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Instrumented indentation has become an indispensable tool for quantitative 

analysis of the mechanical properties of soft polymers and biological samples at 

different length scales. These types of samples are known for their prominent 

viscoelastic behavior, and attempts to calculate such properties from the 

indentation data are constantly made.  The simplest indentation experiment 

presents a cycle of approach (deepening into the sample) and retraction of the 

indenter, with the output of the force and indentation depth as functions of time 

and a force versus indentation dependency (force curve). The linear viscoelastic 

theory based on the elastic-viscoelastic correspondence principle might predict 

the shape of force curves based on the experimental conditions and underlying 

relaxation function of the sample. Here, we conducted a computational analysis 

based on this theory and studied how the force curves were affected by the 

indenter geometry, type of indentation (triangular or sinusoidal ramp), and the 

relaxation functions. The relaxation functions of both traditional and fractional 

viscoelastic models were considered. The curves obtained from the analytical 

solutions, numerical algorithm and finite element simulations matched each other 

well. Common trends for the curve-related parameters (apparent Young’s modulus, 

normalized hysteresis area, and curve exponent) were revealed. Importantly, the 

apparent Young’s modulus, obtained by fitting the approach curve to the elastic 

model, demonstrated a direct relation to the relaxation function for all the tested 

cases. The study will help researchers to verify which model is more appropriate 

for the sample description without extensive calculations from the basic curve 

parameters and their dependency on the indentation rate. 

Keywords: indentation, atomic force microscopy, viscoelasticity, fractional 

viscoelastic models 
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1. Introduction 

Micro- and nanoindentation (including atomic force microscopy, AFM) have become 

indispensable tools for the quantitative analysis of the mechanical properties of soft 

polymers and biological samples with the focus on the corresponding micro- and 

nanoscale [1–3]. Their benefits include a small sample size and simple preparation, an 

easily achievable environmental control (e.g. a temperature-controlled fluid cell), a 

possibility of region-specific mapping and coupling with optical techniques. The purpose 

of the indentation analysis is to link the indentation data to the meaningful mechanical 

properties of the sample. Biological samples generally possess time-dependent 

viscoelastic properties, which can be observed at both the tissue and cellular levels. The 

important role of viscoelastic properties, as opposed to a purely elastic behavior, has 

been shown in the studies of different cell phenomena including cancer [4,5], contractile 

prestress [6], and response to the substrate stiffness [7]. Mathematical models are used 

to describe the viscoelastic behavior in terms of the relaxation functions. A set of 

traditional and fractional linear viscoelasticity models are used to describe the sample 

properties and facilitate the comparison of the parameters across different studies [8–10]. 

Recently, a large variety of indentation-based methods have been developed to 

measure and map viscoelastic properties [6,11–14]. Most of them are using modifications 

of the testing protocol by including constant stress or constant strain phases and 

oscillatory indentation. However, there are also methods to extract viscoelastic properties 

directly from the simplest indentation experiment presenting a cycle of approach 

(deepening into the sample) and retraction of the indenter [5,15–17]. Indentation of a 

viscoelastic body presents a complex problem with time-varying boundary conditions. The 

correspondence principle that is used for the problems involving a linear, isotropic 

viscoelastic body breaks down for the complex indenter shapes and indentation 

conditions. Lee and Radok obtained an expression for the indentation force and spherical 

indentation by replacing the elastic modulus in the Hertz solution [18,19] by hereditary 

integral involving the relaxation response function [20]. However, this solution was found 

to be invalid when the contact radius decreases with time; the issue was addressed later 

by Hunter [21], Graham [22] and Ting [23,24]. In any case, the viscoelastic analysis of 

indentation experiments is much more computationally sophisticated than the analysis 

based on simple elastic assumptions, and thus, the latter is prevailing in the experimental 

studies. Moreover, a thorough analysis of force-indentation curves predicted by different 

viscoelastic models has not been performed before.   

This work aims at finding how the viscoelastic relaxation function affects the shape 

of force curves obtained at different indentation conditions. We analyzed how some basic 
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characteristic curve features change when acquisition parameters such as the indentation 

rate or indenter shape are varied. These basic features (apparent Young’s modulus, 

normalized hysteresis area, the curve exponent) can be routinely obtained from 

experimental curves. Three approaches were used to obtain force curves here: an 

analytical solution, for the cases where the closed-form analytical solution might be 

obtained, a numerical solution based on the direct calculation of the Ting’s equations [5], 

and a FEM simulation-based solution. We performed the analysis for three types of 

indenter geometries (cylinder, cone, sphere), two types of indentation histories (triangular 

and sinusoidal ramps), and several types of traditional and fractional viscoelastic models. 

