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Abstract
Breast cancer progresses in a multistep process from primary tumor growth and stroma invasion to metastasis. Progression is accompanied

by a switch to an invasive cell phenotype. Nutrient-limiting environments exhibit chemotaxis with aggressive morphologies characteristic
of invasion. The mTOR pathway senses essential nutrients, informing the cell to respond with either increased chemotaxis and nutrient
uptake or cell cycle progression. Randomized clinical trials have shown that mTOR inhibitors (mTOR-I) improve the outcome of metastatic
breast cancer patients. However, there are considerable differences between and within tumors that impact the effectiveness of mTOR-I,
including differences in access to nutrients. It is unknown how co-existing cells differ in their response to nutrient limitations and how this
impacts invasion of the metapopulation as a whole. We integrate modeling with microenvironmental perturbations data to investigate invasion
in nutrient-limiting environments inhabited by one or two cancer cell subpopulations. Hereby subpopulations are defined by their energy
efficiency and chemotactic ability. We calculate the invasion-distance traveled by a homogeneous population. For heterogeneous populations,
our results suggest that an imbalance between nutrient efficacy and chemotactic superiority accelerates invasion. Such imbalance will
segregate the two populations spatially and only one type will dominate at the invasion front. Only if these two phenotypes are balanced do the
two populations compete for the same space, which decelerates invasion. We investigate ploidy as a candidate biomarker of this phenotypic
heterogeneity to discern circumstances when inhibiting chemotaxis amplifies innternal competition and decelerates tumor progression, from
circumstances that render clinical consequences of chemotactic inhibition unfavorable.
Significance: A better understanding of the nature of the double-edged sword of high ploidy is a prerequisite to personalize combination-
therapies with cytotoxic drugs and inhibitors of signal transduction pathways such as MTOR-Is.

Introduction
Invasion and infiltration are hallmarks of advanced cancers, in-

cluding breast cancer, and accumulating evidence suggests that
invasive subclones arise early during tumor evolution [1]. MTOR
inhibitors (mTOR-I) significantly decrease migration of breast can-
cer cells in a dose-dependent manner [2]. A meta-analysis of four
randomized clinical trials concluded that adjuvant therapy with
mTOR-Is, such as rapamycin, benefits metastatic luminal breast
cancer patients [3]. Rapamycin inhibits cell motility by a mech-
anism similar to that by which it inhibits cell proliferation [4],
suggesting that the mTOR pathway lies at the intersection of a cell’s
decision between proliferation and migration.

The extracellular matrix (ECM) provides structural support for
cells and plays an important role in tumor cell migration. Some
ECM proteins, such as fibronectin and vitronectin [5], bind solu-
ble growth factors and regulate their distribution to the cells [6].
Importantly, binding to the ECM can cause soluble factors to act
and signal as solid-phase ligands. Proteolytic degradation of these
ECMs creates chemotactic and haptotactic gradients causing cells
to invade in a directed fashion along the ECM [7], with minimal
interference from chemokinetic (i.e. random) movement [8]. Sev-
eral of these matrix proteins stimulate cell-motility through integrin
receptors [9, 10]. The microenvironment microarray (MEMA) plat-
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form allows for combinations of ECMs and ligands to be evaluated
for their impact on cellular phenotypes [11, 12]. Hereby, insoluble
ECM proteins are printed on a solid substrate to form spots upon
which cells are grown. Soluble factors are added to the culture
medium within each well of a multi-well plate. These factors in-
clude hepatocyte growth factor (HGF), a soluble ligand involved
in the regulation of breast cancer cell proliferation and invasion
[5, 13].

Infiltrating and invasive phenotypes are often observed among
high-ploidy cells. Converging evidence from different cancer types,
including colorectal-, breast-, lung- and brain cancers, suggests a
strong enrichment of high ploidy cells among metastatic lesions
as compared to the primary tumor [14, 15]. Even in normal devel-
opment: trophoblast giant cells - the first cell type to terminally
differentiate during embryogenesis - are responsible for invading
the placenta and these cells often have hundreds of copies of the
genome [16]. Coexistence of cancer cells at opposite extremes
of the ploidy spectrum occurs frequently in cancer and is often
caused by whole genome doubling (WGD). Similar to infiltration,
the timing of WGD is early in tumor progression across several
cancer types [17, 18], including breast cancer. Tetraploid cells re-
sulting from WGD often lose regions of the genome, giving rise
to poly-aneuploid cancer cells (PACCs). Multiple studies have de-
scribed a minority population of PACCS with an unusual resilience
to stress [19–21]. A very recent investigation of evolutionary selec-
tion pressures for WGD suggests that it mitigates the accumulation
of deleterious somatic alterations [22]. However, it is not clear what
costs cells with a duplicated genome pay for this robustness.

To address this question, we developed a mathematical model of
co-evolving tetraploid and diploid clones under various energetic
contingencies. We calibrate the model to recapitulate doubling times
and spatial growth patterns measured for the HCC1954 ductal breast
carcinoma cell line via MEMA profiling. This includes exposure of
HCC1954 cells to HGF in combination with 48 ECMs, followed
by multi-color imaging [11]. Our results show that long-term coex-
istence of diploid and tetraploid clones occurs when sensitivity of
the latter to energy scarcity is well-correlated to their chemotactic
ability to populate new terrain. Higher energy uniformity through-
out population expansion steers selection in favor of the diploid
clone, by minimizing the fitness gain the tetraploid clone gets from
its chemotactic superiority. Better understanding of how these two
phenotypes co-evolve is necessary to develop therapeutic strategies
that suppress slowly-proliferating, invasive cells before cytotoxic
therapy favors them.

Materials and Methods
Overall model design

We modeled growth dynamics in polyploid populations of vari-
ous subpopulation compositions. At the core of our model lies the
assumption that chemotactic response to an energy gradient is a
function of the cell’s energetic needs. This trade-off implies that het-
erogeneous populations will segregate spatially, with more energy
demanding cells leading the front of tumor growth and invasion.

We model competition for energy in a heterogeneous population,
consisting of goer and grower subpopulations, to predict their be-
havior during plentiful and energy sparse conditions. Sensitivity
to the available energy is modeled via a Michaelis-Menten type
equation with coefficients �i that determine the amount of energy
population i needs for a half-maximal growth rate. We assume both
goer and grower have the same random cell motility coefficient
�, the same chemotactic coefficient � and maximal growth rate �.
However, their chemotactic motion is asymmetrically sensitive to
the amount of energy available. This is accounted for by ⌅i. The
goers (U ) are more motile and require more energy compared to the
growers (V ). This manifests itself mathematically via the parameter
relations �U > �V and ⌅U < ⌅V .

Quantitative estimates of how a cell’s growth rate and motility
depends on energy availability have been described [23–25]. En-
ergetic resources come in various forms, and the identities of the
limiting resources that ultimately drive a cell’s fate decision vary
in space and time. We used MEMA profiling to investigate what
likely is only a narrow range of that variability – 48 HGF-exposed
ECMs. HGF stimulates both growth and migration of epithelial and
endothelial cells in a dose-dependent manner, whereby maximal
growth-stimulating effects have been reported at concentrations
twice as high as concentrations that maximize migration [26]. In
line with these reports, our model implements a shift from prolifer-
ation to migration as resources get depleted.

