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Abstract: Neuronal morphologies provide the foundation for the electrical behavior of
neurons, the connectomes they form, and the dynamical properties of the brain. Compre-
hensive neuron models are essential for defining cell types, discerning their functional roles
and investigating structural alterations associated with diseased brain states. Recently, we
introduced a topological descriptor that reliably categorizes dendritic morphologies. We ap-
ply this descriptor to digitally synthesize dendrites to address the challenge of insufficient
biological reconstructions. The synthesized cortical dendrites are statistically indistinguish-
able from the corresponding reconstructed dendrites in terms of morpho-electrical properties
and connectivity. This topology-guided synthesis enables the rapid digital reconstruction
of entire brain regions from relatively few reference cells, thereby allowing the investigation
of links between neuronal morphologies and brain function across different spatio-temporal
scales. We synthesized cortical networks based on structural alterations of dendrites asso-
ciated with medical conditions and revealed principles linking branching properties to the
structure of large-scale networks.

Keywords: Dendritic morphology; Topological synthesis; Artificial neuron; Topological
Morphology Descriptor, Morphological synthesis
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Graphical abstract. A topological model of neuronal shapes is used to investigate the link
between the branching patterns of dendritic morphologies and the connectivity of the neuronal
networks they form. Starting from reconstructed cells (in black) of cortical dendrites, we extract the
topological barcode that is used to create a statistically similar synthesized pyramidal cell (in red),
and respectively a group of pyramidal cells of the same morphological type. From reconstructed
cells examples of all layers and morphological types we generate synthesized dendrites and build
a synthesized cortical column (colors corresponds to cortical layers). The synthesized dedrites are
statistically similar to the reconstructed dendrites in terms of morpho-electrical properties and the
connectome of the synthesized column (colored connectome) is almost indistinguishable from the
connectome of the reconstructed column (greyscale).
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Introduction

Neuronal morphologies play a crucial role in governing a neuronal network’s dynamical prop-
erties, as they influence the functions of single neurons (Häusser et al. 2000, Smith et al.
2013, Yi et al. 2017) and constrain the contact points between neurons (Chklovskii 2004,
Wen et al. 2009, Cuntz et al. 2012). The importance of structural properties of neurons has
been shown in studies that revolutionized our understanding of brain functions, such as the
first description of neuronal networks by Ramon y Cajal (Cajal 1899), who argued that the
shape of neurons reflects the communication between them, the description of the integrative
functions of neuronal dendrites by Willfrid Rall (Rall 1959), and the mathematical modeling
of ionic mechanisms underlying the initiation and propagation of action potentials by Alan
Hodgkin and Andrew Huxley (Hodgkin and Huxley 1952). Ramon y Cajal argued that the
shape of neurons reflects the communication between them (Cajal 1911). A century later,
the evidence that the wide variety of neuronal shapes supports the composite functional
roles of different cell types is irrefutable, leading to broad a plethora of projects dedicated
to harvesting cellular morphologies from various brain regions and species (Peng et al. 2015,
Economo et al. 2016, Benavides-Piccione et al. 2019, Gouwens et al. 2019). A burning
challenge of our time is to untangle the still largely unknown roles of distinct morphological
cell types.

Recent advances in manual (Economo et al. 2016, Benavides-Piccione et al. 2019,
Gouwens et al. 2019) and automatic reconstruction techniques (Peng et al. 2015), as well as
the systematic collection and registration of digital morphologies in standardized databases
(Ascoli et al. 2007, Halavi et al. 2008, Akram et al. 2008), have accelerated the acquisition
of neuronal reconstructions. We are still far, however, from having sufficient reconstructions
of unique morphologies to populate biologically realistic networks of a whole brain region
(1M neurons for the mouse somatosensory cortex, 10M neurons for the mouse isocortex, Eroe
et al. 2018, Herculano-Huzel 2006). Digital reconstruction of physiologically realistic neu-
ronal networks (Markram et al. 2015, Egger et al. 2014) requires a large number of distinct
neuronal shapes (Shillcock et al. 2016, Landau et al. 2016, Ramaswamy et al. 2012); the
reconstruction of a single cell is an expensive and tedious process requiring the collaboration
of several reconstruction experts (Farhoodi1 et al. 2019). Even laboratories that dedicate
their efforts to large-scale data harvesting can reconstruct only a limited number of cells
per year (Janelia, Winnubst et al. 2019, AllenBrain, Gouwens et al. 2019). These datasets
are invaluable for identifying the fundamental morphological characteristics of different cell
types, but it is unrealistic to expect that adequate numbers of single cell reconstructions can
be acquired in this way. A generative model for digital cells that accurately reproduces the
shapes of reconstructed neuronal morphologies is thus essential.

A crucial obstacle to the computational generation of neurons (Hillman 1979) is the
difficulty in capturing and recreating the correlations between morphological features that
arise from highly complex developmental processes, especially given the small number of
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available examples for each morphological type (m-type). Biophysically accurate models
simulate detailed neural growth by integrating the known molecular mechanisms of neuronal
development (Zubler and Douglas 2009), thus capturing the correlations in cellular growth.
These models focus on the microscopic scale of growth, thereby hindering the computational
synthesis of large numbers of neurons. Alternatively, phenomenological synthesis models
are based on either fundamental mathematical principles (Luczak 2006, Cuntz et al. 2010)
or statistical sampling of the morphological distributions (Ascoli et al. 2001, Koene et
al. 2009). Mathematical models study the effect of different factors on neuronal growth,
such as spatial embedding (Luczak 2006, Luczak 2010), minimization of wiring cost (Cuntz
2010), and self-referential forces (Samsonovich and Ascoli 2003, Memelli 2013). These models
require few parameters and provide good intuition about mechanisms involved in neuronal
growth, but require adjustments for different cell types and include additional structural
properties. Statistical models (Ascoli et al. 2001, Koene et al. 2009, Lopez-Cruz et al.
2011) generate cells of a given morphological type with high accuracy (Koene et al. 2009),
but often overlook biologically relevant feature correlations. In order to identify these feature
correlations, manual selection of feature dependencies is required (Lopez-Cruz et al. 2011),
which renders statistical approaches computationally expensive and hard to generalize.