2. Material and methods 

2.1. Linear viscoelasticity theory for indentation experiments 

We will base the further description on the solution of the indentation problem of a 

viscoelastic half-space provided by Ting [23,24]. The solution was obtained for the cases 

of an arbitrary varying radius of the contact area, while here we will concentrate our 

attention on the load history with a single maximum: the contact area increases first during 

the approach phase (indenter is pressed into the sample) and then decreases during the 

retraction phase of the displacement-controlled experiment. The solution for the approach 

curve coincide with the solution provided by Lee and Radok [20], while the solution for 

the retraction curve requires an auxiliary function 1 ( )t t . The 1 ( )t t  auxiliary function was 

introduced as a time point 1t  during the approach phase which corresponds to the same 

contact area at a time point t during the retraction phase. The Lee-Radok’s and Ting’s 

solutions match for both the approach and retraction curves for a cylindrical indenter and 

used indentation histories due to the constant contact area. The solution also assumes 

that a rigid indenter is smooth and axisymmetric but otherwise might have an arbitrary 

shape. Here we will consider the three most widely used indenter geometries (Fig. 1A): 

cylinder, sphere, and cone (or pyramid, the difference will be only in the geometrical 

factor). For the indentation displacement-controlled experiment, the Ting’s solution could 

be presented in the following form [5]: 
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where F is the force acting on the cantilever during the approach (
appr

F ) or the retraction 

(
retr

F );  is the indentation depth; a  is the contact area; 1( )t t  function is determined by 

the equation (3); t is the indentation time initiated at initial contact ( mt  is the time when 

the maximum contact radius is reached, indt is the duration of a complete indentation 

cycle);    is the dummy time variable required for the integration; ( )E t  is the relaxation 

function (Young’s relaxation modulus); n  and geom
C  are constants related to the indenter 

shape [19], e.g.: =1n , 
2    2 / (1 )

cyl сyl
C R = −  for a cylindrical punch ( сyl

R  is the radius of the 

cylinder); = 2n , ( ) 2   2   / / (1 )
cocone ne

C tan  = −  for a conical indenter (αcone is the included 

half-angle of the cone); =   3 / 2n , 2   4 / 3 / (1 )
sphere

C R = −  for a paraboloid/spherical 

indenter (R   is the radius of the sphere);   is the Poisson’s ratio of the sample 

(assumed to be time-independent). ( )BECf  is the tip geometry dependent correction 

coefficient for the finite thickness of the sample attached to the hard substrate [25,26]. 

This factor does not depend on time and could be neglected when the sample thickness 

is much larger than the tip-sample contact area. Eq. (1) for 
appr

F  (Lee-Radok’s solution) 

can also be used to describe the force during the retraction phase, but with limited 

accuracy. The Ting’s solution requires calculation of 
1
( )t t  for the retraction phase. As can 

be seen from Eq. (3), the 
1
( )t t  function is common for all the indenter geometries but 

depends on the indentation history and the viscoelastic model.  

The Young’s relaxation modulus ( )E t  is a function which determines the viscoelastic 

behavior of the material and is defined by a specific constitutive viscoelastic model. It is 

related to the shear stress relaxation modulus as = +( ) ( ) / 2 / (1 )G t E t v  [27]. Note, that 

the time-independent Poisson’s ratio is assumed here. A “reduced” form of the relaxation 

(creep) function can be obtained that represents the function normalized by its value at a 

certain time point, usually, 0t =  or t =  . However, such an approach does not always 

work since some relaxation functions have infinite or zero values at these time points. 

Most modern indenters offer both load and displacement control indentation testing. 

For example, in a typical AFM experiment, the load is applied by expanding the piezo. 

The system controls the rate of expansion/retraction of the piezo, but neither force nor 

indentation histories are controlled directly. The indentation depth δ is related to the piezo 

displacement Z as: 

 = − −
0

( ) ( )t z t z d ;      (4) 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.15.041640doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.041640
http://creativecommons.org/licenses/by/4.0/


5 
 

where 
0

z  is the contact point position (position of the undisturbed sample surface) and d 

is the cantilever deflection. The simplified relation might be considered if the cantilever 

(or another force sensor) is quite stiff and its deflection is much lower than the indentation 

depth. If we also place the zero of the displacement axis at the contact point position (
0

z

=0), the simplified indentation function will be:  =( ) ( )t z t . From here, it is possible to 

obtain analytical solutions for certain relaxation functions and indentation histories, and 

this simplification was used in this work. 