Mathematical models of a dichotomy between proliferation and
migration are numerous [27–29], but whether the two phenotypes
are indeed mutually exclusive remains controversial [30]. Our ef-
forts to use mathematical modeling to inform what cost high-ploidy
cells (goers) pay for their robustness builds upon these prior works.
We extend it by accounting for differences in the rate at which
cells consume energy (a) and differences between media in the rate
at which energy diffuses (coefficient �E). For mid-range energy
diffusion coefficients our model describes directed cell motility
in response to a gradient of a soluble attractant, i.e. chemotaxis.
By contrast, small values of �E approximate cell motility towards
insoluble attractants, i.e. haptotaxis. As such, the chosen value
for �E sets where along the continuum between haptotaxis and
chemotaxis directed cell movement resides. A special case applies
when the energy diffusion coefficient is very large relative to cell
movement, in which case neither chemotaxis nor haptotaxis occurs.
All these energetic contingencies determine whether phenotypic
differences between goers and growers manifest as such, and ex-
plain why non-proliferative arrested cells can have the same motility
as cycling cells [30]. A future extension will be to integrate our
model of the potential cost of high ploidy with existing Markov
models of the robustness benefits it can provide against deleterious
mutations [22, 31, 32]. With a better understanding of the nature
of the double-edged sword of high ploidy, we aim to contribute
towards personalized combination-therapies with cytotoxic drugs
and inhibitors of signal transduction pathways such as MTOR-Is.
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Quick guide to equations
Our model assumes that the energy diffusion coefficient �E

depends on the type of media or surface upon which the cells
grow. We also suppose that energy is consumed in proportion to the
amount of cells present. For cell motility, we assume it is driven
both by random cell motion and chemotaxis. This leads to our
general coupled system:
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Ẽ

�U + Ẽ| {z }
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The system (1) is defined on a dish of radius R subject to no-flux
boundary conditions. We assume the cells U, V are initially concen-
trated at the center with radius ⇢0  R and initial concentrations
U0, V0. Further, we assume that the energy density is uniformly
distributed on the plate with initial value E0. All parameters ex-
cept otherwise stated are independent of any of the state variables
(Ẽ, U, V ). The energy is consumed at rate �. Both cells can divide
at the maximal rate �, but are restricted by the energy density Ẽ.
The cells can locally grow to a local maximal density given by K.
This parameter is often cell line-dependent and is related to contact
inhibition and a cell’s ability to grow on top of each other.

We now convert our system to dimensionless form that was
used for all subsequent simulations and analysis via appropriate
re-scaling (Appendix),

@E
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Hereby re-scaling simplified the system from thirteen (ten parame-
ters and three initial conditions) to nine (seven parameters and two
initial conditions), with dimensionless variables �E = �E/�, a =

�K/�, b = �/�, � = �/E0 and ⇠ = ⌅/E0.

Infiltration
An important question in cancer dynamics is infiltration into

and through tissue. The desire for cells to move is inherently tied
to the availability of nutrients and space. To this end we define
 (⌧) := [⇢(⌧)� ⇢0]/⇢0 where ⇢(0) = ⇢0, the initial radius of cell
seeding density.  can be thought of as a non-dimensional measure
of infiltration attained after time ⌧ . This dimensionless measure
has the added benefit of being scale-independent. An inherent
difficulty with random cell motility and calculating infiltration is
that the system always reaches the boundary of the dish in finite

time. Instead we will define the maximum degree of infiltration to be
given by the time needed for the total energy to be below a threshold
" ⌧ 1. For simulations, we took the 1-norm kEk1 < " = 1e� 4.

In general, the maximum degree of infiltration is difficult to pre-
dict analytically, so we will only consider the single subpopulation
case when obtaining our analytical estimates. We will also make
use of the simplification that most energy-type molecules (e.g. glu-
cose) have a diffusion coefficient that is very large, relative to cell
movement. This allows us to write a reduced model which has
energy homogeneous in space (S3a)-(S3b).

Table 1. Measured and inferred simulation parameters. (1) One-
population model; (2) Two-population model. Parentheses indi-
cate ranges with multiple equally good fits. Corresponding non-
dimensional parameters are shown in Supplementary Table 4.

No chemotaxis infiltration estimate
We can derive an estimate for infiltration in the absence of chemo-

taxis by appealing to (S3a)-(S3b). These logistic growth-reaction-
diffusion models often exhibit complex dynamics. One such exam-
ple is that of a traveling-wave solution, where one state, typically the
stable state, travels (infiltrates) through the domain. The canonical
example of this phenomenon is the Fisher-KPP. In contrast to the
Fisher-KPP and other biology equations subsequently studied, our
model has a decaying growth rate and so the magnitude of the non-
linearity that caused the traveling wave is tending to zero. Therefore,
in the classic sense, our system does not admit a traveling wave.
We here extend the theory by assuming a separation of time scales
between consumption of energy (e.g. decay of energy-dependent
growth rate) and the speed of the traveling wave.

To begin, we make the assumptions that the wave speed is a slow
function of r and ⌧ . The solution obtained will verify that these
assumptions are valid for our system. Our ansatz takes the form
u(r, ⌧) = U(r � ⌘⌧) = U(z). Note that in spatial equilibrium,
u = 1 is stable and u = 0 is an unstable steady state. If the unstable
state is what governs the wave speed, then the wave is said to be
“pulled", otherwise it is “pushed" [33, 34]. The resulting analysis
yields a coupled system of ODEs that govern the speed of the front
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(Appendix):
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We see that our assumptions on the behavior of the traveling wave
are verified, since ⇢ is assumed much larger than 0 and 0 ⌧ ⇢ ⌧
R. This shows that E is a slowly varying function of time and
⌘ = d⇢/d⌧ is a slowly varying function of time and its current
distance from the center. In other words, a traveling wave will only
form when the initial seeding radius is relatively large (⇢0 ⇠ 1 was
sufficient in most simulations).

Estimating the degree of infiltration from equilibration
The previous section yields a system that can be integrated to

track the evolution of the cell front over time. However, we may
be more interested in how far it will ultimately travel before energy
exhaustion and not the speed at which it gets there. An interesting
alternative to tracking the wave over time is to only assume it
travels as a wave, but only record the density after the system has
reached uniformity. This is possible if the death rate (which has
been neglected) is much smaller than the time it would take the
cells to spread uniformly. If this is the case, we can bind the degree
of infiltration from only knowing the uniform value ū at the end of
the experiment (see Appendix for details):

⇢(⌧ = T ) = R

r
2ū

1 + ⇤2
. (4)

, where ⇤ is the transition width, i.e. the length scale on which cell
concentration goes from u = 1 to u = 0, and ū it is the concen-
tration at the end of the experiment (at equilibration). Solving (4)
gives us the estimated infiltration as:

 =
R

⇢0

r
2ū

1 + ⇤2
� 1. (5)

Since we assume that the transition width is unknown, we can bind
 (or ⇢(T )) by considering the lower and upper bounds ⇤ = 0, 1,
respectively.

