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Abstract 38 

Fungal secondary metabolites are widely used as therapeutics and are vital 39 

components of drug discovery programs. A major challenge hindering discovery of 40 

novel secondary metabolites is that the underlying pathways involved in their 41 

biosynthesis are transcriptionally silent in typical laboratory growth conditions, making it 42 

difficult to identify the transcriptional networks that they are embedded in. Furthermore, 43 

while the genes participating in secondary metabolic pathways are typically found in 44 

contiguous clusters on the genome, known as biosynthetic gene clusters (BGCs), this is 45 

not always the case, especially for global and pathway-specific regulators of pathways’ 46 

activities. To address these challenges, we used 283 genome-wide gene expression 47 

datasets of the ascomycete cell factory Aspergillus niger generated during growth under 48 

155 different conditions to construct two gene co-expression networks based on 49 

Spearman’s correlation coefficients (SCC) and on mutual rank-transformed Pearson’s 50 

correlation coefficients (MR-PCC). By mining these networks, we predicted six 51 

transcription factors named MjkA – MjkF to concomitantly regulate secondary 52 

metabolism in A. niger. Over-expression of each transcription factor using the Tet-on 53 

cassette modulated production of multiple secondary metabolites. We found that the 54 

SCC and MR-PCC approaches complemented each other, enabling the delineation of 55 

global (SCC) and pathway-specific (MR-PCC) transcription factors, respectively. These 56 

results highlight the great potential of co-expression network approaches to identify and 57 

activate fungal secondary metabolic pathways and their products. More broadly, we 58 

argue that novel drug discovery programs in fungi should move beyond the BGC 59 
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paradigm and focus on understanding the global regulatory networks in which 60 

secondary metabolic pathways are embedded. 61 

Importance 62 

There is an urgent need for novel bioactive molecules in both agriculture and medicine. 63 

The genomes of fungi are thought to contain vast numbers of metabolic pathways 64 

involved in the biosynthesis of secondary metabolites with diverse bioactivities. 65 

Because these metabolites are biosynthesized only under specific conditions, the vast 66 

majority of fungal pharmacopeia awaits discovery. To discover the genetic networks that 67 

regulate the activity of secondary metabolites, we examined the genome-wide profiles 68 

of gene activity of the cell factory Aspergillus niger across hundreds of conditions. By 69 

constructing global networks that link genes with similar activities across conditions, we 70 

identified six global and pathway-specific regulators of secondary metabolite 71 

biosynthesis. Our study shows that elucidating the behavior of the genetic networks of 72 

fungi under diverse conditions harbors enormous promise for understanding fungal 73 

secondary metabolism, which ultimately may lead to novel drug candidates.   74 

 75 

Key words: filamentous fungi, Aspergillus niger, secondary metabolite gene clusters, 76 

gene co-expression, correlation network, natural product, specialized metabolism, 77 

genetic network, gene regulation  78 
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Introduction 79 

Fungal secondary metabolites (SMs) are bioactive, usually small molecular weight 80 

compounds, which have restricted taxonomic distribution and are produced at specific 81 

stages of growth and development1. The most well-known clinical applications of these 82 

molecules include antibiotics, cholesterol-lowering agents, and immunosuppressants 83 

(e.g., penicillin, statins, and cyclosporins, respectively)2. However, they also play an 84 

important role in drug discovery programs, with recently marketed therapeutics 85 

consisting of either fungal SMs or their semi-synthetic derivatives3. In contrast to these 86 

contributions to human welfare, fungal SMs include potent carcinogenic crop 87 

contaminants4, and the mycotoxin-producing capacity of commonly used fungal cell 88 

factories in food or biotechnological processes is often either unknown5 or 89 

underestimated6. Moreover, plant-infecting fungi deploy numerous SMs as virulence 90 

factors that facilitate successful infection7, ultimately destroying enough food for 10% of 91 

the human population per year8. Improved understanding of the genetic, molecular, and 92 

biochemical aspects of fungal secondary metabolism thus promises to drive novel 93 

medical breakthroughs, while also insuring improvements in global food safety and 94 

security9.  95 

 96 

A common feature of SM-producing fungi is that the genes required for producing a 97 

single secondary metabolite are often found in contiguous clusters on the genome, 98 

which may facilitate both horizontal gene transfer of SMs and enable epigenetic 99 

regulation via chromatin remodelling1,10. Biosynthetic gene clusters (BGCs) typically 100 

consist of a gene encoding a core biosynthetic enzyme, most commonly a non-101 
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ribosomal peptide synthetase (NRPS), polyketide synthase (PKS), or terpene cyclase, 102 

which is responsible for the first metabolic step in product synthesis11. Additionally, 103 

