strains sequenced in a previous study by Zhu et al. were used (18). The phylogenetic tree indicated a genetically close relationship of the 161 emm89 S. pyogenes strains isolated in Japan. The 161 emm89 strains were clustered with the reference genome of clade 2 (MGAS23530) or clade 3 (MGAS27061), and the cluster groups were consistent with the results of classification of clades based on both nga promoter region sequences and presence of hasABC genes (Supplementary Dataset 1).

The S. pyogenes emm89 strains in the phylogenetic tree show a close evolutionary relationship and it is difficult to follow their branching relationship (Figure 1C). Therefore, we drew a cladogram to more clearly show branching relationships among the strains (Supplementary Figure 2). In addition, we constructed kSNP trees using assembled contigs of the 161 emm89 strains and 3 control genomes (Figure 2, 3, Supplementary Figure 3, 4). There was no regularity in regard to regional (Figure 2A) or temporal distribution (Supplementary Figure 4).

On the other hand, we found that strains classified as clade 3 could be divided into STSS- and non-STSS-associated phylogenetic groups, which were termed the SS and NS groups, respectively (Figure 2B, 3).

Amino acid mutations contributing to division of groups

Preprocessed reads of the 161 emm89 strains were aligned to the genome of the emm89 clade 2 reference strain MGAS23530, which revealed a polymorphism involved in the division
of groups (Supplementary Dataset 3) and associated with STSS (Table 2, Supplementary Dataset 3). Regarding virulence factors, an amino acid substitution of streptokinase (Ska, Ile to Thr substitution at position 17: I17T) was associated with STSS, while amino acid substitutions of NAD glycohydrolase (Nga, D130G) and streptolysin S biosynthesis protein C (SagC, P223S) were associated with non-STSS. As for factors with effects on cell surface molecules, amino acid substitutions of fibronectin-binding protein F1 (PrtF1, F420L), sortase (SrtB, V131A), and serum opacity factor (SOF, G843S, M844V) were found to be associated with STSS, and those of collagen-like surface protein (SclB, P180A and A228P) was found to be associated with non-STSS. Additionally, an amino acid substitution of ferrichrome transport system permease protein (FhuB, V73A) was associated with non-STSS. These results suggest that specific SNPs contribute to the invasiveness of individual clade 3 strains.

Other STSS-associated factors

Mutations of the CovRS virulence regulator derepress virulence genes, leading to a hypervirulent phenotype of *S. pyogenes* (19, 20). Of the 161 clinical isolates of *emm*89 *S. pyogenes* identified in Japan, 20 STSS isolates (22.5%) and 2 non-STSS isolates (2.7%) showed CovS mutations (*p* = 0.000267, *χ*² analysis) (Table 1, Supplementary Dataset 1). On the other hand, the frequency of CovR mutations in the isolates was not associated with STSS. Although the Rgg mutation has also been reported as an important factor in the pathogenesis of invasive infections (21), that was not found to be relevant to STSS in this study.

Hyaluronidase secreted by Group B *Streptococcus* cleaves pro-inflammatory hyaluronan, which contributes to evasion of host immunity (22). Accordingly, we screened the 161 isolated *emm*89 strains for hyaluronidase activity to investigate their involvement in STSS. Serotype M4 strain 4063-05 was used as a positive control for hyaluronidase (HylA) activity, while the
negative control was serotype M1 strain 5448, which possesses an Asp to Val substitution at position 199 of the HylA sequence (D199V) that abolishes hyaluronidase activity (16). Although all 161 strains harbored D199V in the HylA sequence, 117 showed hyaluronidase activity when cultured on hyaluronan agar plates (Figure 4, Supplementary Dataset 1), and that activity was consistent with the presence of the hylP1 gene (Supplementary Dataset 1). The hylP1 gene was absent in 34 (38.2%) of the STSS isolates and 10 (12.7%) of the non-STSS isolates ($p = 0.001$, χ^2 analysis) (Table 1). HylP1 is one of the key bacteriophage-encoded virulence factors (23). However, in regards to S. pyogenes emm89, absence of hylP1 gene is relevant to STSS.