Model calibration
We calibrate the model to recapitulate doubling times and spatial

growth patterns measured for the HCC1954 ductal breast carcinoma
cell line via MEMA profiling. The dataset includes exposure of
HCC1954 cells to HGF in combination with 48 ECMs in a DMSO
environment (i.e. no drug was added to the media). Between 13
and 30 replicates of each ECM are printed on a rectangular MEMA
array as circular spots (Supplementary Fig. 1A), adding up to a
total of 692 spots [11].

MEMA data analysis
An average of 62 cells (90% confidence interval: 50-75) were

seeded on each 350 µm spot and grown for three days. Confluence

at seeding was calculated from the ratio between the cumulative
area of cells and the area of the spot (see Supplementary Fig. 1).

Quantification of segmented, multi-color imaging data obtained
for each spot three days post-seeding was downloaded from Synapse
(synID: syn9612057; plateID: LI8C00243; barcode: B03). We
binned cells detected within a given spot according to their distance
to the center of the spot and calculated the confluence of each
bin (Supplementary Methods). This was then compared to the
confluence obtained from the simulations as described below.

Simulation environment

Simulations were ran for three days on a circular domain with
radius R = 1750 µm. Cells were seeded uniformly at the center of
this domain along a radius ⇢0 = 175 µm at 36% confluence. These
two initial conditions were given by the MEMA experimental design
(Supplementary Fig. 1A). To recapitulate the configuration of the
MEMA profiling experiment, cells leaving the ⇢0 domain can no
longer adhere to the ECM and die. This was implemented by having
the carrying capacity K(x) rapidly approach zero when x > ⇢0.
This setup can have energy attract cells to the periphery of a MEMA
spot and beyond. We ran 10,000 simulations at variable energy
consumption rates, chemotactic coefficients, energetic sensitivities,
and diffusion rates of the growth-limiting resource (i.e. ECM-bound
HGF; Table 1). For each simulation/ECM pair, we compared spatial
distributions of in-silico to in-vitro confluence using the Wasserstein
metric [35].

The model was implemented in C++ (standard C++11). The
armadillo package (ARMA version: 9.860.1) [36] was used for
simulation of the PDEs. Simulations were run on a Intel Core i7
MacBook Pro, 2.6 GHz, 32 GB RAM. The source code is available
at the github repository for the IMO department: GoOrGrow.

Ploidy as biomarker of phenotypic divergence

RNA-Seq analysis

We identified 44 breast cancer cell lines of known ploidy [37]
and with available RNA-seq data in CCLE [38]. The molecular
subtype classification of all these cell lines was available from
prior studies [39–42]. Of these 44 cases, four were suspension cell
lines and excluded from further analysis. Of the remaining 40 cell
lines, 20 originated from primary breast cancer tumors and were
the focus of our analysis. Gene expression data was downloaded
from CCLE. We used gene set variation analysis (GSVA) to model
variation in pathway activity across cell lines [43]. Pathways for
which less than ten gene members were expressed in a given cell
lines were not quantified. The gene membership of 1,417 pathways
was downloaded from the REACTOME database [44] (v63) for
this purpose. As a surrogate for the importance of a given ECM
in the HCC1954 cell line, we quantified the cumulative activity
of pathways which have the corresponding ECM as a member
(Supplementary Table 6).
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Drug sensitivity analysis
We used Growth rate inhibition (GR) metrics as proxies of dif-

ferences in drug sensitivities between cell lines. Unlike traditional
drug sensitivity metrics, like the IC50, GR curves account for un-
equal division rates, arising from biological variation or variable
culture conditions – a major confounding factor of drug response
[45]. Previously calculated GR curves and metrics were available
for 41/44 breast cancer cell lines. A total of 46 drugs had been
profiled on at least 80% of these cell lines and their GRAOC drug
response metric [46] was downloaded from GRbrowser. For each
drug we calculated the z-score of GRAOC across cell lines in order
to compare drugs administered at different dose ranges. Of these
46 drugs, 39 could be broadly classified into two categories as ei-
ther cytotoxic (25 drugs) or inhibitors of signaling pathways (14
drugs) (Supplementary Table. 3). We then evaluated a cell line’s
ploidy as a predictor of its GRAOC value using a linear regression
model. Since molecular subtype of breast cancer cell lines is known
to influence drug sensitivity we performed a multivariate analy-
sis, including the molecular subtype as well as an interaction term
between ploidy and drug category into the model.

Results
High-ploidy breast cancer cell lines have increased
metabolic activity and cell motility

To better understand the phenotypic profile of high-ploidy cells,
we compared the ploidy of 41 breast cancer cell lines with their
response to 46 drugs. As drug response metric, we used the inte-
grated effect of the drug across a range of concentrations estimated
from the ‘area over the curve‘ (GRAOC ) [45, 46]. We observed that
cytotoxic drugs and drugs inhibiting signal transduction pathways
were at opposite ends of the spectrum (Fig. 1A). Namely, ploidy
was negatively correlated with the GRAOC for several cytotoxic
drugs and positively correlated with the GRAOC of various mTOR
inhibitors, suggesting high ploidy breast cancer cell lines tend to be
resistant to DNA damaging agents, while sensitive to drugs targeting
nutrient sensing and motility.

We built a multivariate regression model of drug sensitivities to
test the hypothesis that the relationship between ploidy and GRAOC

was different for cytotoxic drugs than for inhibitors of cell signaling
pathways. Molecular subtype alone (Fig. 1B), could explain 0.4%
of the variability in GRAOC z-scores across cell lines (adjusted
R-square = 0.0044; p = 0.026). Including ploidy into the model did
not improve its predictive accuracy (adjusted R-square = 0.0037; p
= 0.058). However, an interaction term between ploidy and drug
category (cytotoxic: 27 drugs vs. signaling: 16 drugs) increased
accuracy to explain 2.6% of variability in drug sensitivity across
cell lines (adjusted R-square = 0.026; p < 1e-5; Fig. 1C). The
same improvement from an interaction term between ploidy and
drug category was observed in an independent dataset of maximal
inhibitory concentration (IC50) values of 34 cytotoxic drugs and 51
signaling inhibitors obtained from the GDSC (Genomics of Drug
Sensitivity in Cancer) database [47] (Supplementary Fig. 3).

We then focused on a subset of aforementioned 41 cell lines,
namely those that had been established from primary breast cancer
tumors as adherent cells (20 cell lines; Fig. 1D) and we quantified
their pathway activity (see Methods). A total of 27 pathways were
correlated to ploidy at a significant p-value (| Pearson r | � 0.44; p
 0.05; Supplementary Table 1). The strongest correlations were
observed for metabolic pathways such as hyaluronan metabolism
and metabolism of vitamins (Fig. 1E-F). Hyaluronic acid is a
main component of the ECM and its synthesis has been shown to
associate with cell migration [48, 49].