BGCs include genes encoding so called ‘tailoring’ enzymes, such as P450 104 

monooxygenases or methyltransferases, which modify the molecule produced by the 105 

core enzyme11,12. Moreover, many BGCs contain either putative membrane transporter-106 

encoding genes, which are required for metabolite efflux from the cell in some13, but not 107 

all14, cases, or additional so called ‘resistance’ genes, which are necessary for the 108 

detoxification/self-protection against the produced molecules15. 109 

 110 

Most BGCs are transcriptionally silent under standard laboratory and industrial 111 

cultivation conditions, which is a major challenge to the discovery of their cognate 112 

molecules16. Interestingly, many BGCs also contain transcription factor (TF)-encoding 113 

genes that regulate their activity11,12,17. In several instances, these TF-encoding genes 114 

have been over-expressed to activate transcription of the respective BGC, ultimately 115 

leading to discovery of novel SMs13,18–21. However, this strategy cannot be used for the 116 

approximately 40% of fungal BGCs that  a resident TF17. 117 

 118 

An alternative approach to engineering SM over-producing isolates has been to identify 119 

and genetically target global regulators of multiple BGCs. These include epigenetic 120 

regulators, notably components of the heterotrimeric velvet complex, which links 121 

development, light responses, and SM production in ascomycetes22. Alternatively, 122 

globally acting TFs that coordinate SM biosynthesis with differentiation (e.g., BrlA/StuA) 123 

and responses to environmental stimuli, such as pH (PacC) or nitrogen availability 124 
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(AreA), can be activated using molecular approaches for elevated natural product 125 

biosynthesis1,17,23. A limitation to these strategies, however, is that all global regulators 126 

discovered to date activate only a fraction of the predicted BGCs in a single genome. 127 

For example, deletion of genes predicted to encode the methyltransferase LaeA, which 128 

is thought to silence BGC expression by the formation of transcriptionally silent 129 

heterochromatin, increased expression of 7 out of 17 BGCs in the biomass-degrading 130 

fungus Trichoderma reesei and 13 out of 22 BGCs analysed in the human pathogen 131 

Aspergillus fumigatus24,25. 132 

 133 

A final confounding factor in understanding and functionally analysing fungal BGCs and 134 

their products is that there is considerable variation to the degree to which core, 135 

tailoring, transport, and regulatory genes are contiguously clustered in fungal 136 

genomes10. This includes so called ‘partial’ clusters in which some genes encoding 137 

biosynthetic enzymes and transporters are not physically linked with other clustered 138 

genes26,27, ‘superclusters’ in which two or more NRPS/PKS encoding genes reside in 139 

close physical proximity28,29, and SM biosynthetic genes which are not contiguously 140 

clustered30.  141 

 142 

Consequently, innovative strategies are required to both discover novel transcriptional 143 

activators of BGCs and to accurately delineate their boundaries. Over the past several 144 

years, an approach that has gained considerable interest has been the utilisation of co-145 

expression networks to analyse BGCs, for example during laboratory culture of 146 

industrial isolates29,31 or during infectious growth of plant-infecting fungi32. A limitation to 147 
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these studies, however, was the relatively small number of conditions tested (up to 148 

several dozen), which resulted in the inability to detect the transcriptional activity of 149 

numerous BGCs. To overcome this limitation, we recently conducted a meta-analysis of 150 

283 microarray datasets covering 155 different cultivation conditions for the 151 

biotechnologically exploited cell factory Aspergillus niger. This data collection covers a 152 

diverse range of environmental conditions and genetic perturbations and was used to 153 

construct a global gene co-expression network based on Spearman’s correlation 154 

coefficient (SCC)33. We found that 53 out of the 81 predicted BGC core genes in A. 155 

niger are expressed in at least one out of the 155 conditions, and we were able to 156 

delineate the boundaries of numerous BGCs, including, for example, the partial cluster 157 

required for biosynthesis of the siderophore triacetyl fusarinine C. 158 

 159 

Our analysis also suggested that only a minority of BGCs are co-expressed with their 160 

resident TF; specifically, from the 25 out of the 53 expressed BGCs that contained a TF, 161 

only 8 BGCs were co-expressed with their respective TF. However, we were able to use 162 

this network to successfully predict global TFs that, independent of their physical 163 

location on the genome, regulate multiple BGCs. This relied on the so-called ‘guilt-by-164 

association’ principle, whereby genes that are part of similar (or the same) biosynthetic 165 

pathways or genetic networks tend to have highly comparable patterns of gene 166 

expression. We functionally analyzed two of these co-expressed TFs (MjkA, MjkB) by 167 

generating loss-of-function and gain-of-function A. niger mutants, and could indeed 168 

demonstrate that their overexpression modulated (either indirectly or directly) the 169 

transcriptional activity of 45 (MjkA) and 43 (MjkB) BGC core genes, respectively33. 170 
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 171 