Here, we will consider two indentation histories, a triangular linear ramp (ramp) and 

sinusoidal (sin) probe movement (Fig. 1B): 

( )
,  0     

  
(2 ),  

m

ramp

m m

vt t t
t

v t t t t


 
= 

− 
;     (5) 

( )sin sin( )t A t = .      (6) 

For a triangular linear ramp, the maximum contact radius is reached at mt t=  and then it 

decreases during retraction, the maximum indentation depth is 
m m

vt = . For the 

sinusoidal displacement, the maximum contact radius is reached at 
2

mt



=  

corresponding to a quarter period of the sin wave, the amplitude A  is set equal to 
m

 . 

The mt  value is related to the total probe-sample contact time (indentation time, tind) as 

  2m ind mt t t , since the contact area is always present during the approach phase, but 

would vanish at some point during the retraction phase. The sinusoidal ramp could be 

beneficial at high indentation rates, since, unlike the triangular ramp, it does not produce 

an abrupt change in the indentation speed around the turning point. The sinusoidal ramp 

is used, for example, in the Peak-Force Tapping technique [28] that allows acquisition of 

force maps with a high speed in AFM experiments. 

2.2. Numerical and analytical solutions of the Ting’s model 

The MATLAB code based on the previous works [5,29] was used here to obtain a 

numerical solution of the Ting’s model. It calculates the force versus time and the force 

versus displacement dependencies via numerical differentiation and integration steps, 

both for the approach and retraction parts of a force curve, the latter involves the 

numerical calculation of the 
1
( )t t  function by an iterative procedure. Arbitrary relaxation 

functions (in the form of the Young’s relaxation modulus) and indentation histories 

(currently, with a single maximum in the contact radius versus time data) might be used 

as an input.  
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The analytical solutions were obtained for specific viscoelastic models as described 

in Appendix A. The Python version of the code for the numerical simulation of indentation 

curves is available at https://github.com/yu-efremov/ViscoIndent. 

2.3. Finite element analysis 

The finite element method (FEM) analysis was performed using the Abaqus CAE 

software (version 14, Simulia Corp., Providence, RI). The axisymmetric system was 

created with a cylindrical sample, having a radius of 100 µm and a height of 40 µm. The 

probe was modeled as a rigid body with the geometries of a flat-ended cylinder (radius of 

0.4 µm), sphere (radius of 5 µm), or cone (half-angle of 85°). The sample mesh was 

optimized for each indenter geometry for a balance between the computational time and 

accuracy. The probe displacement was assigned for triangular and sinusoidal ramps. The 

viscoelastic behavior of samples was assigned via the Prony series coefficients. For the 

power-law rheology model, the relaxation function was approximated as the Prony series 

expansion including six terms, the coefficients were fitted in MATLAB. 

  

3. Results and discussion 

The main purpose of the study is to find how the viscoelastic relaxation function of 

a sample will be reflected in the shape of force curves obtained by indentation. Especially, 

we are interested in some characteristic features and how they might change when the 

acquisition parameters such as the indentation rate (inverse of indentation time) are 

varied. The force curves were obtained using three approaches: an analytical solution, 

for the cases where the closed-form analytical solution might be obtained, a numerical 

solution based on the direct calculation of the Ting’s equations, and a FEM simulation 

solution. The latter one is also a numerical solution by nature, but here we will call it a 

“simulation solution” to distinguish from the former one. We performed such analysis for 

three types of indenter geometries (cylinder, cone, sphere), two types of indentation 

histories (triangular and sinusoidal ramps), and several types of viscoelastic models (Fig. 

1). 

For all the scenarios (a combination of the probe geometry, indentation history, and 

viscoelastic model) that provided the closed-form analytical solution, we found a perfect 

agreement between the analytical and numerical solutions (Fig. S1, S2). This confirms 

that the numerical solution could effectively substitute the analytical one, and it is 

especially useful for the cases where the analytical solution could not be obtained. These 

cases include both complex indentation histories (e.g. non-linear indentation due to a 

cantilever deflection during the piezo movement, non-linearity in the piezo movement 
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itself) and viscoelastic models (with a large number of elementary elements). The 

available analytical solutions are presented in Appendix A. 