Discussion

Our results indicate that most emm89 strains isolated in Japan since 2011 are members of the recently emerged genetic clade 3, regardless of disease severity. Similar findings have been reported in Europe, including Finland, Iceland, England, and Portugal, as well as North America (United States and Canada) where clade 3 emm89 strains have shown recent emergence. Reports from countries other than Japan suggest that recently documented invasive infections caused by emm89 strains are due to the appearance of clade3. However, in the present study based in Japan, we found genes and SNPs associated with STSS as well as non-STSS in clade 3 strains. Some SNPs in virulence factors and adhesins were detected.

Streptokinase (Ska) is highly specific for human plasminogen and contributes to streptococcal virulence by generating plasmin, which leads to bacterial spread from a primary focus of infection by causing fibrinolysis, as well as degradation of the extracellular matrix and basement membrane components (24). The Ile or Thr residues at position 17 of the Ska sequence of emm89 strains are located in the streptokinase α domain. The α domain contributes to
interactions between the catalytic domain of human plasminogen and streptokinase (25). A
substitution at position 17 of the Ska sequence (I17T) may enhance streptococcal virulence by
strengthening enzyme activity.

NADase and streptolysin S are virulence factors involved in disease pathogenesis
associated with *S. pyogenes* (17, 26). Although no studies have reported a Pro to Ser substitution
at position 223 of the SagC sequence (P223S), nor an Asp to Gly substitution at position 130 of
the Nga sequence (D130G), those mutations may be associated with decreased enzyme activity
because of their association with non-STSS isolates.

The *prtF1* and *srtB* genes are located in the FCT (Fibronectin and Collagen-binding
proteins and T-antigen) region, where pilus genes are also located (27, 28). Fibronectin-binding
protein F1 (PrtF1) of *S. pyogenes* has roles in both adherence to and internalization in respiratory
epithelial cells (29). Although SrtB was found to be primarily required for efficient formation of
the backbone protein T6 and FctX complex, and subsequent polymerization of T6 in a serotype
M6 strain (classified as FCT type 1) (30), it remains unknown whether SrtB of *emm*89 strains
(classified as FCT type 4) contributes to pilus formation. A Phe to Leu substitution at position
420 of the PrtF1 sequence (F420L) and a Val to Ala substitution at position 131 of the SrtB
sequence (V131A) were shown to be relevant in the present STSS isolates, and those
substitutions may enhance the virulence of *S. pyogenes* by changing the functions of PrtF1 and
SrtB. However, note that the effects of these SNPs on molecular functions were not identified,
and further verification is necessary to prove the relevance to STSS.

Ikebe *et al*. reported that CovRS and Rgg mutations have important roles in the
pathogenesis of STSS (21). The present results showed mutations of CovS associated with STSS,
while those of CovR and Rgg did not have such an association. However, it is possible that relevance could not be determined due to the small number of strains examined.

emm89 clade 3 strains lack hyaluronic acid capsule synthesis genes (hasABC), as previously reported for the S. pyogenes M4 and M22 strains (31). M4 and M22 are the only S. pyogenes strains known to possess an active HylA sequence (16), whereas that was not found in the emm89 strains examined in the present study. Therefore, a genomic type of emm89 clade 3 strain harboring an inactive HylA sequence, even though hasABC is deleted, has yet to be reported. We also found no association of STSS with HylP1-inactive emm89 strains. It was previously reported that an HylA-deficient mutant of S. pyogenes M4 did not display a significant reduction in virulence as compared with a wild-type strain (32). Together, these findings suggest that hyaluronidase activity may be dispensable for invasive infection by a specific subset of S. pyogenes strains.

S. pyogenes emm89 clade 3 strains have recently emerged in Japan. The present whole-genome sequence results provide some important genetic information for additional research to characterize genetic variations of S. pyogenes as well as findings showing novel notable features related to molecular epidemiology. Knowledge obtained in this study may also help to provide a more detailed molecular characterization as well as molecular targets for developing treatment strategies for patients with diseases related to S. pyogenes infection.