Despite the utility of co-expression network analyses, there are several possible 172 

limitations to the construction of transcriptional networks based on correlation 173 

coefficients such as Spearman or Pearson. In these networks, correlation coefficients 174 

are used as weighted edges to connect genes (nodes). One major challenge when 175 

constructing these networks is determining the edge weight threshold below which 176 

correlation coefficients are excluded from the network, with the goal being to remove 177 

non-biologically relevant gene associations. We have previously used in silico data 178 

randomization experiments to test the likely threshold of biologically meaningful co-179 

expression based on Spearman33, however, it is still likely that for many BGCs, the 180 

correlation coefficient cut-off chosen (ρ ≥ |0.5|) may be unnecessarily stringent, resulting 181 

in false negative co-expression relationships for BGCs. Additionally, average correlation 182 

coefficients can vary by gene function and input data34. Importantly, in the case of BGC 183 

genes that are only expressed under few or only one specific environmental condition, it 184 

is likely that the expression vector for a given BGC gene will be sparse, and therefore 185 

more likely to artificially correlate with other rarely-expressed genes rather than with 186 

genes with a functional link.  187 

 188 

To overcome these challenges, in this study we reanalyzed the existing A. niger 189 

transcriptome dataset with a specific focus on A. niger BGCs. Firstly, we generated 190 

gene expression modules based on a mutual rank approach, which can capture 191 

functional relationships for rarely-expressed secondary metabolism genes34,35, as we 192 

have previously shown in analyses of secondary metabolism in plants36. We compared 193 
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this mutual rank strategy with our existing Spearman co-expression datasets, and by 194 

integrating both approaches generated a shortlist of six TF- encoding genes (including 195 

mjkA and mjkB), which we hypothesized may regulate multiple BGCs. Functional 196 

analyses of these genes by overexpression using the Tet-on gene switch revealed they 197 

play multiple roles in growth, development and pigment formation of A. niger as 198 

assayed by standard growth tests on medium agar plates and in shake flasks. 199 

Moreover, metabolomic profiling revealed a change in metabolite patterns of analyzed 200 

overexpression strains. Finally, by in silico analysis we generated a list of predicted 201 

molecules and associated them with putative BGCs. The methods and resources 202 

developed in this study will thus enable the efficient activation of fungal SMs for novel 203 

drug discovery programs and other studies. More broadly, our general approach holds 204 

potential for deciphering the global regulatory network governing BGCs and secondary 205 

metabolic pathways in fungi. 206 

 207 

Results 208 

Mining co-expression networks to identify biosynthetic and regulatory modules 209 

Using the SCC approach, we previously estimated the global transcriptional activity of 210 

A. niger BGCs amongst the 283 microarray experiments by assessing gene expression 211 

of the predicted core enzyme33. These data highlighted that BGC expression varies 212 

considerably, with some core enzymes transcriptionally deployed during several dozen 213 

experiments, others expressed in >5, and 28 not expressed under any condition33. We 214 

reasoned that this microarray meta-analysis was also a promising resource for further 215 

interrogation of BGCs using the MR-PCC approach. In doing so, modules of co-216 
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expressed genes were determined using three different exponential decay rates (see 217 

Materials and Methods). Each different exponential decay rate produces modules with 218 

different qualities; NET25, the most relaxed threshold, has the largest modules, while 219 

NET05, the most stringent threshold, has the smallest modules. In addition, the NET10 220 

exponential decay rate produces modules smaller than the NET25 modules and larger 221 

than the NET05 modules. 222 

 223 

In total, there were 2,041 modules recovered from the NET25 network, 2,944 modules 224 

recovered from the NET10 network, and 2,999 modules recovered from the NET05 225 

network (Supplemental Table 1). The median module size for the NET25, NET10, and 226 

NET05 networks was 11, 7, and 5 genes, respectively. Of the 78 predicted BGCs 227 

comprising in total 81 core genes in the Aspergillus niger genome, 43 predicted BGCs 228 

had one or more genes recovered within a single module (Supplemental Table 2). 229 

These 43 BGCs had varying levels of co-expression. For some BGCs, such as the 230 

fumonisin-producing BGC, most genes in the gene cluster are co-expressed at high 231 

levels (Figure 1A). For others, either a small subset of the genes in the BGC were not 232 

co-expressed (e.g., BGC 34; Figure 1B) or only a small fraction of genes was co-233 

expressed (e.g., BGC 38, where only 6 / 22 genes in the BGC were co-expressed; 234 

Figure 1C). Notably, 7 genes in BGC 38 were co-expressed with 10 genes from BGC 34, 235 

thus forming a metamodule (Figure 1D). This metamodule consisted in total of 50 genes, 236 

including one core gene (FAS) and two TFs from BGC 34 and two core genes (PKS, 237 

NRPS) from BGC 38. Concordantly, we could also identify co-expression between BGC 238 

34 and BGC 38 cluster members via the SCC approach. Notably, Multigene BLAST 239 
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showed that BGC 34 and 38 are conserved in black Aspergilli (Supplemental Figure 1). 240 

Both clusters belong to a large SCC sub-network comprised of 1,804 genes (Figure 2), 241 

which is the largest gene co-expression sub-network with BGC genes based on the 242 

Spearman rank coefficient ρ ≥ |0.5|. This sub-network included many TFs that are not 243 

physically located inside BGCs or are co-expressed with non-resident BGC genes.  244 

 245 

It has been speculated over the last decades that BGC resident TFs may co-regulate 246 

gene expression at more than one BGC1,17. Both co-expression network approaches 247 

supported this hypothesis for A. niger, as evidenced by the co-expression of two TFs 248 

residing in BGC 34 (An08g11000 and An08g10880, chromosome 1) with multiple genes 249 

at BGC 38 (chromosome 8), including the predicted NRPS (Figure 3). This was 250 

especially interesting given that (i) BGC 38 does not contain a predicted TF; (ii) both 251 

these BGCs are present in 22 (BGC 34) or 24 (BGC 38) of 83 analyzed genomes of the 252 

genus Aspergillus, and (iii) BGC 38 is in close proximity to the functionally characterized 253 