The limitations of these models demonstrate the necessity of combining mathematical
and statistical properties into a unified synthesis model that circumvents the explicit selec-
tion of correlated features, while also being computationally tractable. We developed such
a synthesis algorithm based on the Topological Morphology Descriptor, TMD (Kanari et al.
2018), which encodes both the topological and the geometric properties of neurons into a
single descriptor, the persistence barcode. The persistence barcode of a neuron encodes the
start and end distances (i.e., radial or path distance) of all branches within a tree as pairs of
numbers. Equivalently, the persistence diagram represents the pairs of start - end distances
in a 2D plane. We used this descriptor to define the bifurcation and termination proba-
bilities during synthesis; the coupling of these probabilities provides a method to implicitly
reproduce key correlations between morphological features. The persistence barcode of dif-
ferent cell types is thus sufficient to capture the different growth mechanisms that lead to
the distinct shapes of dendrites. Additional morphological features (soma size, trunk orien-
tation, and thickness of branches, see SI:Synthesis Input) are necessary to capture structures
that are complementary to the branching properties. Using the topological neuronal synthe-
sis (TNS) algorithm, we can efficiently synthesize millions of unique neuronal morphologies
(10M cells in 4h). A multi-stage validation is then performed to ensure that three modalities
of reconstructed neurons are accurately reproduced: morphological characteristics, electrical
activity of single cells, and the connectivity of the network they form.

The TNS algorithm is also sufficiently versatile to be applied to a large variety of cell
types without parameter optimization. Few exemplar morphologies (for example, for L4
TPC only 15 cells) are required to capture the diversity of neuronal shapes within a re-
constructed population. The universality of TNS offers a unique opportunity to model and
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study systems that are not accessible with current methods. As an example, we generalize
the available neuronal reconstructions of the somatosensory cortex (morphological recon-
structions published in Markram et al. 2015) to other regions of the neocortex of varying
cortical thicknesses. We demonstrate that an appropriate mathematical transformation that
accounts for the different neocortical thicknesses is necessary and sufficient to generate pyra-
midal cells with a gradient of structural properties. This structural gradient of pyramidal
cell sizes is in agreement with recent findings, and has been reported to contribute to the
unique information processing of neurons depending on their location in the rodent neocortex
(Fletcher and Williams 2019).

Last but not least, TNS provides a tool to directly investigate the link between local
morphological properties and the connectivity of the neuronal network they form. This
approach is of particular interest for medical applications, as it enables the investigation
of diseases in terms of the emergence of global network pathology from local structural
changes in neuron morphologies. Moreover, TNS offers a technique to generate neuronal
morphologies for which very few or no reconstructions are available, as long as an appropriate
mathematical transformation can be defined between the target neuronal population and an
existing set of neuronal reconstructions. As an example of this process, we reproduced
the effects of dendritic alterations associated to stress disorders (Curran et al. 2017, Dioli
et al. 2019, Tornese et al. 2019, Sandini et al. 2020). Two relevant structural changes
are simulated (Curran et al. 2017, Dioli et al. 2019, Tornese et al. 2019): the shrinkage of
dendritic processes and the loss of dendritic branches, by applying two types of mathematical
transformations to all the dendrites within a rodent cortical column. Surprisingly, these two
types of local dendritic alterations affect the resulting cortical networks quite differently.
Neuronal networks formed from dendrites that are gradually shortened collapse rapidly, as
they lose connections almost linearly with the total loss of dendritic extent. On the other
hand, networks based on dendrites that gradually lose branches of increasing lengths are more
resistant to loss of connectivity. These observations suggest the existence of a homeostatic
mechanism that preserves the overall network functionality, as long as total dendritic extents
remain within a reasonable limit, making the brain networks sufficiently robust to support
the complex cortical processes that are fundamental for a healthy brain.

Results

The morphological development of neurons in the brain is a complicated process that de-
pends on both genetic and environmental components. The processes that contribute to
neuronal growth differ between species, brain regions, and morphological types. Advances in
experiments and mathematical and computational models have converged on a set of com-
monly accepted stages of morphological growth: the initiation of neurites, neurite elongation,
axon path-finding, and neurite branching (Cuntz et al. 2006, Graham and van Ooyen 2006).
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These growth stages are useful for computational modeling of the generation of synthesized
neurons. In this study we focus on the computational synthesis of dendrites and thus will
not consider axon path-finding. While biological development is not simulated, biological
principles of morphological growth inform the design of our computational algorithm that
synthesizes dendritic morphologies.

Figure 1: Method of Topological Neuron Synthesis. A. Overview of dendritic synthesis based on
four stages of growth. I. Soma generation and initiation of the dendrites on the soma surface. II.
Stochastic definition of bifurcation, termination, and continuation based on topological descriptor
(B). III. Dendritic elongation: during continuation the branch grows based on a segment length
and direction. The direction is chosen as a combination of three parameters: randomness, memory
(based on the previous directions within a branch), and targeting (based on the initial direction of
a branch). IV. Diameter definition, as a final step, is based on the biological distributions and is
subsequent to the branching steps. B. Branching based on the topological morphology descriptor
(TMD) of a neuronal tree: the probability to bifurcate, terminate, or continue depends on the path
distance from the soma and the joint probabilities derived from the TMD of a neuronal morphology.
The start of a bar in the TMD increases the bifurcation probability; the end of the bar increases the
termination probability. Note that each new bar has to be smaller that its parent, so the growth is
performed from larger to smaller branches.

Dendritic synthesis algorithm

The TNS algorithm consists of three main components (Figure 1A): the initiation of dendrites
on the soma (see STARmethods, I. Initiation of neurites), branching (see STARmethods, II.
Bifurcation / Termination), and elongation (see STARmethods III. Elongation of neurite) of
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neurites. First, the neuronal soma is generated based on a radius sampled from a biological
distribution. Then, the number of neurites is sampled from the biological distribution of the
corresponding cell type. Each neurite is assigned an initial orientation and a barcode, based
on the reconstructed neurites of the respective morphological cell type.

Subsequent steps of the growth take place in a loop. Each branch of the tree is elongated
step by step, as a combination of the following components: a random direction, ρ, the target
orientation, τ , and a memory of the previous steps, µ (Figure 1A-III, see STARmethods III.
Elongation of neurite). At each step, the growing tip is assigned probabilities to bifurcate,
to terminate, or to continue that depend on the path distance from the soma and are defined
by the bars of the sampled barcode (Figure 1A-II, see STARmethods, II. Bifurcation /
Termination). Each bar within the barcode can only be used once. The growth terminates
when all the bars of the input barcode have been used. Finally, as an independent step,
the diameters of the tree are assigned based on diameter distributions sampled from the
reconstructed cells (Figure 1A-IV, see STARmethods IV. Generation of tree tapering). The
details of the algorithm are described at the STARmethods section.

The three main modalities that we want to reproduce with synthesized cells are morphol-
ogy (Scorcioni et al. 2008), electrophysiology (Van Geit et al. 2016), and connectivity (Van
Pelt et al. 2010, Van Pelt and Van Ooyen 2013). In order to ensure that the synthesized
cells recreate all three properties, the microcircuit that was published by Markram et al,
2015 was used as reference. This microcircuit was built based on reconstructions of juvenile
rat neurons across all cortical layers for a variety of morphological types. First, we ensure
that the morphological and electrical properties of the reconstructed cells are reproduced
by neurons whose dendrites have been synthesized with the TNS algorithm. Then, a set
of synthesized cells of an m-type is compared against the set of reconstructed cells of the
same m-type. Finally, a network of cells is generated based on the neurons with synthesized
dendrites, and compared to the connectivity of the original network.