These results support a model that connects high ploidy with
both, the chemotactic ability and metabolic energy deficit of a cell.

Infiltration of homogeneous populations in the ab-
sence of chemotaxis

An important biological question is the degree of infiltration
attained by cells of a given energy deficit. That is, when seeded
at the center of a cell culture dish, how far through will the cells
travel before the energy has been exhausted? An analytical estimate
would be useful in this regard. It would point to important scaling
relationships that govern how the cell front will evolve in time. To
this end, we employed the simplification that diffusion of energy
molecules (e.g. glucose) is very fast relative to cell movement.
This along with the assumption that the cells’ movement can be
approximated by a traveling wave [50] leads to the system (3a)-(3b)
(Fig. 2D). These assumptions were verified by comparing the front
estimates with results from the full numerical model (equations
(2a) - (2c); Fig. 2A,B). These analytical solutions point to scaling
relationships on the speed of the moving front. For highly efficient
energy-using cell lines (� ⌧ 1), the front will evolve at a speed
nearly independent of energy for a long time. In contrast, for large
� � 1, the speed of the front falls off as 1/

p
�. These relationships

and others can be investigated and verified experimentally.
An alternative to tracking the wave over time is to assume it

travels as a wave, but only record the density after the system has
reached uniformity. If the death rate is much smaller than the time
needed for the cells to spread uniformly, we can bind the degree of
infiltration that occurred from only knowing the uniform density of
cells (eq. (4); Fig. 2C).

In summary, we developed two alternative analytical expressions
of the evolution of the wave front over time in the presence of a de-
caying energy term. The first reduced model is in decent agreement
with the qualitative trends that we observed in the full numerical
model. However, this expression is only valid when there is strong
separation of time scales between cell movement and consumption
of the available energy. The second alternative analytical expres-
sion does not make this assumption. By calculating the average
concentration at equalization, we reverse engineer the approximate
movement traveled by the wave before energy has been exhausted.

Infiltration of homogeneous, chemotactic popula-
tions

Assumptions made in the prior section apply to standard cell cul-
tures of adhesive cells in a typical cell culture dish, where energetic
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Figure 1. Ploidy, pathway activity and drug sensitivity across breast cancer cell lines from CCLE. (A) High-ploidy breast cancer cell
lines are resistant to cytotoxic drugs, but tend to be more sensitive to inhibitors of mTOR, EGFR and MAPK signaling pathways. Hereby
ploidy is defined as the number of chromosomes in the cell line’s consensus karyotype, weighted by chromosome size. Only drugs with a
Pearson correlation coefficient at or above 0.2 are shown here. (B) Distribution of ploidy within and across three molecular breast cancer
subtypes. (C) Regression coefficient of ploidy as predictor of GRAOC has opposite signs depending on drug category across all subtypes. (D)
Distribution of ploidy across 20 primary, adherent breast cancer cell lines from CCLE. (E-F) Ploidy is correlated with the activity of pathways
involved in metabolism of vitamins and cofactors (E) and Hyaluronan metabolism (F). One cell line with available MEMA profiling data –
HCC1954 – is highlighted (red arrow).

resources, such as glucose, diffuse so fast that gradients cannot form.
But these assumptions break down when chemotactic and hapto-
tactic gradients cause cells to move in a directed fashion, as is the
case during cellular growth on an ECM. When directed cell move-
ment is not negligible, analytical approximations are more difficult
to obtain, and numerical simulations are preferred to estimate the
degree of infiltration. Fig. 1 includes HCC1954 – a near-tetraploid
breast cancer cell line that has been extensively profiled, including
its genome, transcriptome, methylome and drug sensitivity [37].
This list has recently been extended to include MEMA profiling
[12]. We asked whether the spatial growth pattern of HCC1954
cells, as measured via MEMA profiling, can be explained by our

mathematical model.

Phenotypic profiling of HCC1954 cells in the presence of HGF
was performed across multiple replicates of 48 ECMs. Cells tended
to grow in a symmetric, toroidal shape (Fig. 3A), albeit consider-
able variability was observed across the ECMs (Fig. 3B,C). The
maximum number of cells imaged at day three was 195 – close to
the number of cells expected from a doubling time of approximately
43.81 hours reported for this cell line (194 cells).

Informed by this experimental setting we ran 10,000 simula-
tions at variable energy consumption rates, chemotactic coefficients,
energetic sensitivities, and diffusion rates of the growth-limiting re-
source (i.e. ECM-bound HGF; Table 1). For each simulation/ECM
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Figure 2. Comparing analytical approximations of the degree of infiltration with those obtained from simulations.(A-B) Traveling-
wave solutions at energy consumption rates a = 1.5 (A) and a = 3.5 (B). (C) Upper and lower boundaries of traveling wave solutions
estimated from equilibration are shown as a function of consumption rate. Approximation is found by lower and upper bound ⇤ = 0, 1
from equation (4). (D) Phase diagram of energy consumption and front location using the derived coupled system (3a)-(3b). (A-D) All
approximations and simulations assume energy is uniformly distributed at all times, i.e. chemotaxis does not take place. Parameter values for
initial seeding radius (⇢0), dish radius (R), and sensitivity to low energy (�) are set to 3, 10 and 0.05 respectively. Red = leading edge of
wave (estimated by finding value of cell conc. closest to 0.01); blue = mid point of wave (estimated by finding value of cell conc. closest to
0.5); purple = average of red and blue; black lines are approximations based on analytical solutions.

pair, we compared in-silico to in-vitro growth with respect to (i)
confluence (Fig. 3D) and (ii) the spatial distribution of cells using
the Wasserstein metric (Fig. 3E,F).

Comparing the top 1% best fits across ECMs, we observe wide
ranges of sensitivities to low energy that could explain in-vitro spa-
tial growth patterns, while ranges of compatible energy diffusion-
and chemotactic/haptotactic coefficients were more localized (Fig.
3G-I). These top fits mapped to 10 out of 48 ECMs, suggesting the
chosen posterior distributions could explain a significant propor-
tion of growth conditions on the HGF-exposed MEMA array. We
observed substantial differences in chemotactic/haptotactic coeffi-
cients and energy consumption rates between ECMs (Supplemen-
tary Fig. 4). To query the biological significance of this variability
we quantified the cumulative activity of pathways that use a given
ECM (see Methods). We did this for each of the 10 ECMs for which

the simulations yielded a good fit. One of the five inferred model pa-
rameters – sensitivity to low energy – was correlated with RNA-seq
derived pathway activity (Pearson r = 0.724, p = 0.028; Supple-
mentary Fig. 5A). This was to a lesser extent also the case when
considering each ECM alone rather than the pathways in which it is
involved (Pearson r = 0.639; p = 0.064; Supplementary Fig. 5B).
This result suggests that ECMs on which HCC1954 cells depend
upon for growth tend to be involved in multiple active pathways in
those cells.