BGC 39 necessary for azanigerone production37.  254 

 255 

 256 

Interestingly, our analysis demonstrates that the SCC approach primarily carves out co-257 

expression of frequently expressed genes, whereas the strength of the MR-PCC 258 

approach is the identification co-expression relationships amongst rarely expressed 259 

genes. We thus decided to study the impact of six putative TF-encoding genes on A. 260 

niger secondary metabolism in more depth. Four were predicted by the SCC approach 261 

to be co-expressed with at least 10 BGC core genes and are unclustered (MjkA-MjkD), 262 
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whereas the remaining two were predicted by the MR-PCC approach to be co-263 

expressed with both BGC 34 and 38 and are clustered with BGC 34 (MjkE, MjkF; Table 264 

1, Figure 3). 265 

 266 

Table 1: Selected list of transcription factors analyzed in this study, which are co-expressed with BGCs in 267 

A. niger. 268 

Name ORF code No. of co-
expressed BGC 

core genes  
(SCC) 

No. of co-
expressed 
BGC core 

genes  
(MR-PCC) 

Clustered  
in a BGC 

Tet-on based  
overexpression phenotype 

on solid growth medium 

MjkA An07g07370 14 - no Red pigment formation, 
reduced growth, sclerotia 

formation 

MjkB An12g07690 13 - no Red pigment formation 

MjkC An01g14020 17 - no Yellow pigment formation, 
reduced growth 

MjkD An07g02880 10 - no Yellow pigment formation 

MjkE An08g11000 13 1 yes  
(BGC 34) 

Brown pigment formation 

MjkF An08g10880 15 1 yes  
(BGC 34) 

Reduced growth, frequent 
reversions 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 
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 277 

Figure 1: Heatmap depicting the Pearson’s correlation of co-expression of genes within three canonical 278 

BGCs. Across all panels, genes within the canonical cluster are bolded in the heatmap and colored red in 279 

the accompanying chromosome segment. Two flanking genes are included on either side and colored 280 

grey. Gene names have been abbreviated. (A) A significant fraction of genes within the fumonisin 281 

metabolic gene cluster are co-expressed. (B) Co-expression of predicted BGC 34, which contains two 282 

transcription factors. Both are colored green in the heatmap, and other clustered genes recovered in the 283 

metamodule are colored pink. (C) A small fraction of genes within predicted BGC 38 are co-expressed. 284 

Genes are color coded in the heatmap as in (A); genes recovered in a metamodule are colored orange. 285 

(D) Network map of transcription factor metamodule containing all genes co-expressed with both 286 

transcription factors across all three network analyses. Nodes in the map represent genes, and edges 287 

connecting two genes represent the weight (transformed MR score) for the association. Transcription 288 

factors are colored green. Other genes present in BGC 34 are colored pink. Genes present in BGC 38 289 

are colored orange. 290 

 291 
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 292 

Figure 2: The largest Spearman sub-network containing predicted BGC core and tailoring genes 293 

(highlighted in pink) as well as transcription factors (highlighted in blue). The six transcription factors 294 

studied by molecular analyses in this study (MjkA-F) are indicated in green. 295 

 296 

 297 

 298 

Figure 3: Schematic representation of BGC 34 and BGC 38 as predicted by antiSMASH. Based on 299 

sequence similarity and gene functional prediction, BGC 34 corresponds to the alkyl citrate-producing 300 

cluster identified in parallel to this study in A. niger NRRL338. BGC 38 is positioned next to the 301 

azanigerone cluster. 302 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.15.040477doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.040477


15 

 

Overexpression of predicted transcription factors MjkA-F modulate A. niger 303 

pigmentation and development  304 

 305 

Prior to conducting gene functional analysis experiments, we assessed gene expression 306 

profiles for mjkA - mjkF across our 155 cultivation conditions. While both mjkE and 307 

mjkF, which reside in BGC 34, were rarely expressed, the four mjkA – mjkD genes 308 

encoding unclustered TFs were transcribed under numerous conditions, with mjkA 309 

notably expressed to 90% the level of A. niger actin under several conditions (Figure 4).  310 

 311 

To assess the role of these TFs in modulating BGC expression, we generated 312 

conditional expression isolates in which a Tet-on gene switch was placed upstream of 313 

the open reading frame as previously described for the genes mjkA and mjkB33. This 314 

gene switch has undetectable levels of basal expression in the absence of induction, 315 

and addition of 10 µg/ml Dox enables expression above that of the A. niger 316 

glucoamylase gene, whose promoter is often used for overexpression studies33,39,40. 317 

Conditional expression isolates previously constructed for genes mjkA and mjkB were 318 

also analyzed in this study to further assess their role in A. niger secondary metabolism 319 

and development (Supplemental Table 3).  320 

 321 

 322 

 323 

 324 

 325 
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 326 

 327 

Figure 4: Expression levels for all 6 TFs in 155 expression conditions. Note the different scale bars. MjkE 328 

