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Biomarkers of spinal cord injury (SCI) could help determine the severity of the injury 
and facilitate early critical care decision making. We analyzed global gene expression in 
peripheral white blood cells during the acute injury phase and identified 197 genes 
whose expression changed after SCI compared to healthy and trauma controls and in 
direct relation to SCI severity. Unsupervised co-expression network analysis identified 
several gene modules that predicted injury severity (AIS grades) with an overall 
accuracy of 72.7% and included signatures of immune cell subtypes. Our findings 
indicate that global transcriptomic changes in peripheral blood cells have diagnostic 
and potentially prognostic value for SCI severity.
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INTRODUCTION 
 
Precision medicine (often interchangeably 
called personalized medicine) promises to 
optimize individualized treatment options 
based on demographic and genetic 
characteristics as well as the specific 
biological features of the presenting 
disorder. Cancer therapy has already 
benefited greatly from this approach,1,2 
where blood- and tissue-based bioassays 
are now routinely used for treatment 
planning.3,4 Here we present a strategy for 
extending this approach to the diagnosis and 
treatment of human spinal cord injury (SCI), 
a devastating and heretofore intractable 
condition characterized by injury 
heterogeneity and highly variable outcomes. 
Currently, SCI prognostics are based 
principally on acute evaluation of 
neurological status using sensory and motor 
exams including the American Spinal Injury 
Association (ASIA) grading system,5 which 
in the acute phase can be unstable and 
difficult to obtain, especially when patients 
are unresponsive or obtunded.6-9 Magnetic 
resonance imaging (MRI) provides 
invaluable information on severity and spinal 
cord level of injury, but is not always 
available and may be contraindicated for 
certain patients, e.g. those with penetrating 
metallic injuries.   
 The first attempts to discover SCI 
biomarkers of initial injury severity and long-
term outcomes, date back four decades.10-12 
Progress has been slow due at least in part 
to the diffuse regional presentation of acute 
SCIs and the difficulty of obtaining ultra-
acute samples and patient data. Most 
attempts have used proteomics to identify 
serum and cerebrospinal fluid (CSF) 
biomarkers associated with injury severity. 
This approach depends upon measuring 

proteins associated with CNS damage (e.g. 
GFAP, neurofilament protein) released into 
the bloodstream, or on the peripheral 
cytokine response to CNS-injury-induced 
chemokines.13-20 Recent work shows 
promise, with several target molecules 
providing some useful predictive value,21-26 
however, these circulating protein (and 
recently, RNA) markers are difficult to 
measure and subject to degradation. An 
alternative approach is to consider that 
circulating immune cells represent ‘sensors’ 
of CNS-injury-induced molecules, and that 
WBC transcriptomic changes provide a 
read-out of the complex peripheral immune 
response to the totality of signals associated 
with SCI over time. A recent study of WBCs 
in people with chronic SCI, for example, 
found reduced expression of genes 
associated with natural killer (NK) cell 
activity and increased expression of toll-like 
receptor and inflammatory cytokine genes27. 
These preliminary findings, although limited 
by a small number of cases, are consistent 
with observations that people with chronic 
SCI have suppressed immune responses 
and are more susceptible to infections.28-30  

TRACK-SCI (“Transforming 
Research And Clinical Knowledge-SCI”) is a 
multicenter prospective clinical study 
focused on acute critical care variables (e.g. 
MRI, multiple physiological variables, time to 
surgery) and blood transcriptomics as 
indices of severity and predictors of 
outcome.31-40 SCI has a profound impact on 
circulating white blood cells (WBCs), 
inducing peripheral inflammation and WBC 
phenotypic changes in a dynamic cascade 
that is likely to reflect the biological features 
of the evolving CNS lesion.41-44 TRACK-SCI 
provides a large WBC transcriptomic dataset 
that will be useful for developing RNA-based 
blood biomarkers of injury and recovery that 
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can be related to patient characteristics and 
multivariate outcomes. Utilizing advanced 
analytic methods, these blood biomarkers, 
along with other critical care variables, may 
be instrumental in the development of 
predictive algorithms for acute SCI treatment 
planning, to stratify patients for clinical trials 
and to predict long-term outcomes.   
We are using deep RNA sequencing and 
advanced analytics to develop a blood RNA 
biomarker profile for acute SCI. Here, we 
report that early WBC transcriptomic 
signatures alone can accurately predict 
injury severity on the ASIA impairment scale 
(AIS). Further, these signatures provide 
novel biological data that should be useful in 
understanding mechanisms of injury and 
repair. Our findings provide proof of concept 
for the development of an accurate blood 
RNA biomarker of acute SCI severity. These 
data provide a strong rationale for expanding 
this work to include longitudinal multivariate 
analysis of gene expression patterns across 
injury severities, individual patient 
characteristics, and time, in order to provide 
a comprehensive description of evolving 
WBC gene expression patterns and their 
relationships to long-term outcomes.  
 
RESULTS 
 
TRACK-SCI patient accrual, data 
collection, and retention  
 
TRACK-SCI protocols for patient enrollment 
and data collection have been described 
recently.45 Patients admitted to the 
emergency department at the Zuckerberg 
San Francisco General Hospital and Trauma 
Center (ZSFG) are recruited to the study and 
consented as soon as possible after 
admission. The TRACK-SCI protocol 
includes rapid pre-operative imaging, 

emergent transfer to the OR for 
decompression surgery as indicated, 
immediate blood collection and processing, 
followed by high-density ICU monitoring of 
vitals and daily sensorimotor and 
International Standards for the Neurological 
Classification of Spinal Cord Injury 
(ISNCSCI) exams (see Fig S1). To date, 179 
participants with SCI have been enrolled. 
The current report is based on deep 
sequencing of RNA from acute blood 
samples from 38 subjects with SCI, 10 
healthy uninjured controls (HC), and 10 
trauma controls with non-CNS injuries (TC; 
see Table 1).  
 