Single neuron synthesis

There are two major types of cortical neurons, based on their functional roles: excitatory
and inhibitory. Excitation is mainly mediated by pyramidal cells, with the exception of the
spiny stellate cells (L4), and use glutamate as a neurotransmitter. Inhibition is mediated
by interneurons, which use GABA as a neurotransmitter. The TNS algorithm is used for
the computational synthesis of dendrites of both interneurons and pyramidal cells of a large
variety of morphological types. Because these two major cell classes present distinct morpho-
logical properties, synthesized pyramidal cells and interneurons are presented independently
(Figure 2A-B). Interneurons have only basal dendrites, i.e., dendrites that emanate from the
base of the cell body and are localized mainly around the soma, are less complex than pyra-
midal cells, which also have apical dendrites that reach to higher cortical layers, typically
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ascending towards the pia, and present a wider diversity of shapes.

Figure 2: Comparison of reconstructed and synthesized dendritic shapes. A. Reconstructed (blue)
and synthesized (red) pyramidal cell dendrites of all rodent cortical m-types from layers 2 to 6. B.
Reconstructed (blue) and synthesized (red) dendrites of rodent cortical interneurons of layers 1 to
6. Not all interneuron morphology types are reported, as they differ mainly in their axonal branches
and not significantly on the basal dendrites, as illustrated. C. A cortical column of synthesized
dendrites of all layers, colors correspond to cortical layers from 1 to 6.
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Reproducing characteristic neuronal shapes

Interneurons represent about 15% (Gonchar et al. 2006, Lefort et al. 2009) of neuronal
cells in the cortex. There are many interneuron types, which are distinguished mainly
by their axonal shapes, as they do not vary greatly in their basal dendrites. A subset of
reconstructed interneuron dendrites of different layers is presented in Figure 2C, (top, blue).
Computationally synthesized dendrites of the same layers (Figure 2C, (bottom, red) are
generated based on the corresponding topological profiles of the biological reconstructions.
The TNS algorithm generates basal dendrites that reproduce the characteristic shapes of
different morphological interneuron types.

Pyramidal cells (PCs) represent the majority of neurons in the cortex (≈ 85% , Gonchar
et al. 2006, Lefort et al. 2009). The wide variety of apical dendrite shapes imparts unique
functional properties to PCs and forms the basis for integrating signal inputs from different
cortical layers (Larkum et al. 2007, 2009, Spruston 2008). In a previous publication (Kanari
et al. 2019), we distinguished 18 pyramidal cell types, 17 of which could be objectively
supported. In Figure 2A we present examples of reconstructed morphologies (in blue) of the
18 different m-types of pyramidal cells from layers 2 to 5. Synthesized dendrites based on
the topological profiles of the same types of pyramidal cells are illustrated in Figure 2A (in
red). Thus, the TNS algorithm generates cells that reproduce the characteristic shapes of
the dendrites of distinct morphological pyramidal cell types.

Reproducing morpho-electrical properties

To ensure that each synthesized cell is consistent with the reconstructed cells, both its mor-
phological and electrical properties need to be validated. A set of 100 synthesized cells was
generated, based on the morphological properties (persistence diagram and morphometrics)
of a selected reconstruction of a L3 TPC (Figure 3A). First, the topology of the synthe-
sized cells was validated, by comparing the radial-persistence diagram of the reconstructed
to the synthesized cells’ (Figure 3B). Subsequently, the morphometrics of reconstructed and
synthesized cells were compared (Figure 3C). Finally, the electrical model optimized on a
population of L2/3 pyramidal cells (Van Geit et al. 2016) was applied to the reference re-
constructed cell and a synthesized cell. Similar to the morphological validation, the Fnorm
was used to quantify how well the resulting morpho-electrical combination matches with the
statistics of the original experimental data for the 120% threshold current step amplitude
(Figure 3F,G,H). Their electrical traces in response to the tested stimuli are presented in
Figure 3F-G and the electrical features in Figure 3H. For both electrical and morphological
comparisons, each feature (Figure 3C and H) is normalized according to equation 1.

Due to the stochastic component of the growth process, the synthesized cells are not
identical to the reconstructed cell (Figure 3A&B), thus increasing the morphological diver-
sity. The morphological and electrical properties of the synthesized cells are statistically
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Figure 3: Validation of single cell morpho-electrical properties. A reconstructed layer 3 tufted
pyramidal cell (A, blue) is used as input for 100 synthesized L3 TPCs (A, red). B. Comparison of
topological persistence diagrams of the reconstructed cell and 100 synthesized cells. C. Comparison
of 19 dendritic morphometrics (normalized based on the mean morphological feature values for the
L3 TPC population) for a reconstructed and a synthesized cell. The reconstructed (D) and synthe-
sized cell (E) are electrically simulated according to a model optimized on the electrical properties
of L3 TPC cells. The electrical response (120% threshold current step) of the reconstructed cell
(F) is compared to the synthesized cell’s (G). H. Comparison of 15 electrical properties of dendrites
(normalized based on the mean electrical feature values for the L3 TPC population.
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similar to the respective properties of the reconstruction, as the normalized error is similar
for the synthesized and the reconstructed cell for all properties (Figure 3C&H). Overall, the
TMD-synthesis algorithm with the selected stochastic parameters (randomness ρ ≈ 20%)
reproduces the morphological and electrical properties of the reference reconstruction.

Synthesis of a neuronal population

In order to validate the synthesis algorithm, it is essential to generalize the results of the
previous section by using as input a large number of biological reconstructions. Note that
the algorithm randomly samples a persistence barcode extracted from the reconstructed
population until all dendrites of a cell are grown. We generated synthetic cells for all the
rodent cortical cell types reported in previous publications (Markram et al. 2015, Kanari et
al. 2019, Marx et al. 2013), using as input a set of reconstructions from the BBP dataset.
One hundred cells were computationally synthesized for each pyramidal and interneuron
type.

Reproducing morphological properties

Detailed validations were performed in order to ensure the good quality of the synthesized
cells. The synthesized cells of type L5 TPC:A were validated against the reconstructed cells
using a large set of morphometrics (Ascoli et al. 2008, Scorcioni et al. 2008), a subset
of them is presented in Figure 4 for the apical (top) and basal dendrites (bottom). The
statistical distributions of the morphological features (such as number of sections, section
lengths, bifurcation angles and branch orders) of the synthesized cells closely match the
distributions of the reconstructed cells for both the apical and the basal dendrites.