(An08g11000) and MjkF (An08g10880) are only expressed during maltose-limited bioreactor in 329 

developmental mutant deleted in the flbA gene41
. 330 

 331 

 332 

Standard growth assays on solid and in liquid media clearly identified differences in 333 

media pigmentation in overexpression isolates when compared to the progenitor control 334 

(Figure 5, Supplemental Figure 2), suggesting a role of these genes in A. niger 335 

development and/or secondary metabolism. The conditional expression strains MjkA, 336 

MjkD, and MjkF also displayed reduced growth on solid agar under overexpression 337 

conditions (Supplemental Figure 3). Intriguingly, mjkA overexpression also resulted in 338 

the formation of sclerotia (Figure 5), which are an important prerequisite for sexual 339 

development in Aspergillus42. However, A. niger sensu stricto has not been reported to 340 

have a sexual cycle. Still, A. niger rarely produces sclerotia under specific growth 341 

conditions, which are paralleled by the production of many secondary metabolites 342 
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including indolterpenes of the aflavinine type42. We thus re-analyzed transcriptomic data 343 

which were available for this isolate and for the MjkB overexpression strain from 344 

bioreactor cultivation33 to screen for differential expression of developmental regulators 345 

following conditional MjkA and/or MjkB expression. Strikingly, the expression of 36 and 346 

27 regulators and TFs were affected when mjkA or mjkB were up- or downregulated, 347 

respectively (Figure 6). Notably, the overexpression of MjkA resulted in downregulation 348 

of genes encoding transcription factors known to control primary metabolism (creA, 349 

areB, xlnR, amyR, prtT, pacC, crzA, hapX, farA, farB, acuB43) and asexual development 350 

(brlA, abaA, stuA, flbA, flbB, flbC43) as well as chromatin structure (laeA, velB, vipC, 351 

mtfA, hdaA43) in Aspergillus (Figure 6). Deletion of mjkA caused strong upregulation of 352 

the regulator-encoding genes areA, cpcA, msnA, csnE, flbD and vosA (Supplemental 353 

Table 4) with functions in primary metabolism and development43, implying that MjkA is 354 

a global regulator of A. niger metabolism, differentiation and development and 355 

hierarchically placed on a higher level than so far known global regulators in Aspergillus 356 

mentioned above. Note that the MjkA encoding gene can be found in 61 / 83 sequenced 357 

Aspergillus genomes as identified by BLAST analyses (Supplemental Table 5). 358 

 359 

Figure 5: Tet-on-based overexpression of mjkA modifies A. niger development. Overexpression of mjkA 360 

induced by the addition of 10 µg/ ml doxycycline leads to sclerotia formation on agar plates, especially 361 

when cultivated on minimal medium (MM). 362 
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 363 

Figure 6: Differential gene expression of transcription factors following overexpression of mjkA and mjkB 364 

genes during controlled bioreactor batch cultivations of A. niger performed in our previous study33. Note 365 

that overexpression of MjkA strongly affects expression of predicted regulators during both growth 366 

phases, whereas the effect of MjkB is limited to the post-exponential growth phase. ORF codes are given. 367 

 368 

 369 

Overexpression of predicted transcription factors MjkA-F modulates the 370 

secondary metabolite profile of A. niger  371 

 372 

To understand the effect of the MjkA-F TFs on the secondary metabolite profile of A. 373 

niger, we next conducted untargeted metabolome analysis of the progenitor strain and 374 

mjkA-mjkF conditional expression strains after 2, 4 or 10 days of incubation on minimal 375 

agar plates supplemented with 10 µg/ml Dox. For each overexpression strain, one 376 

single time point was selected for metabolome analysis. Time points were chosen when 377 

the greatest deviation in either media pigmentation or growth relative to the control 378 

strain was observed (Supplemental Figure 3). Since culture samples were harvested at 379 
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the center as well as the outer edges of the growing colonies and pooled for analysis, 380 

the obtained results comprise metabolites from both old and young mycelia. This 381 

analysis detected a total of 2,063 compounds, from which 1,835 were annotated. 382 

Metabolic pathway visualization of the identified metabolites using iPATH showed that 383 

intermediates from various biosynthetic routes towards SMs (Supplemental Figures 4 384 

and 5) were covered. Statistical analysis (t-test) identified numerous metabolites that 385 

were significantly different (p ≤ 0.05 and log2 ratio > 1 or -1) for the compared genotypes 386 

and time points (Figure 7A). 387 

 388 

Generally, overexpression of mjkC and mjkF (2 days) as well as overexpression of mjkA 389 

and mjkD (4 days) each affected more than 140 metabolites (Figure 7B). Interestingly, 390 

only overexpression of mjkC led to an upregulation of more than half of the affected 391 

metabolites, whereas overexpression of mjkA, mjkD and mjkF led to down-regulation 392 

(Figure 7B). In comparison, overexpression of mjkB and mjkE (10 days) apparently 393 

affected fewer metabolites (66 and 43, respectively), which might also be due to a 394 

reduced overall metabolic activity of the cultures after prolonged cultivation.  395 