In summary, this approach identified regions of interest in the
parameter search space, allowing us to focus further simulations
on biologically relevant chemotactic/haptotactic coefficients and
energy diffusion rates.
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Figure 3. Model calibration using MEMA profiling of HCC1954 cells. (A) Density distribution of spatial growth patterns is shown in
aggregate across all 692 HGF exposed ECM proteins. (B-C) Variability in cell growth patterns across ECMs is demonstrated via two example
ECMs: COL1 (B) and SPP1 (C). (D-F) Confluence (D) and cell growth patterns (E,F) resulting from our simulations are compared to those
measured in-vitro with MEMA profiling. ECM-specific parameters used in these simulations are in Supplementary Table 5. (G-I) Comparing
prior- and posterior parameter space for chemotactic/haptotactic coefficient (�) (G), energy diffusion rate (�E) (H) and sensitivity to low
energy (�) (I).

Infiltration of heterogeneous, chemotactic popula-
tions

Growth of cells in a given ECM environment was measured
across 13-30 replicates on the MEMA platform. While our model –
when calibrated to the corresponding ECM environment – could ex-
plain the observed growth pattern in the majority of these replicates,
a substantial fraction could not be explained by fixed choices of
sensitivity to low energy and directed cell motility. One possibility
that may explain this is that HCC1954 is a heterogeneous cell line,
with clones of variable phenotypes co-evolving. Representation of
these clones among the 62 cells that were on an average sampled for
each replicate may vary (Supplementary Fig. 2). This hypothesis
is supported by a bimodal distribution of DNA content observed
among replicating HCC1954 cells on individual ECM spots (Fig.
4A,B), and by a bimodal posterior distribution of sensitivity to low

energy inferred during model calibration (Fig. 3I), that was not a
function of the ECM (Supplementary Table 2). These observations
suggest that HCC1954 is likely a polyploid cell line, i.e. clones of
variable ploidies co-exist in this cell line.

To better understand the growth dynamics in a polyploid popula-
tion, we used the two-subpopulation version of our model, whereby
variable chemotactic abilities and energetic sensitivities of goer- and
grower subpopulations compete with one another (equations (2a) -
(2c)). We used fixed values for energy diffusion- and consumption
rates as informed by model calibration (Fig. 3B) and varied sensitiv-
ity to low energy and chemotactic ability of both goer and grower,
subject to equations (2a) - (2c) (Table 1). We initially used the same
spatial and temporal domains as during model calibration, but con-
cluded that the implied duration of the experiment (3 days) was too
short for dynamics between the two populations to manifest. Each
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Figure 4. Internal competition of co-existing subpopulations for same space slows down invasion of the metapopulation. (A) DNA
content and cell cycle state of 162 cells growing on HGF-exposed ICAM1. (B) DAPI intensity of 58 replicating (EdU+) cells shows a bimodal
distribution, indicating the presence of multiple subpopulations with different DNA content. (C) Arms race between the grower’s energetic
sensitivity (y-axis) and the goer’s chemotactic ability (x-axis) reduces infiltration distance (color bar). A red circle outlines parameter
combinations of interest explored in (D-F). (D-F) Spatial distribution of goer and grower for parameter values outlined in (C). (D) High
chemotactic motility will cause the goer to leave the center of the dish too soon, leaving room for the grower to expand locally. (E) With an
intermediate motility the goer succeeds maintaining its dominance both at the center and edge of the dish. (F) Low motility will prevent the
goer from gaining a sufficient spatial lead from the grower while energy is still abundant, and it will lose dominance at the edge of the dish
once energy becomes sparse. Red arrows indicate maximum infiltration distance achieved by either of the two populations.

MEMA spot has a low capacity, whereby confluence is reached at
no more than a few hundreds of cells. Such a small number of cells
will not exhibit wave-like behavior and therefore will not suffice
for spatial structure to emerge. We therefor extended temporal and
spatial domains, seeding cells at a lower confluence and letting them
grow onto the entire energy domain until they consume all available
energy (average of 127 days; Table 1).

We observed a non-monotonic relation between the goer’s chemo-
tactic ability and the speed with which the metapopulation invades
the dish, with intermediate values being the least beneficial to its
growth and spread (Fig. 4C). Temporal analysis of the simulations
(Supplementary Data 1-3), revealed that if the goer’s chemotactic
motility is too high, it will leave the center of the dish too soon,
leaving room for the grower to expand locally (Fig. 4D). By con-
trast, if the goer’s motility is too low, it will miss the time-window
of opportunity to ensure its dominance further away from the center

of the dish while energy is still abundant. As a consequence, it
will be outgrown by the grower at the edge of the dish once energy
becomes sparse (Fig. 4E). Only when the goer has an intermediate
motility, does the grower persistently coexist with it, both at the
center and edge of the dish (Fig. 4F). If high ploidy is indeed a
characteristic specific to goer-like cells, then mTOR-Is are likely
affecting this cell type (Fig. 1A,E,F), and could be used to inhibit
its chemotactic response, thereby moving the meta-population up
the x-axis of Fig. 4C.

Discussion
Models of infiltration are typically formulated under two critical

assumptions. First, that energy production and consumption are
non-uniform, leading to the formation of an energy gradient [51–
53]; or second, that energy consumption is very slow compared to
production, leading to an essentially infinite energetic resource [54].
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Here we formulate a generalized model of infiltration when energy
is finite and investigate its behavior along a spectrum of scenarios,
from permanent energy uniformity to scenarios where this unifor-
mity is gradually lost. When energy is uniformly distributed at all
times and the time scale for cell death is substantially longer than
that of cell motility, our results suggests that the degree of infiltra-
tion can be approximated using the cells’ density at equilibration of
movement and growth (Fig. 2C).

With an energy gradient that becomes steeper over time, our ana-
lytical approximations no longer hold, as directed cell movement
becomes non-negligible. For this scenario we leveraged MEMA
profiling to inform regions of interest in the parameter search space.
These regions of interest are relevant for cellular growth on a variety
of HGF exposed ECM proteins. Simulations which ran at either
high or low energy sensitivity (Fig. 3I) best resembled the observed
growth patterns on the ECMs, giving rise to a bimodal distribution
of meaningful model parameter values. The most intuitive explana-
tion for this bimodal distribution are differences in ECM content.
However, the distribution of energy sensitivity remained bimodal
even across replicates of the same ECM, highlighting the possibility
that it is not only the environment (i.e. the ECM) that varies across
MEMA spots, but also the cell composition. An alternative expla-
nation is that this variability stems from artifacts that arise during
non-uniform printing of ECMs onto the array–the so called ring
effect. However, a bimodal distribution was also observed in the
DNA content of replicating cells, which is not affected by potential
printing artifacts. The second peak of this bimodal distribution was
wider, consistent with the fact that high-ploidy cells with more DNA
need longer to replicate.

The cell line HCC1954 is described as a hyper-tetraploid cell line
with an average DNA-content of 4.2 [37]. However, this average
value may be misleading, as suggested by stark variability in nuclei
sizes (Fig. 4A). Despite a wealth of genomic information generated
for this cell line [37], to the best of our knowledge no prior reports
indicate whether or not the cell line is polyploid. We and others
have found that high ploidy is an aneuploidy-tolerating state that
accompanies intra-tumor heterogeneity in vivo and in vitro [17, 55,
56]. Our results suggest that HCC1954 is likely polyploid.