Artefacts of the reconstruction techniques, as described in C. Synthesis input, that we
chose not to reproduce result in minor divergence between specific properties of the two
populations. This is due to pre-processing of the data that are used as input to the synthesis
algorithm. Namely, the original reconstructed cells have branched of high tortuosity. This is
reportedly an effect of the reconstruction process (Conde-Sousa et al. 2016, Farhoodi et al.
2019) that we choose not to reproduce. In addition, only intact branches (i.e., branches that
are not cut due to experimental techniques) are used as input in synthesis. As a result, the
total number of bifurcations and terminations per basal dendrite is higher for synthesized
cells compared to the reconstructed cells’. For apical dendrites the same morphometrics are
well reproduced, since no apical trees were excluded from synthesis input. For cell types with
five or more available reconstructions, the algorithm generated cells that are statistically close
to the input population. For cell types with few available reconstructions (five or fewer), the
small number of input cells did not suffice to capture the diversity of the reconstructed cells.
We further investigate this aspect in section Versatility of the synthesis algorithm.
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Figure 4: Morphological validation of L5 synthesized pyramidal cells. A set of L5 TPC reconstruc-
tions (A, blue 35 cells) is used as input to generate a population of synthesized cells of the same
type (C, red, 100 cells). The violin plots of morphological properties for apical (B, top) and basal
(B, bottom) dendrites of the reconstructed cell (in blue, left side of violins) and the synthesized
cells (in red, right side of violins) are reported. The morphological features of apical dendrites (such
as number of sections, section lengths, bifurcation angles and branch orders) are indistinguishable
between reconstruction and synthesis populations. Similarly, features of basal dendrites of syn-
thesized cells match the properties of reconstructed basal dendrites. Differences in termination /
bifurcation numbers in basals are due to preprocessing of input data to retain only intact parts of
the dendrites from incomplete reconstructions.

Reproducing morphological correlations

The TNS algorithm generates dendrites that closely approximate the morphometrics of the
reconstructed cells, as well as their interdependencies. Correlations between morphological
features are reportedly essential for any synthesis method (Lopez-Cruz et al. 2011). However,
does TMD-based synthesis implicitly account for correlations, or do we need to define them
explicitly? In previous studies, the explicit description of correlated morphometrics was
either obtained manually (Koene et al. 2009, Van Pelt and Van Ooyen 2013) or optimized
with complex algorithms (Lopez-Cruz et al. 2011). The manual identification of feature
correlations is problematic, as experts disagree on the optimal set of features that describes
neuronal morphologies (DeFelipe et al. 2013). The set of optimal morphometrics may also
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not generalize across different cell types. On the other hand, complicated machine learning
techniques that infer feature correlations risk over-fitting when only a few reconstructions are
available. In this case, instead of capturing the biological principles of neuronal morphologies,
the algorithm overestimates local properties, reproducing the noisy properties of input cells.

To investigate whether TMD is important to capture the correlations between morpho-
logical features, we synthesized cells that do not take as input the joint probability distribu-
tion encoded in the TMD. Instead, the marginal bifurcation and termination probabilities
were used as independent parameters (see SI, Figure S6). If bifurcation and termination
probabilities in reconstructed cells were in fact independent, this algorithm would suffice to
reproduce the branching patterns of the neuronal morphologies (Luczak 2006, Cuntz 2010).
Interestingly, in this case the synthesized cells generated by this algorithm were significantly
different from the original reconstructions, indicating that the correlations encoded in the
persistence barcodes of dendrites are essential to the synthesis algorithm.

Reproducing morphological diversity

Another challenge in synthesis is the sparsity of input data for many cell types, which makes
it difficult to reproduce the morphological diversity of neurons. If few biological reconstruc-
tions are available (fewer than five cells), it is not possible to recreate this cell type in its
in-vivo conditions. Starting from groups of cells with a large number of available reconstruc-
tions, such as pyramidal cells of layers 3-5, we investigated how many cells are required as
synthesis input to approximate the morphological diversity of the whole population. Figure 5
illustrates how the number of cells used to define the input data for synthesis affects input
(path-distance) and “emergent” (branch order and radial distance) morphological features.

Varying the number of randomly selected input cells N from a population of 44 L4 TPC
reconstructed cells, we identified the minimum N such that the synthesized population ap-
proximates well the morphological diversity of the reconstructed population. While a sample
size of N ≤ 10 was not sufficient to approximate the diversity of the reconstructed cells with
respect to path, radial distances and branch orders, for N ≥ 15 (N = 15 ≈ 1

3
of recon-

structions) both input and emerging morphometrics were reproduced well (Figure 5A-D). In
addition, for N ≥ 15 the overall cumulative error (KS-distance, Figure 5E) of all morpho-
metrics is minimized for both basal and apical features.

Finally, we computed the classification accuracy of the three layer 4 pyramidal cell types
(L4 TPC, L4 UPC, L4 SSC)for reconstructed and synthesized cells. The three cell types
were synthesized using the same input parameters, and the persistence barcodes of the three
respective groups of pyramidal cells. The same classifier (Decision Tree from the sk-learn
Python package) was then used to classify the TMDs of both the reconstructed and the syn-
thesized cells into the three original classes, and a leave-one-out accuracy measurement was
calculated (Figure 5F). The synthesized cells were classified (Figure 5F, bottom right) into
their original classes with at least the same accuracy as the reconstructed cells (Figure 5F,
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Figure 5: TNS reproduces morphological diversity. Comparison of dendrites from reconstructed
L4 TPC cells (in blue, 44 original reconstructions) and synthesized cells (red shades from lighter
to darker according to number of randomly sampled neurons used as synthesis input: from 2 to
15). Comparison of path distance (A, input to algorithm) and branch order (B, emergent property)
distributions for basal dendrites. Comparison of path distance (D, input to algorithm) and radial
distance (E, emergent property) distributions for apical dendrites. The original distributions are
approximated with a subset of input cells (15 out of 44). C. Average statistical (Kolmogorov-
Smirnov) distance of a set of morphometrics, within reconstructed cells (in blue) and between
reconstructed and synthesized cells (in red) with respect to number of randomly sampled neurons
used as synthesis input. F. TMD based classification of three L4 PC types for reconstructed (top
left, blue) and synthesized (bottom right, red) cells. Classification accuracy is same or higher for
the synthesized population.

top left).

Versatility of the synthesis algorithm

As shown above, TMD-based synthesis reproduces the morphological properties of recon-
structed cells, while preserving the diversity of cells of a morphological class. However, it
is not sufficient to generate cells that reproduce an input population. A simple example to
illustrate the limitations of this approach is the growth of neurons within brain regions with
varying anatomical properties, such as cortical thickness, which is not constant within the
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neocortex. Individual animals of the same species and age have variable cortical thickness
(De Felipe et al. 2011, Fletcher and Williams 2019). A synthesis algorithm that merely
reproduces the original population has serious limitations, as reconstructions are collected
from a large number of individuals with varying anatomical brain properties. Statistical
and biophysical models are often limited to reproducing the input populations, due to the
detailed input that is consumed by the algorithm. On the other hand, mathematical models
are adaptable to a variety of different set-ups.