The WBC transcriptome separates SCI 
patients from trauma and healthy 
controls 
 
We isolated 4ml of peripheral blood from 38 
enrolled patients within a few hours (Fig S1, 
Table 1) after SCI. The blood was 
immediately processed, and total RNA was 
isolated from WBCs. The same procedure 
was followed for 10 TCs and 10 HCs. After 
RNAseq, raw counts were produced and 
normalized, and a T-distributed Stochastic 
Neighbor Embedding (t-SNE) plot was 
created using the principal components 
responsible for 90% of the variance (Fig 1A).  
The three groups are clearly separated 
based on their transcriptomic status at the 
time of the blood draw. These results 
support our hypothesis that the 
transcriptome of the WBCs contains 
valuable information about the 
pathophysiological status of the patients and 
warrant a more sophisticated and deeper 
analysis to reveal more details. Next, we 
performed differential gene expression 
(DGE) analysis among the three groups, 
revealing 2,096 genes that were significantly 
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altered (> 2-fold change, adjusted p-value < 
0.05) only in the SCI population (Fig 1B and 
S2). We then queried, how many of those 
genes display an expression pattern that 
follows the injury severity levels of the AIS 
grade. Among the 2,096 genes that were 
differentially expressed after SCI, 197 of 
them showed directional expression 

patterns with SCI severity. 117 of them 
increased their expression with injury 
severity and 80 decreased their expression 
with injury severity (Fig 1C). Gene ontology 
enrichment analysis showed that processes 
involved in the immune response and 
cellular secretion and localization were the 
most highly enriched. (Fig S3). 

 

 
 
Figure 1. Spinal cord injury induces transcriptomic changes in white blood cells compared to healthy and 
non-CNS trauma controls. A. 3-dimension t-SNE plot. Each point on the plot represents one patient. The gene 
expression values of 17,500 transcripts were used in a principal component analysis, and the components that 
account for 90% of the variance were collapsed in the three dimensions of the t-SNE plot. The three groups (healthy 
controls [HC], trauma controls [TC], and spinal cord injury [SCI]) occupy different locations in the 3-dimensional 
space indicating that the transcriptomic signature alone is sufficient to separate them (HC = 10, TC = 10, SCI = 
38). B. Differential gene expression analysis. The Venn diagram shows the intersection between differentially 
expressed genes for all three comparisons between HC, TC and SCI patients (fold-change > 2, adjusted p-value < 
0.05). C. From the Venn diagram, we selected the genes that are only significantly changed after SCI and not in 
the event of trauma (1,424 + 424 + 248 = 2,096). Out of those 2,096 genes, 197 exhibit changes according to the 
AIS grade. The heatmap shows the expression pattern of these 197 genes. The upper part shows 117 genes whose 
expression increases as SCI severity increases and the bottom part shows 80 genes whose expression decreases 
as SCI severity increases (HC = 10, TC = 10, AIS D = 11, C = 6, B = 4, A = 12 ; AIS grade evaluated between 3 
and 10 days post-SCI, and 5 patients did not receive an exam during that timeframe). 
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Co-expression network analysis reveals 
gene modules that predict SCI severity 
 
In order to study the modular organization of 
WBC transcriptomes in our sample cohort, 
we performed unsupervised gene co-
expression network analysis46,47 and 
identified 16 modules (arbitrarily designated 
M1-M16) for which SCI patients’ combined 
expression was significantly different from 
both TCs and HCs (Fig 2A). These modules 
represent coherent transcriptomic 
signatures in WBCs that covary specifically 
as a result of SCI and are therefore targets 
for biomarker generation as well as potential 
indicators of underlying pathology and 
recovery. Among these, M13 exhibited the 
strongest correlation with AIS grade 
(Spearman rho = 0.82, p-value = 1.56 x 10-

14). Fig 2B-C shows the details of top gene 
co-expression patterns for this module.  

Next, we wanted to determine 
whether any of these 16 modules, alone or 
in combination, could predict the initial SCI 
severity as indicated by the AIS grade 
assigned between days 3-10 after SCI. We 
therefore performed multinomial logistic 
regression with LASSO48 regularization to 
predict AIS grade using all 16 module 
eigengenes. We identified one gene module 
(M12; Fig. S4) that predicted AIS ‘A’ patients 
with 83.3% accuracy and a combination of 
five modules (M1, M5, M10, M13, and M16) 
that predicted AIS ‘D’ patients with 90.9% 
accuracy (Fig. S4, Tables 3 & S1). Our 
cohort included too few patients with ‘B’ or 
‘C’ classifications (n=4 and 6 respectively) to 
provide useful predictors of these grades 
(see supplemental files). Overall, our model 
shows 72.7% accuracy (p-value = 2.35 x 10-

5). We proceeded to test the diagnostic value 
of the identified modules to detect AIS ‘A’ 
and ‘D’ patients in our cohort using a 

receiver operating characteristic (ROC) 
analysis. The area under the curve for AIS 
‘A’ patients and AIS ‘D’ patients was 0.865 
and 0.938, respectively, confirming that our 
model can predict these two injury severities 
with high sensitivity and specificity, despite 
small sample sizes (Fig 2D). Together these 
data show for the first time that WBC 
expression profiles can very accurately 
classify SCI patients based on AIS grade.  
 