If spatial and temporal domains were to be extended beyond the
configuration of MEMA spots, our simulations predict that spatial
segregation of two co-existing subpopulations according to their
ploidy is a likely scenario and depends on the energy consumption
rate. While our model can easily be extended to more than two
subpopulations, it currently does not incorporate mutations, i.e. the
process of generating new clonal lines. A next step will be to extend
our model to include mutation events, specifically chromosome
mis-segregations that contribute extensively to diversify ploidy of
a population [31, 32]. The additional DNA content of high-ploidy
cells, though energetically costly, brings a masking effect against
the deleterious consequences of chromosome losses [22]. This
duality may explain the higher sensitivity to glycolysis inhibitors
of high-ploidy cells and their lower sensitivity to cytotoxic drugs
previously reported in Glioblastoma [57].

In line with prior reports we find that increased resistance of
breast cancer cell lines to cytotoxic drugs is associated with high
ploidy. In contrast, high ploidy breast cancer cell lines were sensi-
tive to inhibitors of signal transduction pathways, including EGFR
and especially MTOR signalling. A commonality among those path-
ways is their contribution to a cell’s chemotactic response [2, 58, 59],
suggesting opportunities to tune chemotaxis. Delaying chemotactic
response of highly chemotactic cells could slow down invasion by
maximizing competition within a polyploid population. If on the
other hand chemotactic response of high ploidy cells is already at
an intermediate level, our simulation suggest that further reduction
may accelerate invasion of low ploidy cells. For such scenarios ther-
apeutic strategies that include an MTOR-I may not be successful.
Experiments will be needed to verify these in-silico results in-vitro.
Knowing how co-existing clones with differential drug sensitivities
segregate spatially can offer opportunities to administer these drug
combinations more effectively.

Acknowledgements
This work was supported by the National Cancer Institute

R00CA215256 awarded to NA. PMA acknowledges support
through the National Cancer Institute, part of the National Insti-
tutes of Health, under grant number P30-CA076292. The content
is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health or
the H. Lee Moffitt Cancer Center and Research Institute.

10

.CC-BY-NC-ND 4.0 International license
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.041566doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.041566
http://creativecommons.org/licenses/by-nc-nd/4.0/


Polyploid populations in nutrient-limiting environments

References
1. Spiteri I, Caravagna G, Cresswell GD, Vatsiou A, Nichol D,

Acar A, et al. Evolutionary dynamics of residual disease in
human glioblastoma. Annals of Oncology: Official Journal of
the European Society for Medical Oncology. 2019;30(3):456–
463.

2. Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen
M, et al. mTORC1 and mTORC2 regulate EMT, motility, and
metastasis of colorectal cancer via RhoA and Rac1 signaling
pathways. Cancer Research. 2011 May;71(9):3246–3256.

3. Rotundo MS, Galeano T, Tassone P, Tagliaferri P. mTOR
inhibitors, a new era for metastatic luminal HER2-negative
breast cancer? A systematic review and a meta-analysis of
randomized trials. Oncotarget. 2016 May;7(19):27055–27066.

4. Liu L, Li F, Cardelli JA, Martin KA, Blenis J, Huang S.
Rapamycin inhibits cell motility by suppression of mTOR-
mediated S6K1 and 4E-BP1 pathways. Oncogene. 2006
Nov;25(53):7029–7040.

5. Parr C, Watkins G, Mansel RE, Jiang WG. The hepatocyte
growth factor regulatory factors in human breast cancer. Clin-
ical Cancer Research: An Official Journal of the American
Association for Cancer Research. 2004 Jan;10(1 Pt 1):202–211.

6. Hynes RO. Extracellular matrix: not just pretty fibrils.
Science (New York, NY). 2009 Nov;326(5957):1216–1219.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3536535/.

7. Liotta LA. Tumor invasion and metastases–role of the ex-
tracellular matrix: Rhoads Memorial Award lecture. Cancer
Research. 1986 Jan;46(1):1–7.

8. Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta
LA. Signal transduction for chemotaxis and haptotaxis by
matrix molecules in tumor cells. The Journal of Cell Biology.
1990 Apr;110(4):1427–1438.

9. Stupack DG, Cheresh DA. Get a ligand, get a life: integrins,
signaling and cell survival. Journal of Cell Science. 2002
Oct;115(Pt 19):3729–3738.

10. Parise LV, Lee J, Juliano RL. New aspects of integrin signaling
in cancer. Seminars in Cancer Biology. 2000 Dec;10(6):407–
414.

11. Keenan AB, Jenkins SL, Jagodnik KM, Koplev S, He E, Torre
D, et al. The Library of Integrated Network-Based Cellular
Signatures NIH Program: System-Level Cataloging of Human
Cells Response to Perturbations. Cell Systems. 2018;6(1):13–
24.

12. Lin CH, Lee JK, LaBarge MA. Fabrication and use of microen-
vironment microarrays (MEArrays). Journal of Visualized
Experiments: JoVE. 2012 Oct;(68).

13. Kuang W, Deng Q, Deng C, Li W, Shu S, Zhou M. Hepato-
cyte growth factor induces breast cancer cell invasion via the
PI3K/Akt and p38 MAPK signaling pathways to up-regulate
the expression of COX2. American Journal of Translational
Research. 2017 Aug;9(8):3816–3826. Available from: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC5575195/.

14. Brastianos PK, Carter SL, Santagata S, Cahill DP, Taylor-
Weiner A, Jones RT, et al. Genomic Characterization of Brain
Metastases Reveals Branched Evolution and Potential Thera-
peutic Targets. Cancer Discovery. 2015 Nov;5(11):1164–1177.
00040.

15. Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T,
Lafontaine L, et al. Evolution of Metastases in Space and Time
under Immune Selection. Cell. 2018 Oct;175(3):751–765.e16.
Available from: http://www.sciencedirect.com/science/article/
pii/S0092867418312303.

16. Hannibal RL, Chuong EB, Rivera-Mulia JC, Gilbert DM, Val-
ouev A, Baker JC. Copy number variation is a fundamen-
tal aspect of the placental genome. PLoS genetics. 2014
May;10(5):e1004290.

17. Dewhurst SM, McGranahan N, Burrell RA, Rowan AJ, Grön-
roos E, Endesfelder D, et al. Tolerance of whole-genome dou-
bling propagates chromosomal instability and accelerates can-
cer genome evolution. Cancer Discovery. 2014 Feb;4(2):175–
185. 00068.

18. Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila
W, Armenia J, et al. Genome doubling shapes the evolution
and prognosis of advanced cancers. Nature genetics. 2018
Aug;50(8):1189–1195. Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC6072608/.

19. Amend SR, Torga G, Lin KC, Kostecka LG, Marzo
Ad, Austin RH, et al. Polyploid giant cancer cells: Un-
recognized actuators of tumorigenesis, metastasis, and
resistance. The Prostate. 2019;79(13):1489–1497. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/pros.23877.
Available from: https://onlinelibrary.wiley.com/doi/abs/10.
1002/pros.23877.