The TNS algorithm can be modified by applying a relevant mathematical transformation
to the persistence barcodes. These mathematical transformations include scaling, which
alters the size of a dendrite; rotation, which adapts the orientation of the cell; and altering the
number of branches of a selected length. To illustrate the versatility of the TNS algorithm,
cells for varying cortical thicknesses were synthesized. The persistence barcodes were scaled
according to different percentages from 100% to 10% (Figure 6B). We demonstrate that
scaling the input barcodes is correctly translated to other morphometrics, as seen in Figure 6
further supporting our argument that feature correlations are accurately represented in the
persistence barcodes. For example, the total length of synthesized cells based on scaled
barcodes (Figure 6C, D, E) is equivalent to the total length of scaled reconstructions for all
layer 4 PCs.

Network of synthesized dendrites

Reproducing the connectivity of a reconstructed microcircuit

In the previous sections, we demonstrated that the topological synthesis generates dendrites
that match the morpho-electrical properties of biological reconstructions. In order to ver-
ify that synthesized dendrites are suitable for digital simulations of neuronal networks the
connections that they form need to be validated. For this reason, we created a replica of
the 2015 Markram et al. digital reconstruction of the rat cortical microcircuit, from now
on referred to as “reconstructed” microcircuit, built from synthesized dendrites instead of
reconstructed cells. Starting from the initial position of each cell, which corresponds to
the original position in the reconstructed microcircuit, the dendrites of all neurons were
computationally synthesized according to their morphological type. The original axons of
the reconstructed microcircuit were used for the definition of the appositions (touch points
between dendrites and axons). The connectivity of the synthesized network was then com-
puted (methods described in Markram et al., 2015) and compared to the connectivity of the
reconstructed microcircuit.

In Figure 7 we present the statistical properties of the synthesized circuit (B) in compar-
ison to the reconstructed microcircuit (A). The connectome of the microcircuit grouped by
m-type (1), the connection probabilities (2), and the numbers of synapses per connection (3)
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Figure 6: Generalization of topological synthesis for varying cortical thickness. A. Exemplar bio-
logical reconstructions of three layer 4 pyramidal cell types: L4 TPC (grey), L4 UPC (deep blue),
L4 SSC (light blue) and the corresponding persistence barcodes, used as synthesis input. B. Scal-
ing of input persistence barcodes and resulting synthesized dendrites ((1.0, 0.8, 0.6, 0.5) of original
barcodes). The scaled (from 1.0 to 0.2) barcodes of synthesized L4 TPC apicals presented at the
bottom. Total dendritic length of layer 4 cells, as a function of shrinkage factor for basal (bottom)
and apical (top) dendrites compared to expected values of scaled biological lengths (black dashed,
computed as scaling factor multiplied by total length od reconstructed dendrites) and synthesized
(grey continuous) dendrites of L4 TPC (C), L4 UPC (D) and L4 SSC (E). Note that L4 SSC do not
have apical dendrites even though they are excitatory cells, therefore only basal dendrite statistics
are shown.

of the synthesized network are in statistical agreement with the reconstructed microcircuit of
Markram et al. 2015. Since the initial positions of the cells and the axonal reconstructions of
the reconstructed circuit are preserved, we ensure that the synthesis of the dendrites does not
significantly alter the statistical properties of the dendrites’ connectivity. The differences of
the statistical properties of the two circuits (connectome, connection probability and number
of synapses, Figure 7C) are close to zero and significantly lower that the standard deviation

16

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.040410doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.040410


Figure 7: Comparison of connectivity for synthesized and reconstructed networks. A. The con-
nectivity properties of a reconstructed microcircuit (Markram et al. 2015). B. The connectivity
properties of a microcircuit of fully synthesized dendrites, and reconstructed axons. C. Difference
between reconstructed and synthesized microcircuits. (I) The connectome of the reconstructed
microcircuit grouped by m-type. Colors group m-types by layer and correspond to axonal outputs.
The thickness of ribbons is proportional to the total number of synapses. (II) Connection probabil-
ity. A matrix of average connection probability per pathway (350 µm, central micro-column, 10K
pairs). (III) Synapses per connection. A matrix of the average number of synapses per connection
for multi-synapse connections formed between the 55 m-types (10K pairs).
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of the respective properties.

Medical applications

As novel techniques (Watts et al. 2013, Sarifi 2013) emerge for the treatment of and analysis
of brain disorders (Meng et al. 2018, van den Heuvel and Sporns 2019), the need to find
new ways to predict their outcome becomes increasingly imperative. These techniques are
frequently applied to animal subjects (Meng et al. 2018). It is therefore important to find a
way to predict how the effects of these drugs, which are tested on smaller mammalian sub-
jects, generalize to primates. The accurate prediction of the effects of complex treatments
on humans requires accurate and detailed models of neuronal networks. We propose the first
step in this direction. The TNS algorithm enables us to generate synthetic neuronal mor-
phologies for which very few or no reconstructions are available. To do so, an appropriate
mathematical transformation of barcodes should be defined, based on the experimentally
observed differences between control and unhealthy dendritic shapes. The identified mathe-
matical transformation should be applied to the persistence barcodes that set the synthesis
input. This process results in synthesized neuronal morphologies that approximate a target
reconstructed population of neurons.