“Digital cytometry” and module 
enrichment analysis identifies WBC 
subtype differences between SCI and 
controls 
 
To determine whether cellular composition 
varied among WBCs from our sample 
cohorts, we performed cell-type 
deconvolution with CIBERSORTx,49,50 which 
infers cell-type proportions in bulk tissues 
from global gene expression patterns. 
Applying this method to our samples 
revealed the relative proportions of 22 
leukocyte subtypes. These “digital cell types” 
were then compared across groups (HC, TC 
and SCI) and AIS grade levels (Fig. S5A-B). 
Five cell types (neutrophils, resting NK cells, 
and resting CD4, naïve CD4 and gamma 
delta T cells) exhibited significantly different 
proportions among the 3 groups, but none of 
these were significant when AIS grades 
were compared.  

To clarify which cell types contributed 
to the co-expression modules that predict 
SCI severity, we cross-referenced module 
composition with cell type-specific gene sets 
from published single-cell RNA-seq 
datasets.49,51 The M12 module, which 
predicted AIS ‘A’ injury severity, was 
significantly enriched with genes expressed 
by resting NK cells, mast cells, and CD66+ 
granulocytes (Fisher’s exact test p-values of 
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2.9 x 10-7, 5.19 x 10-7, and 7.81 x 10-6 
respectively). The M13 module, which 
predicted AIS ‘D’ severity, was also 
significantly enriched with CD66+ 
granulocytes (p = 1.45 x 10-8) (see 
supplemental files). These data suggest that 

expression changes in WBCs associated 
with SCI can be further subdivided into 
specific contributions from distinct cell types, 
which could lead to refined assays and 
predictors.  

 

 
 
 
  

 
Figure 2. Gene co-expression network analysis reveals transcriptional modules in peripheral white 
blood cells that predict spinal cord injury severity. A. Analysis of module eigengene (PC1) scores by 
patient cohort reveals 16 SCI-specific gene co-expression modules following unsupervised gene co-expression 
network analysis. Some modules (e.g. M4) display a gradual change in gene expression, whereas in others 
(e.g. M1, M5) HCs and TCs are very similar to each other but different from SCIs. N = 10 for HCs and TCs and 
38 for SCIs. B – C. The M12 module predicts AIS ‘A’ SCI patients with 83.3% accuracy. In B is the heatmap of 
the top-seeded genes for this module, and in C is the eigengene score for each one of the patients (and 
controls) for this module. The graph in C shows the expression levels of the top 15 genes of the M12 module 
across all 58 samples. As expected of the analysis, these top genes of the module exhibit a strong co-
expression pattern. D. Receiver operating characteristic plots for the AIS ‘A’ against the remaining SCIs (left) 
and the AIS ‘D’ against the remaining SCIs (right). These plots show the strong predictive ability of our model 
for SCI patients with AIS ‘A’ and ‘D’. The AUC is 0.865 for the ‘A’ and 0.938 for the ‘D’. N = 12 ‘A’ vs 21 SCIs 
and 11 ‘D’ vs 22 SCIs (color scheme in x-axis labels in panel B is as follows: blue = HC, green =TC, brown = 
AIS ‘D’, purple = AIS ‘C’, salmon = AIS ‘B’, and red = AIS ‘A’). 
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DISCUSSION 
 
Early biomarkers of SCI could enable more 
efficient and personalized clinical 
treatments, as well as better stratification of 
patients for clinical trials, since early clinical 
evaluations often lack reliability.7,19 In 
contrast to existing biomarkers that require 
rapid access to complex machinery (e.g. MR 
scanning), fluid biomarkers are more 
accessible and can provide novel insights 
about systemic responses to SCI. Although 
previous studies have proposed large 
structural proteins in blood serum/plasma 
and CSF as fluid biomarkers of SCI,14,23,52 
these proteins are susceptible to proteases 
and degrade rapidly, rendering 
measurements of concentration variable and 
time sensitive. More recent studies of 
circulating miRNAs as biomarkers are 
promising since miRNAs are not as sensitive 
to degradation due to their small size (22nt) 
and the fact that most are protected inside 
exosomes.24,25,53,54  
        Our approach differs substantially from 
previous efforts to identify fluid biomarkers of 
SCI. First, we have analyzed potential 
biomarkers that are ‘safely housed’ in their 
cell of origin at the time of collection, as 
opposed to free-floating molecules in CSF or 
blood. Second, instead of pre-selecting 
candidate biomarkers in advance, we have 
performed a high-throughput analysis of 
17,500 transcripts from WBCs isolated from 
each patient. This high-dimensional readout 
of the immune response during the acute 
phase of the injury provides important 
information about how the periphery affects 
the progress of the central lesion and may 
lead to new hypotheses and targets for 
intervention. Our results indicate that global 
gene expression patterns in WBCs can 
reliably distinguish SCI patients from healthy 

and non-CNS trauma controls. Moreover, 
when overlaying these gene expression 
patterns with the widely used AIS injury 
grade classification system, we identified 
197 genes whose expression levels 
changed with increasing injury severity and 
may serve as novel fluid biomarkers of SCI. 
The list of these 197 genes includes a 
number of genes that seem appropriate, as 
well as some whose functions are yet to be 
delineated, which might provide clues to new 
therapeutic targets (see supplemental files). 
However, there is growing evidence (mainly 
from cancer research) to suggest that single 
genes do not usually make good 
biomarkers.55 Of course, genes do not work 
in isolation, and there is overwhelming 
evidence for reproducible transcriptional 
covariation in blood and other tissues, 
suggesting a modular organization to 
genomic function. These modules are not 
always neatly captured by existing gene 
ontologies, hence the need to perform 
unsupervised co-expression analysis. 
Multivariate analysis revealed 16 gene co-
expression modules associated with SCI, a 
subset of which were able to predict AIS ‘A’ 
and AIS ‘D’ SCI patients with impressive 
accuracy. From a clinical perspective this 
finding can be a ‘game-changer’ considering 
that in many instances, several hours and 
logistically challenging infrastructure (e.g. 
MRI) is needed even for confirmation of the 
SCI, let alone for determining the degree of 
severity.  