Acknowledgments

This study was supported in part by AMED (JP19fk0108044, JP19fm0208007), Japanese Society for the Promotion of Science (JSPS) KAKENHI (grant numbers 19H03825, 20K18474), JSPS Overseas Research Fellowships, Takeda Science Foundation, Japanese Association for
Oral Biology Grant in Aid for Young Scientists, SECOM Science and Technology Foundation, The Naito Foundation, and Kobayashi International Scholarship Foundation. The funders had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.

The authors wish to express their gratefulness to Y. Nakamura (Sapporo City Institute of Public Health) and N. Hashimoto (Sendai Municipal Institute of Public Health), as well as the medical institutions that participated in collection of the present strains.

Declaration of Interests

The authors declare no conflict of interest.
Table 1. Factors associated with STSS

<table>
<thead>
<tr>
<th>Factor</th>
<th>RefSeq locus tag</th>
<th>Gene symbol</th>
<th>STSS (n=89)</th>
<th>Non-STSS (n=72)</th>
<th>χ^2 value*</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated with STSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutation in CovS</td>
<td>MGAS23530_0304</td>
<td>covS</td>
<td>20</td>
<td>2</td>
<td>13.29</td>
<td>2.67E-04</td>
</tr>
<tr>
<td>Absence of $hyP1$ gene</td>
<td>MGAS27061_0574</td>
<td>$hyP1$</td>
<td>34</td>
<td>10</td>
<td>11.85</td>
<td>1.00E-03</td>
</tr>
<tr>
<td>Not associated with STSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clade 3</td>
<td></td>
<td></td>
<td>87</td>
<td>69</td>
<td>0.49</td>
<td>4.85E-01</td>
</tr>
<tr>
<td>Mutation in CovR</td>
<td>MGAS23530_0303</td>
<td>covR</td>
<td>4</td>
<td>0</td>
<td>3.32</td>
<td>6.85E-02</td>
</tr>
<tr>
<td>Mutation in Rgg</td>
<td>MGAS23530_1555</td>
<td>rgg</td>
<td>3</td>
<td>4</td>
<td>0.46</td>
<td>4.99E-01</td>
</tr>
</tbody>
</table>

* χ^2 values for evaluating association between STSS and factors.
Table 2. Phylogenetic group-associated mutations and association with STSS

<table>
<thead>
<tr>
<th>RefSeq number</th>
<th>Gene symbol</th>
<th>Product</th>
<th>Protein effect</th>
<th>STSS (n=89)</th>
<th>Non-STSS (n=72)</th>
<th>χ^2 value*</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0144</td>
<td>prtF1</td>
<td>Fibronectin-binding protein F1</td>
<td>F420L</td>
<td>16</td>
<td>0</td>
<td>14.37</td>
<td>2.00E-04</td>
</tr>
<tr>
<td>0145</td>
<td>srtB</td>
<td>Sortase</td>
<td>V131A</td>
<td>8</td>
<td>1</td>
<td>4.36</td>
<td>4.00E-02</td>
</tr>
<tr>
<td>0176</td>
<td>nga</td>
<td>Nicotine adenine dinucleotide glycohydrolase</td>
<td>D130G</td>
<td>9</td>
<td>31</td>
<td>23.13</td>
<td>2.00E-06</td>
</tr>
<tr>
<td>0340</td>
<td>fhuB</td>
<td>Ferrichrome transport system permease protein</td>
<td>V73A</td>
<td>1</td>
<td>18</td>
<td>21.80</td>
<td>3.00E-06</td>
</tr>
<tr>
<td>0566</td>
<td>sagC</td>
<td>Streptolysin S biosynthesis protein C</td>
<td>P223S</td>
<td>2</td>
<td>9</td>
<td>6.57</td>
<td>1.00E-02</td>
</tr>
<tr>
<td>0774</td>
<td>sclB</td>
<td>Collagen-like surface protein</td>
<td>P180A</td>
<td>1</td>
<td>18</td>
<td>21.80</td>
<td>3.00E-06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A228P</td>
<td>22</td>
<td>32</td>
<td>6.95</td>
<td>8.00E-03</td>
</tr>
<tr>
<td>1504</td>
<td>ska</td>
<td>Streptokinase</td>
<td>I17T</td>
<td>28</td>
<td>3</td>
<td>19.07</td>
<td>1.00E-05</td>
</tr>
</tbody>
</table>

* χ^2 values for evaluating association between STSS and Protein effect.
Figures

Figure 1. Classification criteria for clade, and genetic relationships among various S. pyogenes strains.