Abnormal dendritic morphology has been linked to brain disorders such as mental re-
tardation (Kaufmann and Moser 2000), schizophrenia (Glausier and Lewis. 2013), autism
(Phillips and Pozzo-Miller 2015), and stress disorders (Shansky and Morrison 2009, Dioli et
al. 2019, Sandini et al. 2020). We demonstrate how alterations of dendritic shapes that have
been associated to mental disorders, such as stress and PTSD (Curran et al. 2017, Dioli et
al. 2019, Tornese et al. 2019, Sandini et al. 2020) affect the connectivity of cortical circuits.
Even though our digital networks do not yet consist of multiple brain regions, and therefore
cannot reproduce the exact medical conditions reported in the literature, we focus of the
the effects of local dendritic alterations on a cortical microcircuit. This analysis serves as
the first step to link local morphological alterations to whole brain networks and study how
“small” changes impact the brain functionality. We simulated two structural changes that
are relevant for mental disorders (Curran et al. 2017, Dioli et al. 2019, Tornese et al. 2019):
shrinkage of dendritic processes and loss of dendritic branches, by applying two types of
mathematical transformations to all the cells within a rodent cortical column. Surprisingly,
we discovered that these two types of local dendritic alterations have distinct effects on the
resulting cortical networks. Neuronal networks formed from dendrites that are gradually
shortened collapse rapidly, as they lose connections almost linearly as a function of the total
dendritic extent lost. Networks based on dendrites that lose smaller branches of increasing
length are more resilient to connectivity loss. In fact, the effect of these local dendritic
changes on the resulting network is observable only when larger branches (≈ 200 µm) are
lost. This method enables the investigation of the impact of structural neuronal abnormali-
ties and could lead to more advanced diagnostic or treatment techniques.
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Figure 8: Connectivity of synthesized networks based on structural alterations of dendritic mor-
phologies. Schematic representation and examples of layer 5 synthesized pyramidal cells (A), in
comparison to cut dendritic branches (B, lengths above 10, 100, 200, 400µm), and shrunk dendrites
(C, 98%, 90%, 60%, 30%). Connectome (presented in subpanel 1) of each synthesized microcircuit
(A: synthesized, B: cut branches of lengths above 400µm, C: shrunk dendrites 10%) (connections
above 150K shown, line thickness corresponds to connection strength). D. Total number of con-
nections for alterations of type B (red) and C (blue) compared to synthesized network A (black).
E. Topological analysis of corresponding networks; distribution of directed simplices for alterations
of type B (red, top) and C (blue, bottom). F. Morphological characteristics and connectivity, with
respect to alterations of type B (top) and C (bottom). The main branches form the majority of
connections (top) and larger dendritic extents (bottom) form more connections. Colormap corre-
sponds to normalized number of connections: from maximum number of connections (3.5 × 108 in
red) to minimum (107 in blue).
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Discussion

Since the study of the microscopic structure of the brain beginning in the late 19th cen-
tury by anatomists such as Deiters, His and Golgi that led to the beautiful and detailed
formal descriptions of neuronal morphologies by Ramon y Cajal, there have been numer-
ous astounding breakthroughs in our understanding of the brain. Discoveries range through
multiple spatial scales from the dynamical properties of ion channels (Ranjan et al. 2019)
and single cell morphologies, physiology and transcriptomics (Janelia, Winnubst et al. 2019,
AllenBrain, Gouwens et al. 2019) to the structural and functional connectivity of the whole
brain (Wang et al. 2015, Hahn et al. 2019). Due to rapid experimental progress, the burning
challenge of our time is assembling all the gathered data into a realistic description of the
brain. A fundamental step towards understanding brain function is to elucidate the roles
of its fundamental cellular components, primarily the neurons. However, much remains un-
known concerning the structural properties of neurons and how the morphology of neurons
influences the structural and functional properties of brain networks. A promising approach
to discerning the roles of individual neurons in the brain consists of computationally recre-
ating them, i.e., synthesizing them, in order to study their behavior within digital brain
networks.

Due to the complex biological growth mechanisms of neurons that result in intricate
branching structures, the highly correlated morphological features of neurons are difficult to
reproduce. In this study, the computational synthesis of neuronal morphologies was based
on the Topological Morphology Descriptor (TMD, Kanari et al. 2018), which retains suffi-
cient information about both the topology and the geometry of a neuronal tree to reproduce
the shapes of reconstructed neurons. We proved that the topology-based synthesis preserves
correlations between morphological features. Another challenge for synthesis is the sparsity
of data for many cell types in the cortex, which makes it difficult to approximate the bi-
ological diversity. The minimum number of reconstructed neurons of any particular type
sufficient to reproduce the morphological diversity of a population of such neurons is 15 to
20 using our TNS algorithm, which is a relatively small number compared to the thousands
of morphologies that are expressed by each neuron type within a brain region. Our algo-
rithm thus overcomes major limitations of previous synthesis techniques, enabling the large
scale reconstruction of unique neuronal morphologies to populate large-scale biophysically
detailed neuronal networks.

Taking this work a step further, we generalized the TNS algorithm to reproduce cells
with altered structural properties, by applying an appropriate transformation to the TMD
of reconstructed neurons that are used as input to the synthesis algorithm. In this way,
transformation of the TMD enables the study of pathologies, as well. By simulating the
effects of stress on single neurons, we demonstrated that the degree and type of degeneration
of dendrites influences the nature of global defects exhibited by cortical microcircuits. The
next step towards the simulation of brain diseases is to generalize these results to whole
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brain regions, e.g., the neocortex, thalamus and hippocampus, and to study how different
combinations of neuronal deformations can lead to disruptions of brain networks both struc-
turally and functionally. Recent datasets that record the transcriptomics, the electrical and
morphologies of cells (Hodge et al. 2019, Gouwens et al. 2019) will be essential for this
effort, by enabling the reconstruction of whole brain areas based on their genetic profiles.

While the synthesis of dendrites is already an important step towards the digital recon-
struction of more realistic brain networks, the ability to synthesize axonal trees is the next
challenge that should be addressed. This task is of particular interest for the computational
modeling of brain networks (Wang et al. 2015), as the branching structure of axonal mor-
phologies is an essential determinant of the functionality of a network, by providing the
contact points between neurons, and thus defines the connectivity of the network (Van Pelt
et al. 2010). In addition, because of their highly complex branching structures, the recon-
struction of axons requires considerably more effort and time than dendrites. As a result,
only a small number of intact (not cut) axonal reconstructions are available. Spatially em-
bedded synthesis will improve the generation of complex branching patterns, such as cortical
axons of both interneurons and pyramidal cells, glial cells, and long-range projecting cells,
such as nigrostriatal dopaminergic neurons (Matsuda et al. 2009) and densely connected
claustrum cells (Torgerson et al. 2015), and thus allow the digital reconstruction of multiple
brain areas and their respective connections.

STAR Methods

The morphological development of neurons in the brain is a complicated process that depends
on both genetic and environmental components (Ledda and Paratcha 2017). The processes
that contribute to neuronal growth differ between species, brain regions, and morphological
types. Advances in experiments and mathematical and computational models have converged
on a set of commonly accepted stages of morphological growth: the initiation of neurites,
neurite elongation, axon path-finding, and neurite branching (Graham and van Ooyen 2006).
These growth stages are useful for computational modeling of the generation of synthesized
neurons. In this study we focus on the computational synthesis of dendrites and thus will
not consider axon path-finding. While biological development is not simulated, biological
principles of morphological growth inform the design of our computational algorithm that
synthesizes dendritic morphologies.