Another goal of our study is to predict 
long-term outcomes (e.g. the AIS grade at 6- 
and 12-months post SCI). We are collecting 
longitudinal data from enrolled patients and 
in the future will be able to extend our 
analysis in this fashion. Moreover, due to the 
well-known limitations of the AIS grade 
scale, additional outcome measures (e.g. 
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upper and lower extremity motor scores and 
sensory scores from the ISNCSCI 
neurological examination) could offer more 
detailed insights into patients’ conditions and 
enable more accurate predictions. As we 
increase the number of enrolled patients and 
sequenced blood samples, such analyses 
will be feasible.  

Although we have demonstrated 
proof-of-concept for our methodology in a 
sample of 38 SCIs, TRACK-SCI continues to 
enroll patients, with 179 participants to date. 
By combining multivariate and longitudinal 
analysis of WBC transcriptomes with 
detailed clinical information, we seek to 
create a novel framework for diagnosing SCI 
severity and predicting outcomes based on 
the systemic immune response. Such a 
framework could eventually replace the 
ASIA grading system or be used in 
combination to allow more precise clinical 
decisions. Additional studies with larger 
sample sizes will be required to validate 
these findings and move towards a practical 
RNA-based blood biomarker. Furthermore, it 
should be possible to determine whether 
diagnostic patterns reflect WBC responses 
to specific CNS-injury-induced signals such 
as CNS protein products and/or signaling 
molecules such as chemokines. The clear 
differentiation between expression profiles 
from trauma controls and SCI suggests that 
WBC transcriptomes contain latent 
information specific to CNS injury, raising the 
possibility that WBC RNA profiles may also 
respond to treatments that mitigate 
secondary damage or are associated with 
recovery of function. If so, the routine 
analysis of RNA expression profiles in blood 
may provide both a practical clinical tool and 
a new window into the biology of human 
CNS injury and its treatment. 
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MATERIALS AND METHODS 
 

TRACK-SCI patients and controls enrollment 
All procedures for this study were conducted with the approval of the Human Subjects Review 

Boards at the University of California at San Francisco (UCSF) and the U.S. Department of 

Defense Human Research Protection Office. All English and non-English speaking patients 

who presented to the emergency department (ED) and were diagnosed with a traumatic SCI 

were initially eligible for the study. Patients who were < 18 years old, in-custody, prisoners, 

pregnant, or on medically indicated psychiatric hold were excluded. Informed consent was 

sought for all patients. For patients who were unable to sign for themselves due to their injury, 

a witness unaffiliated with the study was present throughout the consenting process and 

signed on the patient’s behalf. Patients incapable of consenting themselves were initially 

enrolled via a legally authorized representative (LAR; next of kin) or another suitable surrogate 

when one was available, then later approached for patient consent. Patients and surrogates 

had the option to participate in all or some of the following study portions: blood draws, 

ISNCSCI exams, and/or follow-up assessments. Patients were compensated ($50) after each 

time point (hospital stay, 3-month phone call, 6-month in-person visit, 12-month in-person visit) 

for a total of $200.  

 

Non-SCI subjects were either healthy controls (n=10) or trauma controls (n=10). Healthy 

controls were recruited using IRB-approved recruitment flyers posted at ZSFG and from 

friends and family of enrolled SCI patients. Subjects contacted study coordinators, were 

interviewed and consented, and provided basic demographic information and biospecimens. 

Trauma controls were recruited from ED patients with traumatic but non-CNS injuries. The 

same basic demographic and biospecimen data were collected for these patients as SCI 

patients for comparison purposes patients except for multiple blood samples per patient. No 

monetary compensation for participation was provided for the control subjects.   

 

Patient data collection 
The foundation of the TRACK-SCI database is the NINDS-recommended common data 

elements (CDEs).56 Core CDEs are data elements that all SCI studies are strongly encouraged 

to use in collection of basic participant information. Additional measures from the International 

Spinal Cord Society (ISCoS) were also used. Data collection domains include demographic, 
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clinical, radiologic, and functional outcome measures. All data collected from these CDEs were 

housed in a Research Electronic Data Capture (REDCap)57,58 database and include more than 

21,000 data fields including additional institutional variables, calculated fields, repeated 

measures, date/time stamping of measures, and completion status log. Upon admission to the 

inpatient service, another 19,148 data fields regarding trauma characteristics, injury severity, 

blood pressure management, operating room procedures, interventions, hospital outcomes, 

high-frequency operating room vital signs, as well as motor-sensory exams and pain 

questionnaires are obtained from both paper and electronic medical records as well as 

participant interview. REDCap is in full compliance with Health Insurance Portability and 

Accountability Act (HIPAA) security standards for protection of personal health information 

(PHI). The following CDE categories comprised the demographic and clinical data domain: (1) 

demographics, (2) health history, (3) injury-related events, (4) assessments and examinations. 

A total of 229 variables concerning patient demographics, medical history, and consent/contact 

information were collected through abstraction from electronic medical record systems and 

participant interviews.  

 

The International Standard for Neurological Classification of Spinal Cord Injury (ISNCSCI)59 

was used to assess motor and sensory function, and group patients by injury severity based 

on the ASIA impairment scale (AIS) which ranges from A (most severe - complete) to E (not 

impaired). ISNCSCI exams were conducted by trained personnel who completed the ASIA 

International Standards Training E Program (InSTEP) and in-person training. ISNCSCI exams 

were performed on all patients during the initial admission, either as part of clinical care if the 

treating provider completed InSTEP training, or separately for the research study if the 

ISNCSCI was not performed for clinical purposes. Occasionally, an ISNCSCI was not 

performed or not completed during the admission, usually because the patient was excessively 

sedated and could not participate in the exam. In the case of incomplete ISNCSCI exams, the 

assessor gave an estimated AIS grade based on the collected data and the overall clinical 

picture of the patient.  