(A) Schematic diagram showing nga promoter region sequences for each clade. (B) Schematic alignment of hasABC operon for clade 1, 2, and 3. hasABC was not found in clade 3. (C) Genetic relationships between emm89 strains in Japan and various emm/M protein serotype strains. Genetic relationships were inferred among 49 GAS strains of 23 emm/M types based on 73,030 concatenated core chromosomal SNPs using the maximum likelihood method. Three closed genomes (clade 1, MGAS11027; clade 2, MGAS23530; clade 3, MGAS27061) were used as references. Scale bar indicates nucleotide substitutions per site. S. pyogenes emm89 strain clade 1, 2, and 3 are shaded in blue, green, and pink, respectively. Various emm/M protein serotypes except emm89 strains are shaded in purple. FS, regions containing Sapporo city, Iwate prefecture, Fukushima prefecture, Sendai city, and Niigata city; TY, Toyama prefecture; TK, Tokyo prefecture; YH, Yokohama city; OS, regions containing Shiga prefecture, Kyoto city, Osaka prefecture, and Hyogo prefecture. YG, Yamaguchi prefecture. SS, isolates from STSS patients; NS, pharyngeal or asymptomatic isolates. 20xx indicates year of isolation.

Figure 2. Regional and clade distributions of emm89 strains in Japan.

(A) Regional distribution of emm89 strains in Japan. Genetic relationships between emm89 strains in Japan and emm89 reference strains (clade 1, MGAS11027; clade 2, MGAS23530; clade 3, MGAS27061) are shown. Genetic relationships were inferred among 164 strains based on 8866 concatenated core chromosomal SNPs using the maximum likelihood method. Strains are colored based on region of isolation, as indicated in the index. (B) Clade distribution of emm89 strains in Japan. Strains are colored based on clade, as indicated in the index.
Figure 3. STSS- and non-STSS-associated phylogenetic groups among emm89 clade 3 strains.

Strains are colored based on SS (STSS isolates) or NS (non-STSS isolates), as indicated in the index. Strains are classified as STSS- or non-STSS-associated phylogenetic groups, and termed SS (SS group 1, 2, 3, 4) and NS (NS group 1, 2) groups, respectively.

Figure 4. Hyaluronidase activity of emm89 S. pyogenes.

(A) Hyaluronidase HylA active or inactive sequence. Serotype M4 strain was shown to harbor HylA activity and serotype M1 strain possession of Asp to Val substitution at position 199 of the HylA sequence (D199V), which abolishes hyaluronidase activity (16). (B) Hyaluronidase activity on hyaluronan agar plate. Dotted circles indicate colony locations before incubating with 2 N acetic acid solution. Although 161 emm89 strains in this study harbored D199V in the HylA sequence, 117 of the strains were indicated to have hyaluronidase activity.
References

Figure 1. Hirose et al.
Figure 2. Hirose et al.
HylA active sequence of M4 strain
M4 strain \(\ldots \text{ENKENWWDYEIGTPRA}\ldots \)

HylA inactive sequence (D199V) of M1 strain
M1 strain \(\ldots \text{ENKENWVYEIGTPRA}\ldots \)

HylA inactive sequence of all emm89 strains in this study
FS01SS2011 \(\ldots \text{ENKENWVYEIGTPRA}\ldots \)
FS02SS2016 \(\ldots \text{ENKENWVYEIGTPRA}\ldots \)
FS03SS2017 \(\ldots \text{ENKENWVYEIGTPRA}\ldots \)
YH13SS2018 \(\ldots \text{ENKENWVYEIGTPRA}\ldots \)

A B

Figure 4. Hirose et al.

emn89

hylP1 (-)

hylP1 (+)

hylP1(-): 44 strains
hylP1 (+): 117 strains