A. Dendritic synthesis algorithm

The TNS algorithm consists of three main components (Figure 1A): the initiation (section I.
Initiation of neurites), branching (section II. Bifurcation / Termination), and elongation
(section III. Elongation of neurite) of neurites. The first part of a neuron to be generated
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is the cell body, i.e., the soma, which is modeled as a sphere (Figure 1A-I), whose radius
is sampled from a biological distribution (see SI:Topological Neuron Synthesis algorithms,
Algorithm 2). The number of neurites is then sampled from the biological distribution of
the corresponding cell type. Each neurite is initialized with a “trunk”, the initial branch
of the tree (Figure 1A) and a barcode sampled from set of reconstructed dendrites of the
corresponding m-type.

Subsequent steps of the growth take place in a loop. Each branch of the tree is elongated
as a directed random walk (Aslangul et al.1993) with memory (see SI:Topological Neuron
Synthesis algorithms, Algorithm 3, Figure 1A-III). At each step, a growing tip is assigned
probabilities to bifurcate, to terminate, or to continue that depend on the path distance from
the soma and are defined by the bars of the selected barcode (Figure 1A-II, see SI:Topological
Neuron Synthesis algorithms, Algorithm 3). Once a bar is used, it is removed from the
barcode. The growth terminates when all the bars of the input barcode have been used. As
an independent step, the diameters of the tree are assigned based on diameter distributions
sampled from the biological reconstructions (Figure 1A-IV, section IV. Generation of tree
tapering).

I. Initiation of neurites

Previous studies have disregarded the direction of the neurite protrusion from the soma
despite its importance (Graham and van Ooyen 2006). For some neurites the initial direction
is trivially defined; for example cortical apical dendrites typically grow towards the pia. By
contrast, the outgrowth direction of basal dendrites superficially appears random and is
frequently assumed to be so. An in-depth analysis reveals, however, that this assumption
is inaccurate, since the orientations of a neuron’s processes are correlated (see SI, Figure
S2). This correlation is captured in the pairwise trunk-angle distribution, which depends on
the morphological type, and is used for the initiation of neurites on the soma surface (see
SI:Topological Neuron Synthesis Algorithms, Algorithm 3).

For the basal dendrites, the initial point of a single neurite is randomly sampled on
the soma surface, then the other dendrites are added successively in places that respect the
pairwise trunk-angle distribution. Each neurite trunk consists of a point on the soma surface
and an initial direction that is normal to the soma surface. The diameters are independently
corrected in the final step of the synthesis algorithm (Figure 1A-IV). The positions of the
trunks define the soma shape; the pyramidal soma of excitatory cells originates from the
apical dendrite that points towards the pia, while the spherical soma of interneurons arises
from the homogeneous positioning of trunks on the surface of their cell bodies.
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II. Bifurcation / Termination

The neuronal branching process in the TNS algorithm is based on the concept of a Galton-
Watson tree (Galton and Watson 1875), which is a discrete random tree generated by the
following process. At each step, a number of offspring is independently sampled from a dis-
tribution. A neuronal tree consists only of bifurcations, terminations, and continuations, so
the accepted values for the number of offspring are: zero (termination), one (continuation),
or two (bifurcation). Since the Galton-Watson tree only generates the branching structure
and ignores the embedding in space, we modify the traditional process to introduce a de-
pendency of the neuronal growth on the embedding, so that the bifurcation/termination
probabilities depend on the path distance of the growing tip from the soma.

Each growing tip is assigned a bar bari, sampled from the barcode, that includes a starting
path distance bi, an ending path distance di and a bifurcation angle ai (see SI:Topological
Neuron Synthesis algorithms). At each step the growing tip first checks the probability
to bifurcate, then the probability to terminate. If the growing tip does not bifurcate or
terminate, then the branch continues to elongate. The probability to bifurcate depends on
the starting path distance bi. As the growing tip gets closer to the path distance bi, the
probability to bifurcate increases exponentially until it reaches the highest possible value
(1.0). Similarly, the probability to terminate depends exponentially on the ending path
distance di.

The probabilities to bifurcate and terminate are sampled from an exponential distribution
e−λx, whose free parameter λ should be wisely chosen. A very steep exponential distribution
(high value of λ) will result in cells that are very close to the input and thus will reduce
the variance of the synthesized cells. On the other hand, a very low value of λ will result in
cells that are almost random, since the dependence on the input persistence barcodes will be
decreased significantly. The value of the parameter λ should be of the order of the step size
(see SI: Branching-Termination). As a result, we select a critical correlation length λ ≈ 1,
so that the bifurcation and termination points are stochastically chosen but are strongly
correlated with the input persistence barcodes (See SI: Branching-Termination).

Other synthesis algorithms (Burke et al. 1992, Koene et al. 2009) sample the branching
and termination probabilities from independent distributions. In TNS the correlation of these
probabilities is captured in the structure of the barcode. When the growing tip bifurcates,
the corresponding bar is removed from the input TMD to exclude re-sampling of the same
conditional probability. This keeps a record of the neuronal growth history and is essential
for reproducing the branching structure. In the event of a termination, the growing tip is
deactivated, and the bar that corresponds to this termination point is similarly removed
from the input TMD.

At a bifurcation, two new branches are generated (SI:Topological Neuron Synthesis algo-
rithms, Algorithm 4), and the directions of the daughter branches depend on the bifurcation
angle ai. Depending on the neurite type, different rules are optimal for the bifurcation angles.
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For basal dendrites, the optimal rule for bifurcation is to follow the biological bifurcation
angle distribution. The apical tree is separated into two parts: the apical tuft, which is the
densely branched subtree that is proximal to the cortical surface, and the obliques, which
are the shorter branches that emerge closer to the soma. The apical tuft is separated from
the obliques by the “apical point“. This point can be accurately identified based on the
persistence barcode of the apical tree, as the distance that maximizes the separation be-
tween the two modes of the bars distribution. For the apical dendrites, different branching
behaviors need to be adopted for the tuft and the obliques. Before the apical point, one
of the branches, the major branch, follows the targeting direction (usually the orientation
towards the pia). Once the apical point is reached, the apical tufts bifurcate according to
the distribution of the biological bifurcation angles.

III. Elongation of neurite

A segment is defined as a pair of consecutive points in the neuronal tree that determine a
vector of length L and with direction Dsegment, specified by a unit vector. Each synthesized
neurite is grown segment by segment. The direction of the segment is a weighted sum of three
unit vector terms: the cumulative memory of the directions of previous segments within a
branch M , a target vector T , and a random vector R (Koene et al. 2009). The memory term
is a weighted sum of the previous directions of the branch, with the weights decreasing with
distance from the tip. Different weight functions were tested, but as long as the memory
function decreases- faster than linearly - with the distance from the growing tip, its exact form
is not relevant. The target vector is defined at the beginning of each branch and depends on
the biological branch angles (see SI:Topological Neuron Synthesis algorithms, Algorithm 3).
The random component is a vector of fixed length sampled uniformly from three-dimensional
space at each step. For computational efficiency the growth of each branch is independent
of that of other branches. The tortuosity of the path is defined by three parameters:

Dsegment = ρR + τT + µM

, where ρ+ τ + µ = 1.
An increase of the randomness weight ρ results in a highly tortuous branch, approaching

the limit of a simple random walk when ρ = 1 (Pearson et al. 1905). If the targeting weight
τ = 1, the branch will be a straight line in the target direction. Different combinations of the
three parameters (τ, ρ, µ) can generate more or less meandering branches and can reproduce
the large diversity of dendritic sections (see SI:Section elongation).