If possible, patients completed examinations at regular intervals including admission 

(day 0 = 0-23 hours from injury), every 24 hours until post-injury day 7, discharge, 6-month 

follow-up (+/- 2 weeks), and 12-month follow-up (+/- 2 weeks). All ISNCSCI exams results 

were included in the REDCap database. 
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Biospecimen collection 
Two blood samples were collected, one, 4ml, for total RNA extraction from white blood cells 

(WBCs) and the other, 6ml, for serum isolation. Samples were aliquoted and frozen at -80oC 

within 1 hour of collection. To preserve WBC concentrations, 7.2mg K2-EDTA vacutainer tubes 

were used for WBCs collection and subsequent RNA extraction, instead of K3-EDTA 

vacutainer tubes. The second blood sample was collected in 6 ml Z serum clot activator 

vacuette tubes for serum extraction. To prevent reduction in sample volume, externally 

threaded cryovials were used for serum storage. Serum was divided into multiple 500 µl 

aliquots for storage. An inventory system was developed to track time of collection, processing 

and storage for all biospecimens.  

 

WBC isolation and RNA extraction 
Blood was centrifuged at 1,500 rpm for 15 minutes at room temperature within 0-15 minutes 

from blood draw. Then, the interface layer (buffy coat) was carefully aspirated with a pipette 

and placed in 10mL of 1X solution of Red Blood Cell Lysis Buffer (BioLegend) for 15 minutes 

in the dark. After the 15-minute incubation, the solution was centrifuged at 1,500 rpm for 10 

minutes. The supernatant was discarded, and the cell pellet resuspended in 1mL of TRIZOL 

(Ambion) and either stored at -80oC or immediately processed for RNA extraction. Total RNA 

from WBCs was extracted using the TRIZOL method. The RNA yield was between 15 and 

25μg per 5ml peripheral blood. 1μg of the total RNA was then used for generating the Illumina 

cDNA library, which was used for the downstream RNAseq. 

 

RNA sequencing 
1μg of total RNA was used for the library synthesis. cDNA libraries were synthesized using 

Illumina’s TruSeq Stranded Total RNA with Ribo-Zero Globin kit. The kit depletes ribosomal 

RNA which makes up more than 90% of total RNA, and globin mRNA that is present in very 

high levels in blood total RNA. The libraries were quantified using a Thermo Scientific 

Nanodrop 2000c spectrophotometer, and their quality and average fragment size was 

assessed using Agilent’s DNA 1000 kit and Agilent’s 2100 Bioanalyzer. After quantification, 

equal amounts of 10 libraries, each one with different barcoded adapters, were pooled 

together to be sequenced in one lane of the Illumina’s HiSeq4000 sequencer. Based on the 

specifications of the HiSeq4000 and our sample pooling per lane, we aimed to get about 40 

million reads per sample which has been shown to be sufficient to reveal the vast majority of 
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the differentially expressed genes of a well-annotated genome.60 The sequencing output of our 

samples can be seen in Table S2.  

 

Bioinformatic analysis 
Data analysis was performed in R61,62 using the statistical packages that are specifically 

mentioned below as well as the packages dplyr63, ggplot264, cowplot65, table166, rgl67, 

PCAtools68, magick69, EnhancedVolcano70, VennDetail71, Rtsne72, and ggdendro.73 The raw 

reads of the fastq files were tested for quality control using the FastQC software74 and were 

then aligned to the human reference genome (hg38 from UCSC) using the software 

TopHat2.75 After the alignment, we used the featureCounts76 program to summarize the gene 

counts, and then the programs edgeR77 and limma78 for differential gene expression analysis 

through linear modeling. Gene ontologies enrichment analysis was performed with the 

GOrilla79 tool and the visualization of the enriched GO terms with the tool ReviGO.80   

 
SCI-specific differentially expressed genes and neurological outcome 
Preliminary examination of the data using network methods81 revealed several samples as 

outliers as well as library and sequencing batch effects. Using the ComBat82 function of the 

sva83 package in R to target the library batch effect we were able to remove both batch effects 

and as a result no sample appeared as an outlier anymore. We performed differential gene 

expression analysis among the three groups (HC, TC, and SCI) and after the intersection of 

the three comparisons (HC vs TC, HC vs SCI, and TC vs SCI; fold change > 2 and adjusted p-

value < 0.05) we selected only the genes that  significantly and specifically changed their 

expression after SCI (n = 2,096). In order to examine the relationship between the gene 

expression changes and injury severity, we grouped the SCI patients based on the assigned 

AIS grade given after a neurological examination between days 3 and 10 at the hospital. From 

the 38 SCI patients whose transcriptome was sequenced, 5 did not have an AIS grade during 

that time window and hence were removed from this part of the analysis. We then averaged 

the expression levels of each gene per group and queried for genes which exhibit a stepwise 

increased or decreased expression as the SCI severity increased. That query resulted in 197 

genes shown in Fig 1C. The complete gene list can also be found in the supplemental files. 
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Gene co-expression network analysis and identification of SCI-specific gene modules 
The normalized expression matrix that was generated for the differential gene expression 

analysis with edgeR was used as a template for the unsupervised gene co-expression network 

analysis.46,47 We built a series of gene co-expression networks and identified one that included 

the gene module with the highest Spearman correlation to AIS grade. That network contained 

57 gene modules. Using one-way ANOVA with Tukey’s multiple comparison correction we 

identified 17 gene modules that were highly specific for SCI (significantly different from both 

HC and TC; adjusted p-value < 0.05). One of these modules contained genes annotated to be 

involved in rRNA processes, which likely represented an artifact, and was eliminated from the 

subsequent analysis. The 16 remaining SCI-specific modules (M1 – M16; Fig 2A) were used 

to create a predictive model of SCI severity using multinomial logistic regression.  