 396 

Amongst the significantly affected metabolites, several known SMs of A. niger and 397 

related species44 could be putatively identified by means of LC-QTOF-HRMS based on 398 

mass and retention time (Figure 7C, Supplemental Figures 6 and 7). These compounds 399 

comprise naphto-γ-pyrones (aurasperones, isonigerone, fonsecin, carbonarins), 400 

bicoumarins (bicoumanigrin, kotanin, desmethylkotanin, funalenone), and fumonisins. 401 

Moreover, overexpression of the putative TFs affected meroterpenoids (1-402 
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hydroxyyanuthone A) and benzoquinone-type pigments (atromentin, cycloleucomelone), 403 

as well as different types of alkaloids such as pyranonigrins, pyrophens (aspernigrin A, 404 

carbonarone A, nygerone A), nigragillins (nigragillin, nigerazine B), and tensidols. Not 405 

found amongst the significantly affected compounds were some known SMs of A. niger, 406 

which have already been linked to their corresponding BGCs, such as azanigerone37, 407 

TAN-161245, and ochratoxin46.  408 

 409 

Notably, the list of previously identified SMs of A. niger almost exclusively comprised of 410 

polyketide products (Supplemental Figure 6). Thus, even though the peptide-forming 411 

NRPS from BGC 38 (An09g01690) is present in a mutual rank metamodule with MjkE 412 

and MjkF, the biosynthetic product of BGC 38 is unlikely to be one of the compounds 413 

identified in the current study. Based on an in silico assembly line prediction using 414 

antiSMASH, An09g01690 encodes a bimodular NRPS, which cannot be classified yet 415 

into a linear or iterative assembly type and its product is thus not predictable. Since it is 416 

co-expressed with two putative fatty acid synthase encoding genes (An09g01740, 417 

An09g01750) in BGC 38 (Figure 1 and Figure 3), the encoded peptide presumably 418 

features a fatty acid moiety of varying length based on the available fatty acid pool of 419 

A. niger. Similar patterns have been observed for other nonribosomally synthesized 420 

lipopeptides such as daptomycin47.  421 

 422 

In parallel to this study, BGC 34 (Figure 3) was recently demonstrated to be responsible 423 

for alkyl citrate production in A. niger NRRL338. For this SM class, a range of 424 

bioactivities has been reported, including antiparasitic48, antifungal49 antibacterial50, and 425 
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plant root growth promotion effects51. Other complex alkyl citrates (zaragozic acids, also 426 

called squalestatins) have been shown to be amongst the most potent natural squalene 427 

synthase inhibitors52,53. Notably, the metabolome analysis in this study showed that 428 

several alkyl citrates, such as hexylaconitic acid A, hexylitaconic acid J, tensyuic acid C 429 

and E, were also differentially produced upon TF overexpression at different time points 430 

(Figure 7C, Supplemental Figure 7). 431 

 432 

 433 

Figure 7: Overexpression of mjkA - mjkF genes affects numerous metabolites in A. niger. (A) Annotated 434 

metabolites were plotted by significance (p-value) versus fold-change (log2 ratio). Metabolites reaching a 435 

p-value < 0.05 are marked orange. Metabolites with a p-value < 0.05 and a log2 ratio > 1 or -1 were 436 

considered significant. (B) Number of significantly affected metabolites (p-value < 0.05 and log2 ratio > 1 437 

or -1) in comparison to the control strain. (C) Exemplary visualization of tensyuic acid C (alkyl citrate) and 438 

fumonisin B4 abundances during cultivation of overexpression and control strains of A. niger on agar 439 

plates at different time points (biological duplicates). 440 
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Discussion 441 

This study has demonstrated that gene co-expression analysis enables the identification 442 

of fungal transcriptional networks in which secondary metabolite genes are embedded. 443 

By comparing mutual rank and Spearman derived co-expression networks, we have 444 

respectively identified both BGC resident and, additionally, unclustered TFs, a finding 445 

broadly consistent with the existence of SM regulatory genes that reside outside 446 

predicted BGC loci17. However, there is a growing body of evidence to suggest that, at 447 

least in some instances, there has been an over-reliance on physical clustering for the 448 

prediction of SM pathway genes and their cognate transporters/regulators. Indeed, with 449 

several notable exceptions54,55, it is still relatively rare that genes required for the 450 

biosynthesis of an entire fungal SM are firstly experimentally verified, and secondly, fully 451 

contiguously clustered. Thus, the true extent of SM pathway gene clustering in fungi 452 

remains unclear. This is further complicated by divergence in the degree in which the 453 

BGCs are ‘intact’ across fungal genomes, which is even true for ‘gold standard’ BGCs, 454 

such as those necessary for epipolythiodioxopiperazine  synthesis (e.g., 455 

gliotoxin/sirodesmin)54. Hence, experimental approaches to activate and functionally 456 

analyze the full fungal SM repertoire cannot exclusively rely on in silico genomics 457 

approaches.   458 

 459 

Given that co-expression approaches have only recently been applied to define fungal 460 