IV. Generation of tree tapering

The thickness of a neuron’s branches should also be accurately reproduced, since thickness
is as important as the branching structure for the functional role of neurons (Cuntz et al.
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2007, Koene et al. 2009, van Elburg and van Ooyen 2010, Bird and Cuntz 2016). Despite
recent great progress in imaging techniques that enables the generation of large numbers of
reconstructions (Peng 2008, Haberl et al. 2015, Economo et al. 2016), their resolution is
still too limited to allow for accurate determination of diameters, which are on the order of a
few microns. As a result, accurate diameters must be computationally inferred from sparse
datasets of reconstructed cells. Conde-Sousa proposed a method to correct the swelling of
the reconstructed diameters (Conde-Sousa et al. 2017) that usually results in lower mean
diameters.

In the absence of a curated dataset, the original diameters of the reconstructed cells are
used as input for the synthesis algorithm. Basic morphometrics related to the thickness
of neurons are extracted to be used as input for the synthesis of denditic thickness (taper
rate, termination thickness, and trunk thickness). These values are used to assign diameters
independently to each synthesized dendrite.

The algorithm (see SI:Topological Neuron Synthesis algorithms, Algorithm 5) starts from
the tips of the tree and assigns diameters to the termination points sampled from the bio-
logical distribution. The tree is then traversed from the tips towards the root (post-order),
and the diameters are increased according to the sampled taper rate, as long as the new di-
ameter is less than a sampled maximum diameter, which corresponds to the trunk diameter.
When the diameters of all the children of a section have been computed, the parent section
is assigned a diameter according to the Rall ratio, which is chosen to be Drr = 3

2
according

to literature:

dparent = (dDrr
1 + dDrr

2 + . . .)1/Drr .

This algorithm results in a distribution of diameters that is statistically similar to the
original distribution. In addition, the average diameter of the synthesized cells corresponds
to the average biological diameters. The synthesized diameters monotonically decrease with
distance from the soma, a property that ensures that biophysical principles of dendrites
(Cuntz et al. 2007) are reproduced. Note that the swelling of the dendritic trees, resulting
from staining artefacts, is not compensated for and therefore the diameters of the synthesized
cells could be overestimated.

B. Validation process

Single-cell validation

In order to validate the quality of single cells and identify individuals of poor quality within
the synthesized population, the distributions of key features of each cell are compared against
a set of reconstructed cells. To measure a cell’s difference from the reconstructed cells, we
compute a statistical normalized distance, which is the difference between the mean value
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of the test cell T and the mean value of the reconstructed population P , divided by the
standard deviation of the reconstructed population P :

Fnorm =
µ(FP ) − µ(FT )

σ(FP )
. (1)

Population-to-population morphological validation

Synthesis is validated by comparing the distributions of synthesized cells of a large num-
ber of morphological features (see SI:Definition of morpho-electrical terms) to those of the
reconstructed cells. Essential features, such as the degree of the dendritic tree (number of
terminations), the branch orders and the number of sections, the total length per neurite,
and the path length are included in the validation and shown in Figure 4. Each of the mor-
phological distributions of synthesized cells is compared to the reconstructed cells’, using the
Kolmogorov-Smirnov distance, which quantifies the dissimilarity between two distributions.
The K-S metric measures the maximum distance between two cumulative distributions,
ranging from 0 for identical distributions to 1 in the case of maximal difference between
them.

Electrical simulation of synthesized cells

A biophysically detailed electrical model (e-model) for a L3 TPC was applied in the synthe-
sized morphologies to assess how well the electrical behavior generated by the synthesized
morphologies compares with their reconstructed counterparts. The original e-model was ob-
tained by applying a multi-objective optimization of the electrical parameters as described
in Markram et al. 2005 to a reconstructed morphology. The e-model has 31 parameters
that are used to control the maximal conductances of the ion channels in four morphological
areas (somatic, axonal, basal, and apical) and the calcium dynamics and the decay constant
of Na channels along the dendrite. Note that in the case of synthesized cells, only dendrites
are computationally generated; the axonal morphology is copied from a reconstructed cell.
The e-model consists of Hodgkin-Huxley-based channel models for persistent and transient
Na/K, high- and low-voltage activated Ca, Kv3.1, Ih and SK calcium-activated potassium
channels. When the e-model is instantiated, the axon is replaced by a shorter axon initial
segment with diameters based on the original morphology. The constraints consist of electri-
cal features extracted (eFEL) from somatic whole-cell current clamp recordings and dendritic
back-propagating action potential features obtained from literature. The stimulation cur-
rents used in the experiments and models are scaled by the spiking threshold currents of
the cells. The e-model was applied to the synthesized morphologies and, as in the morpho-
logical validation, the Fnorm was used to quantify how well the resulting morpho-electrical
combination matches with the statistics of the original experimental data.
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C. Synthesis input

Neuronal reconstructions of a large number of cortical morphological classes were used as
input to the synthesis algorithm. Biological reconstructions from the BBP dataset of all
rodent cortical cell types reported in previous publications (Markram et al. 2015, Kanari et
al. 2019) were used as synthesis input. The BBP dataset was chosen as input because of the
consistency of the quality of the input morphologies, as they were all generated using the
same reconstruction protocol. In addition, the electrical models that have been generated for
all cell types (Markram et al. 2015, Van Geit et al. 2016) make the comparison of multiple
properties (morphological, electrical) feasible.

A few modifications were performed on the original reconstructions to compensate for
reconstruction artefacts. For example, the slicing of the brain tissue and the filling of the cells
with biocytin (Horikawa and Armstrong 1988) result in their shrinkage. This effect modifies
the tortuosity of the reconstructions (as cells appear more tortuous than they originally
were), and the extent of their processes decreases. To compensate for these artefacts, the
cells that are used as input for synthesis are initially “unraveled”, as described in (Markram
et al. 2015). Another important artefact is the loss of arborization, due to slicing of the
tissue during the reconstruction process. This error is compensated for with a “repair”
process described in Markram et al. 2015. Because repair modifies the branching properties
of the tree, only cells that have been unraveled, but not repaired, are used as input to the
TNS algorithm for the current study. To compensate for the loss of arborizations, trees that
contain fewer than three sections are considered cut and thus discarded from the synthesis
input during preprocessing of the input data.
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