 
Multinomial logistic regression with regularization 

We generated a predictive model of SCI severity using the eigengenes (first principal 

components)84 of the 16 SCI-specific gene modules as predictors. AIS at discharge from the 

hospital was used as the target outcome variable in a multinomial logistic regression model. In 

order to deal with the high number of predictors (16 modules), LASSO regularization was 

applied, using leave-one-out cross-validation to determine the regularization parameter (λ). 

The final model was chosen with λ producing a model with a misclassification error at one 

standard deviation from the minimal misclassification error. The model was specified using the 

glmnet48 and the glmnetUtils85 packages in R. The model was assessed by confusion matrix 

metrics (Tables 3 & S1) of internal prediction obtained using the caret R package.86 Overall 

accuracy (percentage of correct classification) was 72.7% with a 95%CI of 54.5-86.7%, 

resulting in significant accuracy (p-value<0.0001) against random classification (No Information 

Rate of 36.4%). The uniform weighted overall accuracy (accounting for class unbalance) was 

62.3%, with accuracy for AIS ‘A’ = 83.3%, AIS ‘B’ = 25%, AIS ‘C’ = 50%, and AIS ‘D’ = 90.9%. 

Receiver operating characteristic (ROC) curves for each AIS class were obtained by binarizing 

the problem (e.g. for AIS ‘A’, A = 1; B, C, D = 0) and re-running the model as a binary 

classification. The curves were obtained using the roc() function of the pROC R package87 and 

smoothing transformation was applied to each ROC curve using the smooth() function of the 

pROC R package.  
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CIBERSORTx and module enrichment analysis 
CIBERSORTx50 is a machine learning algorithm that uses deconvolution methods to infer the 

proportions of cell types from gene expression patterns in bulk tissues. It is called digital 

cytometry because it performs an analogous function to regular flow cytometry without the 

need to physically isolate cells. We used the CIBERSORTx tool 

(https://cibersortx.stanford.edu/index.php) on all 58 of our samples and cross-referenced it with 

the LM22 signature49 using 100 permutations. LM22 is a validated leukocyte gene signature 

matrix containing 547 genes that distinguish 22 human hematopoietic cell types. The output of 

the algorithm is the relative abundance of each of the 22 subtypes for all samples (Fig S5A). 

For enrichment analysis, modules were defined as all unique genes with positive kME values 

(Pearson correlation coefficients of module eigengenes)84 that were significant after applying a 

Bonferroni correction for multiple comparisons (p < 0.05 / (# genes × # modules)). If a gene 

was significantly correlated with more than one module eigengene, it was assigned to 

the module for which it had the highest kME value. Enrichment analysis was performed for each 

gene set of interest with published human RNA-seq datasets,49,51 using a one-sided Fisher's 

exact test as implemented by the fisher.test R function. 
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Supplementary Figure 1. Flowchart of patient enrollment, data acquisition and analytic 
pipeline. In TRACK – SCI, as soon as a confirmed SCI patient is admitted and consents to 
participate in the study, our team collects clinical data during all stages of the hospital stay and 
at 3, 6 and 12 months post-injury (in total more than 22,000 data points for each patient). Blood 
is also collected as early as possible after hospital admission (day 0) and at days 1, 2, 3 and 5 
as well as at 6- and 12-months post injury. After the blood draw, white blood cells are isolated, 
and RNA is extracted for RNAseq. The RNAseq data from SCI patients along with RNAseq data 
from Healthy and Trauma Controls are analyzed using both supervised and unsupervised 
methods with the goal of creating a predictive model for injury severity. 
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Supplementary Figure 2. Differential gene expression analysis of SCI patients vs. healthy 
and trauma controls reveals many genes induced specifically upon SCI. A. Volcano plots 
of the 3 comparisons between Healthy Controls (HC), Trauma Controls (TC) and SCI patients 
(SCI). B. Heatmap of the 2,096 differentially expressed genes after SCI but not trauma (fold-
change > 2, adjusted p-value < 0.05; HC = 10, TC = 10, AIS D = 11, C = 6, B = 4, A = 12).   
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Supplementary Figure 3. Gene Ontology (GO) enrichment analysis of the directional with 
SCI severity differentially expressed genes, suggests an important role of inflammation 
and cellular transport and localization in classifying SCI patients. A. Visualization of the 
enriched GOs of the genes that increase their expression as the AIS grade increases. The bubble 
color shading indicates the p-values (stronger shading = lower p-value) and the bubble size the 
frequency of the GO in the underlying GO Annotation database. The lines link highly similar GO 
terms and the width of the line indicates the degree of similarity. B. The bar plot shows the number 
of differentially expressed genes in each one of the significant GO terms. The shade of each bar 
indicates the p-value (stronger shading = lower p-value).    
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Supplementary Figure 4. Multinomial logistic regression identifies specific gene modules 
with the capacity to accurately predict AIS ‘A’ and AIS ‘D’ SCI patients. For AIS ‘A’ SCI patients 
one gene module (M12) is sufficient to predict the injury class with 83.3% accuracy. Interestingly, 
five gene modules (M13 in Fig.2B-C, M1, M5, M10 and M16) are required to predict AIS ‘D’ SCI 
patients with an impressive 90.9% accuracy. For each one of the modules in this figure, on the left 
is a heatmap with the top-seeded genes for the module and the eigengene score for each patient 
(and control); on the right are the expression patterns (in arbitrary units) of the top 15 genes with 
the highest correlation to each module eigengene (color scheme in x-axis labels is as follows: blue 
= HC, green =TC, brown = AIS ‘D’, purple = AIS ‘C’, salmon = AIS ‘B’, and red = AIS ‘A’). 
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Supplementary Figure 5. Digital cytometry using CIBERSORTx measures relative 
abundance of 22 distinct leukocyte subtypes in SCI and control patients. We used a 
recently created machine learning algorithm (CIBERSORTx) which uses deconvolution 
methods to infer cell type proportions based only on gene expression patterns. We cross-
referenced the transcriptomes of all SCI patients and controls with the leukocyte gene signature 
matrix (LM22) and estimated relative abundances for 22 leukocyte subtypes. A. The stacked 
bar plots show the relative abundance of the 22 digital cell types for each of the SCI patients 
and controls. B. Left shows group averages and right shows AIS grade averages. C. One-way 
ANOVA for each “digital” cell type showed statistically significant differences for neutrophils, 
resting NK cells, CD4 resting T cells, CD4 naïve T cells, and gamma delta T cells with adjusted 
p-values < 0.05. Tukey’s test showed that for CD4 naïve and gamma delta T cells the SCI group 
is significantly different from both control groups. No statistically significant difference was 
identified among AIS grades (color scheme in x-axis labels in panel A is as follows: blue = HC, 
green =TC, brown = AIS ‘D’, purple = AIS ‘C’, salmon = AIS ‘B’, and red = AIS ‘A’). 
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 HC 
(n=10) 