BGC boundaries and their transcriptional networks29,31,33,56, in this study we examined 461 

the potential utility of two different approaches for constructing co-expression networks, 462 

namely mutual rank and Spearman approaches. Our results suggest that both 463 
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approaches enable delineation and refinement of contiguous BGC boundaries. 464 

However, whereas the Spearman approach was better suited for the identification of 465 

global TFs, the mutual rank approach was better suited for the identification of pathway-466 

specific TFs. This work should therefore guide future co-expression analyses of other 467 

fungal transcriptional datasets based on the requirements of the end user (i.e., global or 468 

pathway-specific studies). 469 

 470 

Overexpression of six TF-encoding genes (mjkA-F) predicted from co-expression 471 

networks to be involved in A. niger SM regulation enabled the modification of A. niger 472 

secondary metabolite profiles, which included the production of SMs that were not 473 

detected in the progenitor control (Supplemental Figure 7). Thus, wholesale modulation 474 

of fungal SMs in standard lab culture is possible using hypotheses derived from both 475 

Spearman/mutual rank network approaches. The simplicity of the culture conditions is 476 

an attractive aspect of the discovery pipeline in this work, which may be preferable 477 

when compared to more complex experimental setups, such as co-cultivation 478 

experiments, or isolation of novel metabolites from the complex fungal niche (e.g., soil) 479 

or marine environments57.  480 

 481 

From a methodological perspective, our data support the notion that TF overexpression 482 

using an inducible gene switch is an effective strategy for SM activation, and probably is 483 

preferable to conventional gene deletion approaches33. It should be noted, however, 484 

that this study was clearly not able to activate all A. niger SMs, as we only analyzed SM 485 

profiles from a single growth stage/time point for each mutant. Therefore, we speculate 486 
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that activation of other metabolites will be observed at different culture 487 

conditions/growth phases. Consequently, the full exploration of the SM repertoire of A. 488 

niger isolates MjkA-F will be conducted in follow up studies. Where conservation of 489 

MjkA-F is observed in other fungal genomes, the functional analysis (i.e., 490 

overexpression) of such orthologues to activate and discover other SM molecules 491 

appears feasible. 492 

 493 

An exciting observation during this study was that MjkA seemed to function at a 494 

hierarchy above major transcriptional regulators, such as CreA, AreA, PacC, BrlA, CrzA, 495 

and LeaA, to name but a few (Figure 6). Additionally, the formation of sclerotia due to 496 

overexpression of MjkA can be viewed as a preliminary (and tentative) step towards 497 

laboratory-controlled sex, opening up the possibility of classical genetics in this 498 

species58. Such developmental jackpots may be viewed as an additional benefit to 499 

wholesale analysis of fungal SMs using co-expression networks.  500 

 501 

In this work, we also conducted significant in silico and mass spectrometry-based 502 

characterization of differential SM production profiles and attempted to link empirically 503 

observed SMs to specific BGCs. Despite recent advances in publicly available tools for 504 

such experiments, including the prediction of putative SM structures based on the 505 

analysis of PKS/NRPS domains59, coupling BGCs to their products is still challenging. In 506 

this respect, linking BGCs amongst multiple differentially produced SMs between control 507 

and experimental cohorts remains a significant bottleneck in discovery pipelines and 508 
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requires experimental validation of putative BGC-metabolite candidates, e.g., by means 509 

of core gene knockout or overexpression. 510 

 511 

In summary, this study has generated novel co-expression resources and methods for 512 

the microbial cell factory A. niger. Strains MjkA-F are promising tools for metabolite 513 

discovery and will be used in future to reverse engineer the transcriptional networks to 514 

which they belong. Our data clearly support the well-established prevalence of BGCs in 515 

filamentous fungal genomes, but suggest a refinement to this paradigm — whereby for 516 

activation and functional analysis experiments of SMs, it may be safer to consider that 517 

the necessary genes for a fungal SM of interest (including core genes, tailoring genes, 518 

transporters, detoxifiers, and regulators) may be unclustered, but can be identified by 519 

means of SCC as well as MR-PCC co-expression analyses. Such shifts in experimental 520 

thinking may help facilitate the full exploitation and comprehensive understanding of 521 

SMs amongst the fungal kingdom.  522 

 523 

Materials and Methods 524 

 525 

Calculating mutual rank for microarray experiments 526 

A. niger microarrays across a range of experimental conditions and genetic 527 

backgrounds33 were analyzed in R using the affy, simpleaffy, and makecdfenv 528 

packages60–62. Raw data from each of the 283 individual microarrays were normalized 529 

using RMA as implemented in the affy package60. To enable cross-experiment 530 

comparisons, expression values were normalized by scaling to the cross-experiment 531 
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trimmed mean (excluding the top and bottom 5% of expression values). Pearson’s 532 

correlation coefficient was calculated between every pair of genes across all conditions. 533 

An ordered list of all genes from most to least correlated was generated for each gene. 534 