20. Pienta KJ, Hammarlund EU, Axelrod R, Brown JS, Amend SR.
Poly-aneuploid cancer cells promote evolvability, generating
lethal cancer. Evolutionary Applications;n/a(n/a). _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/eva.12929.
Available from: https://onlinelibrary.wiley.com/doi/abs/10.
1111/eva.12929.

21. Zhang S, Mercado-Uribe I, Xing Z, Sun B, Kuang J, Liu J.
Generation of cancer stem-like cells through the formation of
polyploid giant cancer cells. Oncogene. 2014 Jan;33(1):116–
128.

22. López S, Lim EL, Horswell S, Haase K, Huebner A, Dietzen
M, et al. Interplay between whole-genome doubling and the

23

.CC-BY-NC-ND 4.0 International license
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.041566doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536535/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536535/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575195/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575195/
http://www.sciencedirect.com/science/article/pii/S0092867418312303
http://www.sciencedirect.com/science/article/pii/S0092867418312303
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072608/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072608/
https://onlinelibrary.wiley.com/doi/abs/10.1002/pros.23877
https://onlinelibrary.wiley.com/doi/abs/10.1002/pros.23877
https://onlinelibrary.wiley.com/doi/abs/10.1111/eva.12929
https://onlinelibrary.wiley.com/doi/abs/10.1111/eva.12929
https://doi.org/10.1101/2020.04.15.041566
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kimmel et al.

accumulation of deleterious alterations in cancer evolution.
Nature Genetics. 2020 Mar;52(3):283–293.

23. Pirkmajer S, Chibalin AV. Serum starvation: caveat emp-
tor. American Journal of Physiology-Cell Physiology. 2011
May;301(2):C272–C279. Available from: https://www.
physiology.org/doi/full/10.1152/ajpcell.00091.2011.

24. Growth of human diploid cells (strain MRC-5) in defined
medium; replacement of serum by a fraction of serum ultrafil-
trate. - PubMed - NCBI;. Available from: https://www.ncbi.
nlm.nih.gov/pubmed/422676.

25. Bartholomew JC, Yokota H, Ross P. Effect of serum on
the growth of balb 3T3 A31 mouse fibroblasts and an SV40-
transformed derivative. Journal of Cellular Physiology. 1976
Jul;88(3):277–286. Available from: https://onlinelibrary.wiley.
com/doi/10.1002/jcp.1040880303.

26. Cai W, Rook SL, Jiang ZY, Takahara N, Aiello LP. Mechanisms
of hepatocyte growth factor-induced retinal endothelial cell
migration and growth. Investigative Ophthalmology & Visual
Science. 2000 Jun;41(7):1885–1893.

27. Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A.
’Go or grow’: the key to the emergence of invasion in tumour
progression? Mathematical medicine and biology: a journal of
the IMA. 2012 Mar;29(1):49–65.

28. Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-
Mende C, Glass R, et al. Glycolysis and the pentose phosphate
pathway are differentially associated with the dichotomous
regulation of glioblastoma cell migration versus proliferation.
Neuro-Oncology. 2016 Sep;18(9):1219–1229. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998991/.

29. Dhruv HD, McDonough Winslow WS, Armstrong B, Tun-
cali S, Eschbacher J, Kislin K, et al. Reciprocal Activa-
tion of Transcription Factors Underlies the Dichotomy be-
tween Proliferation and Invasion of Glioma Cells. PLoS
ONE. 2013 Aug;8(8):e72134. 00009. Available from: http:
//dx.doi.org/10.1371/journal.pone.0072134.

30. Vittadello ST, McCue SW, Gunasingh G, Haass NK, Simpson
MJ. Examining Go-or-Grow Using Fluorescent Cell-Cycle
Indicators and Cell-Cycle-Inhibiting Drugs. Biophysical Jour-
nal. 2020 Mar;118(6):1243–1247. Available from: http://www.
sciencedirect.com/science/article/pii/S0006349520301119.

31. Laughney AM, Elizalde S, Genovese G, Bakhoum SF. Dynam-
ics of Tumor Heterogeneity Derived from Clonal Karyotypic
Evolution. Cell Reports. 2015 Aug;12(5):809–820.

32. Elizalde S, Laughney AM, Bakhoum SF. A Markov chain for
numerical chromosomal instability in clonally expanding popu-
lations. PLoS computational biology. 2018;14(9):e1006447.

33. Wang CH, Matin S, George AB, Korolev KS. Pinned, locked,
pushed, and pulled traveling waves in structured environments.
Theoretical Population Biology. 2019;127:102–119.

34. Bayliss A, Volpert VA. Complex predator invasion waves in a
Holling–Tanner model with nonlocal prey interaction. Phys-
ica D: Nonlinear Phenomena. 2017 May;346:37–58. Avail-
able from: http://www.sciencedirect.com/science/article/pii/
S016727891630481X.

35. Wasserstein L. Markov processes over denumerable prod-
ucts of spaces describing large systems of automata. 1969
Jan;Available from: https://scinapse.io/papers/51701124.

36. Sanderson C, Curtin R. Armadillo: a template-based C++
library for linear algebra. Journal of Open Source Software.
2016 Jun;1(2):26. Available from: https://joss.theoj.org/papers/
10.21105/joss.00026.

37. van der Meer D, Barthorpe S, Yang W, Lightfoot H, Hall
C, Gilbert J, et al. Cell Model Passports—a hub for clin-
ical, genetic and functional datasets of preclinical cancer
models. Nucleic Acids Research. 2019 Jan;47(D1):D923–
D929. Publisher: Oxford Academic. Available from: https:
//academic.oup.com/nar/article/47/D1/D923/5107576.

38. Barretina J, Caponigro G, Stransky N, Venkatesan K, Mar-
golin AA, Kim S, et al. The Cancer Cell Line Encyclope-
dia enables predictive modelling of anticancer drug sensitiv-
ity. Nature. 2012 Mar;483(7391):603–607. 00591. Available
from: http://www.nature.com/nature/journal/v483/n7391/full/
nature11003.html.

39. Heiser LM, Sadanandam A, Kuo WL, Benz SC, Goldstein
TC, Ng S, et al. Subtype and pathway specific responses to
anticancer compounds in breast cancer. Proceedings of the
National Academy of Sciences of the United States of America.
2012 Feb;109(8):2724–2729.

40. Daemen A, Griffith OL, Heiser LM, Wang NJ, Enache OM,
Sanborn Z, et al. Modeling precision treatment of breast cancer.
Genome Biology. 2013;14(10):R110.

41. Bräutigam K, Mitzlaff K, Uebel L, Köster F, Polack S, Pervan
M, et al. Subtypes of Triple-negative Breast Cancer Cell Lines
React Differently to Eribulin Mesylate. Anticancer Research.
2016 Jun;36(6):2759–2766.

42. Dai X, Cheng H, Bai Z, Li J. Breast Cancer Cell Line Classifi-
cation and Its Relevance with Breast Tumor Subtyping. Jour-
nal of Cancer. 2017 Sep;8(16):3131–3141. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665029/.

43. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation
analysis for microarray and RNA-Seq data. BMC Bioinformat-
ics. 2013 Jan;14(1):7. Available from: https://doi.org/10.1186/
1471-2105-14-7.

24

.CC-BY-NC-ND 4.0 International license
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.041566doi: bioRxiv preprint 

https://www.physiology.org/doi/full/10.1152/ajpcell.00091.2011
https://www.physiology.org/doi/full/10.1152/ajpcell.00091.2011
https://www.ncbi.nlm.nih.gov/pubmed/422676
https://www.ncbi.nlm.nih.gov/pubmed/422676
https://onlinelibrary.wiley.com/doi/10.1002/jcp.1040880303
https://onlinelibrary.wiley.com/doi/10.1002/jcp.1040880303
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998991/
http://dx.doi.org/10.1371/journal.pone.0072134
http://dx.doi.org/10.1371/journal.pone.0072134
http://www.sciencedirect.com/science/article/pii/S0006349520301119
http://www.sciencedirect.com/science/article/pii/S0006349520301119
http://www.sciencedirect.com/science/article/pii/S016727891630481X
http://www.sciencedirect.com/science/article/pii/S016727891630481X
https://scinapse.io/papers/51701124
https://joss.theoj.org/papers/10.21105/joss.00026
https://joss.theoj.org/papers/10.21105/joss.00026
https://academic.oup.com/nar/article/47/D1/D923/5107576
https://academic.oup.com/nar/article/47/D1/D923/5107576
http://www.nature.com/nature/journal/v483/n7391/full/nature11003.html
http://www.nature.com/nature/journal/v483/n7391/full/nature11003.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5665029/
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1101/2020.04.15.041566
http://creativecommons.org/licenses/by-nc-nd/4.0/


Polyploid populations in nutrient-limiting environments

44. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G,
et al. The Reactome pathway knowledgebase. Nucleic
Acids Research. 2014 Jan;42(Database issue):D472–D477.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC3965010/.

45. Hafner M, Niepel M, Chung M, Sorger PK. Growth rate inhi-
bition metrics correct for confounders in measuring sensitivity
to cancer drugs. Nature Methods. 2016;13(6):521–527.

46. Hafner M, Heiser LM, Williams EH, Niepel M, Wang NJ,
Korkola JE, et al. Quantification of sensitivity and resistance of
breast cancer cell lines to anti-cancer drugs using GR metrics.
Scientific Data. 2017 Nov;4. Available from: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC5674849/.

47. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H,
Forbes S, et al. Genomics of Drug Sensitivity in Cancer
(GDSC): a resource for therapeutic biomarker discovery in
cancer cells. Nucleic Acids Research. 2013 Jan;41(Database
issue):D955–D961. Available from: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC3531057/.

48. Chen WYJ, Abatangelo G. Functions of hyaluronan in
wound repair. Wound Repair and Regeneration. 1999;7(2):79–
89. Available from: https://onlinelibrary.wiley.com/doi/abs/10.
1046/j.1524-475X.1999.00079.x.

49. Ellis IR, Schor SL. Differential effects of TGF-beta1 on
hyaluronan synthesis by fetal and adult skin fibroblasts: impli-
cations for cell migration and wound healing. Experimental
Cell Research. 1996 Nov;228(2):326–333.

50. Fisher RA. THE WAVE OF ADVANCE OF ADVANTA-
GEOUS GENES. Annals of Eugenics. 1937 Jun;7(4):355–
369. Available from: http://doi.wiley.com/10.1111/j.1469-
1809.1937.tb02153.x.

51. Lim S, Nam H, Jeon JS. Chemotaxis Model for Breast Can-
cer Cells Based on Signal/Noise Ratio. Biophysical Journal.
2018;115(10):2034–2043.

52. Keller EF, Segel LA. Model for chemotaxis. Journal
of Theoretical Biology. 1971 Feb;30(2):225–234. Avail-
able from: http://www.sciencedirect.com/science/article/pii/
0022519371900506.

53. Anderson ARA, Rejniak KA, Gerlee P, Quaranta V. Microenvi-
ronment driven invasion: a multiscale multimodel investigation.
Journal of mathematical biology. 2009 Apr;58(4-5):579–624.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5563464/.

54. Kimmel GJ, Gerlee P, Altrock PM. Time scales and wave
formation in non-linear spatial public goods games. PLOS
Computational Biology. 2019 Sep;15(9):e1007361. Publisher:
Public Library of Science. Available from: https://journals.plos.
org/ploscompbiol/article?id=10.1371/journal.pcbi.1007361.

55. Andor N, Simonds EF, Czerwinski DK, Chen J, Grimes SM,
Wood-Bouwens C, et al. Single-cell RNA-Seq of lymphoma
cancers reveals malignant B cell types and co-expression of T
cell immune checkpoints. Blood. 2018 Jan;p. blood–2018–08–
862292. Available from: http://www.bloodjournal.org/content/
early/2018/12/26/blood-2018-08-862292.

56. Birkbak NJ, Eklund AC, Li Q, McClelland SE, Endesfelder D,
Tan P, et al. Paradoxical relationship between chromosomal
instability and survival outcome in cancer. Cancer research.
2011 May;71(10):3447–3452. 00068 PMID: 21270108.

57. Donovan P, Cato K, Legaie R, Jayalath R, Olsson G, Hall B,
et al. Hyperdiploid tumor cells increase phenotypic heterogene-
ity within Glioblastoma tumors. Molecular bioSystems. 2014
Jan;.

58. Bailly M, Wyckoff J, Bouzahzah B, Hammerman R, Sylvestre
V, Cammer M, et al. Epidermal Growth Factor Receptor Dis-
tribution during Chemotactic Responses. Molecular Biology
of the Cell. 2000 Nov;11(11):3873–3883. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15043/.

59. James RG, Davidson KC, Bosch KA, Biechele TL, Robin NC,
Taylor RJ, et al. WIKI4, a novel inhibitor of tankyrase and
Wnt/ß-catenin signaling. PloS One. 2012;7(12):e50457.

25

.CC-BY-NC-ND 4.0 International license
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a

The copyright holder for this preprint (which was notthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.041566doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965010/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965010/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674849/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5674849/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531057/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531057/
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1524-475X.1999.00079.x
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1524-475X.1999.00079.x
http://doi.wiley.com/10.1111/j.1469-1809.1937.tb02153.x
http://doi.wiley.com/10.1111/j.1469-1809.1937.tb02153.x
http://www.sciencedirect.com/science/article/pii/0022519371900506
http://www.sciencedirect.com/science/article/pii/0022519371900506
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563464/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563464/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007361
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007361
http://www.bloodjournal.org/content/early/2018/12/26/blood-2018-08-862292
http://www.bloodjournal.org/content/early/2018/12/26/blood-2018-08-862292
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15043/
https://doi.org/10.1101/2020.04.15.041566
http://creativecommons.org/licenses/by-nc-nd/4.0/