TC 
(n=10) 

SCI 
(n=38) 

Sex    

Male 8 (80.0%) 6 (60.0%) 25 (65.8%) 

Female 2 (20.0%) 4 (40.0%) 13 (34.2%) 

Race    

Asian 4 (40.0%) 2 (20.0%) 10 (26.3%) 

Black or African-American 0 (0%) 0 (0%) 5 (13.2%) 

Hispanic 0 (0%) 1 (10.0%) 3 (7.9%) 

White 4 (40.0%) 4 (40.0%) 17 (44.7%) 

Other 0 (0%) 3 (30.0%) 0 (0%) 

Unknown 2 (20.0%) 0 (0%) 3 (7.9%) 

Age (years)    

Mean (SD) 49.4 (12.2) 41.7 (18.0) 55.3 (20.0) 

Median [Min, Max] 51.0 [31.0, 67.0] 42.0 [22.0, 78.0] 53.5 [20.0, 89.0] 

Missing 1 (10.0%) 0 (0%) 0 (0%) 

Injury Severity Score (ISS)    

Mean (SD) NA (NA) 6.57 (4.35) 27.8 (13.2) 

Median [Min, Max] NA [NA, NA] 5.00 [1.00, 14.0] 26.5 [9.00, 75.0] 

Missing 10 (100%) 3 (30.0%) 2 (5.3%) 

Prior CNS Pathology    

Yes 0 (0%) 0 (0%) 12 (31.6%) 

No 10 (100%) 10 (100%) 21 (55.3%) 

Unknown 0 (0%) 0 (0%) 5 (13.2%) 

Concurrent TBI    

Yes 0 (0%) 0 (0%) 8 (21.1%) 

No 10 (100%) 10 (100%) 28 (73.7%) 

Unknown 0 (0%) 0 (0%) 2 (5.3%) 

Time from blood draw (hours post injury)    

Mean (SD) NA (NA) 21.5 (5.75) 30.3 (18.9) 

Median [Min, Max] NA [NA, NA] 20.0 [15.0, 32.0] 23.0 [5.00, 97.0] 

Missing 10 (100%) 4 (40.0%) 0 (0%) 

 
Table 1. Demographic data for patients in the analysis.  
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 A 
(n=12) 

B 
(n=4) 

C 
(n=6) 

D 
(n=11) 

Overall 
(n=33) 

Level of injury      

Cervical 2 (16.7%) 3 (75.0%) 3 (50.0%) 10 (90.9%) 18 (54.5%) 

Thoracic 8 (66.7%) 1 (25.0%) 1 (16.7%) 0 (0%) 10 (30.3%) 

Lumbar 1 (8.3%) 0 (0%) 0 (0%) 1 (9.1%) 2 (6.1%) 

Unable to determine 1 (8.3%) 0 (0%) 2 (33.3%) 0 (0%) 3 (9.1%) 

AIS actual or estimate      

actual 7 (58.3%) 1 (25.0%) 3 (50.0%) 9 (81.8%) 20 (60.6%) 

estimate 5 (41.7%) 3 (75.0%) 3 (50.0%) 2 (18.2%) 13 (39.4%) 

Upper Extremities Motor Score 
           (out of 50 points) 

     

Mean (SD) 39.9 (17.6) 20.3 (25.7) 26.0 (21.4) 34.7 (14.4) 34.0 (17.9) 

Median [Min, Max] 50.0 [0.00, 50.0] 7.00 [4.00, 50.0] 19.0 [9.00, 50.0] 42.0 [12.0, 50.0] 44.0 [0.00, 50.0] 

Missing 2 (16.7%) 1 (25.0%) 3 (50.0%) 1 (9.1%) 7 (21.2%) 

Lower Extremities Motor Score 
           (out of 50 points) 

     

Mean (SD) 5.00 (15.8) 5.00 (4.58) 2.33 (3.21) 46.2 (5.75) 20.5 (23.1) 

Median [Min, Max] 0.00 [0.00, 50.0] 6.00 [0.00, 9.00] 1.00 [0.00, 6.00] 49.5 [36.0, 50.0] 6.00 [0.00, 50.0] 