For every pair of genes, the mutual rank was calculated by taking the geometric mean 535 

of the rank of each gene in the other gene’s ordered list. The mutual rank (MR) of two 536 

genes A and B is the geometric mean of each gene’s correlation rank, and is given by 537 

the formula:  538 

�����������,� 	  ��������� � �������� 

where �������� is the rank of gene B in an ordered list of the correlation coefficients of 539 

all genes with respect to gene A ranked from most to least correlated34. MR scores were 540 

transformed to network edge weights using the exponential decay function �����	/��; 541 

three different networks were constructed with x set to 5, 10, and 25, respectively. 542 

Edges with a Pearson’s correlation coefficient < 0.3 or an edge weight < 0.1 were 543 

excluded from the global network, which was then visualized in Cytoscape63. Modules of 544 

co-expressed genes were inferred using ClusterONE with default parameters64. 545 

Modules were analyzed for the presence of transcription factors and for SM backbone 546 

genes based on protein domains found within these genes and from gene annotations 547 

predicted by antiSMASH65. For two transcription factors (MjkE and MjkF), results from 548 

all co-expression networks were combined by collapsing all modules containing these 549 

genes of interest into a meta-module of non-overlapping gene sets. For identification of 550 

shared clusters in Aspergillus species (Supplemental Table 6), MultiGeneBlast66 was 551 

used with 83 available representative genome assemblies available on NCBI Assembly 552 

as search database. 553 
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 554 

Strains and molecular techniques 555 

A. niger strains used in this study are summarized in Supplemental Table 3. Media 556 

compositions, transformation of A. niger, strain purification and fungal chromosomal 557 

DNA isolation were as previously described67. Standard PCR and cloning procedures 558 

were used for the generation of all constructs68 and all cloned fragments were confirmed 559 

by DNA sequencing. Correct integrations of constructs in A. niger were verified by 560 

Southern analysis68. For overexpressing mjkC, mjkD, MjkE and mjkF, the respective 561 

open reading frames were cloned into the Tet-on vector pVG2.239 and the resulting 562 

plasmids integrated as single or multiple copies at the pyrG locus of strain MA169.4. 563 

Details on cloning protocols, primers used and Southern blot results are available upon 564 

request from the authors. 565 

 566 

Growth assays 567 

Strains were grown at 30°C in minimal medium (MM) or complete medium (CM), 568 

consisting of MM supplemented with 1% yeast extract and 0.5% casamino acids as 569 

described previously69. When indicated, solid or liquid media were supplemented with 570 

doxycycline (DOX) to a final concentration of 10 µg/ml. For the growth assay on plates, 571 

105 spores were inoculated on CM or MM +/- DOX and grown for up to 6 days. For 572 

shake flask cultivations, freshly harvested spores were inoculated into 50 ml of MM 573 

(106/ml) and grown at 30°C, 200 rpm. DOX was added after 16 hr of inoculation 574 

(~exponential phase) and afterwards every 24 hr until 92 hr. Strain MJK17.25 served as 575 

control strain. 576 
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 577 

Metabolome profiling 578 

Metabolites were extracted from colonies of A. niger MJK17.25 grown on agar plates 579 

(independent biological duplicates) by METABOLON (Potsdam, Germany). In brief, 580 

three agar plugs (outer edge to plate, centre of colony, outer edge adjacent to next 581 

colony) were collected at different time points from a colony cultivated for 2 – 10 days 582 

on minimal agar medium and pooled in one reaction tube. Each sample was extracted 583 

in a concentration of 0.5 g/ml with isopropanol:ethyl acetate (1:3, v/v) by ultrasound for 584 

60 min and centrifuged at 4°C at 13,500 rpm for 20 min. The supernatant was sterile 585 

filtrated (Carl Roth, 0.22µm) and transferred in a new eppendorf tube. All subsequent 586 

steps were carried out at METABOLON (Potsdam, Germany). Metabolites were 587 

identified in comparison to METABOLON's database entries of authentic standards. The 588 

LC separation was performed using hydrophilic interaction chromatography with a 589 

iHILIC®-Fusion, 150x2.1 mm, 5µm, 200 Å column (HILICON, Umeå Sweden), operated 590 

by an Agilent 1290 UPLC system (Agilent, Santa Clara, USA).  591 

The LC mobile phase was A) 10 mM Ammonium acetate (Sigma-Aldrich, USA) in water 592 

(Thermo, USA) with 95% acetonitrile (Thermo, USA; pH 6) and B) acetonitrile with 5% 593 

10 mM Ammonium acetate in 95% water. The LC mobile phase was a linear gradient 594 

from 95% to 65% acetonitrile over 8.5 min, followed by linear gradient from 65% to 5% 595 

acetonitrile over 1 min, 2.5 min wash with 5% and 3 min re-equilibration with 95% 596 

acetonitrile (flow rate 400 μl/min). Mass spectrometry was performed using a high-597 

resolution 6540 QTOF/MS Detector (Agilent, Santa Clara, USA). Spectra were recorded 598 

in a mass range from 50 m/z to 1700 m/z in positive and negative ionization mode. The 599 
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measured metabolite concentration was normalized to the internal standard. Significant 600 

concentration changes of metabolites in different samples were analyzed by appropriate 601 

statistical test procedures (Students test, Welch test, Mann-Whitney test). A p-value 602 

< 0.05 was considered as significant. 603 

 604 
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