Missing 2 (16.7%) 1 (25.0%) 3 (50.0%) 1 (9.1%) 7 (21.2%) 

Sensory Score (Touch) 
    (out of 112 points) 

     

Mean (SD) 48.4 (19.2) 98.0 (NA) 24.5 (6.36) 89.8 (23.7) 63.1 (31.3) 

Median [Min, Max] 46.5 [15.0, 74.0] 98.0 [98.0, 98.0] 24.5 [20.0, 29.0] 96.5 [60.0, 112] 60.0 [15.0, 112] 

Missing 4 (33.3%) 3 (75.0%) 4 (66.7%) 5 (45.5%) 16 (48.5%) 

Sensory Score (Pain) 
  (out of 112 points) 

     

Mean (SD) 49.0 (19.1) 98.0 (NA) 24.0 (12.7) 81.5 (22.7) 60.4 (28.6) 

Median [Min, Max] 47.0 [15.0, 74.0] 98.0 [98.0, 98.0] 24.0 [15.0, 33.0] 74.5 [61.0, 110] 61.0 [15.0, 110] 

Missing 4 (33.3%) 3 (75.0%) 4 (66.7%) 5 (45.5%) 16 (48.5%) 

Time of ISNCSCI (days)      

Mean (SD) 5.08 (2.68) 4.00 (2.00) 3.83 (0.983) 4.73 (1.79) 4.61 (2.06) 

Median [Min, Max] 4.00 [3.00, 10.0] 3.00 [3.00, 7.00] 3.50 [3.00, 5.00] 5.00 [3.00, 7.00] 4.00 [3.00, 10.0] 

 
 
Table 2. Neurological examination of the SCI patients. To avoid the previously reported 
variability of the AIS grade during the first 2 days after SCI, we used the AIS grade assigned 
between days 3 and 10 post SCI in our analysis. 5 out of 38 SCI patients whose blood was 
sequenced did not have an examination during that time period and were therefore excluded 
from the analysis.  
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 Reference 

Pr
ed

ic
tio

n 

 A B C D 

A 10 2 2 1 

B 0 1 0 0 

C 0 0 3 0 

D 2 1 1 10 
 
 
Table 3. Confusion matrix. This table known as a confusion matrix, shows the performance of 
our model. One can see that from the 12 AIS ‘A’ patients our model predicts 10 of them correctly 
(Sensitivity = 83.3%) but also misclassifies 5 more patients as ‘A’ (Specificity = 76.2%). For AIS 
‘B’, ‘C’ and ‘D’ the sensitivity is 25%, 50% and 90.9% respectively, and the specificity is 100%, 
100% and 81.2% respectively. Overall, the accuracy of our model is 72.7% (p = 2.35 x 10-5). 
 
 

 A B C D 
Sensitivity 0.833 0.250 0.500 0.909 

Specificity 0.762 1.000 1.000 0.818 

Positive Predictive Value 0.667 1.000 1.000 0.714 

Negative Predictive Value 0.889 0.906 0.900 0.947 

Precision 0.667 1.000 1.000 0.714 

Recall 0.833 0.250 0.500 0.909 

F1 0.741 0.400 0.667 0.800 

Prevalence 0.364 0.121 0.182 0.333 

Detection Rate 0.303 0.030 0.091 0.303 

Detection Prevalence 0.455 0.030 0.091 0.424 

Balanced Accuracy 0.798 0.625 0.750 0.864 

Model Accuracy | Weighted Accuracy 0.727 | 0.623 

 
 
Table S1. Predictive model summary statistics. 
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 HC 
(N=10) 

TC 
(N=10) 

SCI 
(N=38) 

Overall 
(N=58) 

Number of reads (in millions)     

Mean (SD) 45.7 (5.52) 38.6 (5.10) 41.0 (7.57) 41.4 (7.13) 

Median [Min, Max] 45.9 [38.5, 56.6] 38.9 [27.6, 44.5] 40.5 [26.8, 73.4] 40.9 [26.8, 73.4] 

% Perfect barcode     

Mean (SD) 97.5 (0.593) 96.7 (1.09) 97.5 (0.696) 97.4 (0.815) 

Median [Min, Max] 97.3 [96.8, 98.4] 96.6 [95.2, 98.4] 97.4 [96.1, 98.7] 97.3 [95.2, 98.7] 

% One mismatch barcode     

Mean (SD) 2.48 (0.593) 3.33 (1.09) 2.47 (0.696) 2.62 (0.815) 

Median [Min, Max] 2.72 [1.60, 3.25] 3.42 [1.59, 4.84] 2.56 [1.28, 3.87] 2.71 [1.28, 4.84] 

Yield (Mbases)     

Mean (SD) 2320 (288) 1940 (253) 2070 (387) 2090 (366) 

Median [Min, Max] 2320 [1950, 2890] 1960 [1410, 2270] 2030 [1340, 3740] 2050 [1340, 3740] 

% >= Q30 bases     

Mean (SD) 97.5 (0.452) 97.8 (0.226) 97.7 (0.358) 97.7 (0.362) 

Median [Min, Max] 97.6 [96.9, 98.0] 97.9 [97.5, 98.0] 98.0 [96.8, 98.1] 97.9 [96.8, 98.1] 

Mean Quality Score (max = 40)     

Mean (SD) 39.5 (0.133) 39.6 (0.0529) 39.6 (0.0992) 39.6 (0.101) 

Median [Min, Max] 39.6 [39.4, 39.7] 39.6 [39.5, 39.7] 39.7 [39.3, 39.7] 39.6 [39.3, 39.7] 

 
 
Table S2. Sequenced samples output.  
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