The FEM analysis was performed on two selected sets of parameters for each 

viscoelastic model, probe geometry and indentation history (total of 24 simulations). The 

FEM simulation solutions were close to the analytical (where they were obtained) and 

numerical solutions for all the selected model parameters (Fig. S1, S2). Some observed 

differences could originate from the finite-size effects. However, the FEM solution is much 

more time-consuming in comparison with the numerical solution used here. 

Therefore, to facilitate the analysis of the force curves, we used only the numerical 

solutions in the consequent study. Several considerations were taken into account to 

optimize the analysis: 

1) The geometrical parameters of the probe (e.g. cylinder radius, cone angle) will 

not affect the shape of the curve after the normalization, thus they were not varied. 

2) The indentation depth does not affect the shape of the curve since the materials 

are assumed to behave within the limits of the linear viscoelasticity. Therefore, the change 

in the indentation depth equals to the change in the indentation speed in the normalized 

coordinates ( ( ) ( ) max/  =t t , ( )( ) ( )( ) max/ =F t F t F ). 

3) The following parameters were extracted from the force curves. The normalized 

hysteresis area (NHA), defined as the area enclosed between the approach and retraction 

curves divided by the area under the approach curve (Fig 1C). This parameter represents 

the energy dissipation during the indentation cycle, and thus it is especially useful. The 

 

Figure 1. (A) The used indenter (probe) geometries: flat-ended cylinder, sphere, and cone. (B) 

The applied indentation histories, triangular (black) and sinusoidal (red) ramps. (C) The 

parameters, extracted for the force curves: apparent Young’s modulus (YM), obtained from the 

Hertzian fit (red curve); the approach curve exponent, obtained from the fit with an exponent as 

a fitting parameter; the normalized hysteresis area (NHA), obtained as the area enclosed in the 

force curve (dark-grey area) divided by the area under the approach curve (light-grey plus dark-

grey area). Here, the case of the spherical probe and the springpot viscoelastic model is shown 

as an example. 
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second parameter is the power-law exponent of the simple power-law fit applied to the 

approach curve. Basically, it represents how far the curve deviates from the Hertzian fit. 

Additionally, the apparent Young’s modulus (YM) extracted from the Hertzian fit of the 

complete curve (with the fixed exponent value corresponding to the probe geometry) was 

extracted and its dependency from the indentation time was studied. The graphs are 

shown in the coordinates of the indentation time 
ind

t , defined as the total time of 

indentation cycle, and the corresponding indentation rate is the inverse value of the 

indentation time. 

 

3.1 Simplest spring-dashpot combinations 

We begin the analysis with the simplest analytic viscoelastic constitutive models 

which present a single spring or a dashpot element and their combinations. A spring 

element symbolizes an ideal elastic behavior; the stress is linearly proportional to the 

strain:  =( ) ( )t k t . For this element, the relaxation function is constant in time (E(t)=E), 

and the Ting’s equation solution corresponds to the well-known Hertzian solution of the 

form: 

( )( ) n

geom
F t C E = .      (7) 

The n=1, 1.5, 2 for the cylindrical, spherical and conical probe respectively, the 

geometrical coefficients are:     2
cylinder с

C R= ,    4 / 3
sphere

C R= , ( )   2   /
co con nee

C tan = . The 

numerical algorithm and FEM simulations provide the force-indentation curves which are 

analogous to the analytical solution. The force curves show a zero hysteresis area 

(NHA=0), the curve exponents match with the predicted ones (Fig. 2A). 

For a dashpot element, the stress is proportional to the strain rate by Trouton’s (or 

Newton’s) law:   =( ) ( ) /t d t dt  (  is the viscoelastic coefficient or viscosity) according 

to the behavior of an ideal Newton liquid. The relaxation function is =( ) ( )
D

E t t , where 

 ( )
D

t  is the Dirac delta function. This viscosity is mostly related to the compressive 

viscoelastic coefficient (also known as the Trouton coefficient) because indentation 

measurements involve application of compressive forces normal to the sample surface 

[30]. The analytical solution (eq. XAppendix) shows that the force drops to zero then the 

cantilever goes up (retracts), as expected for the viscous material. Thus, the NHA is 

always equal to one (all energy is dissipated).  The shape of the curve is very different 

from the Hertzian shape and shows a power-law exponent that is lower by one, therefore 

the Hertzian fit does not provide reasonable data (Fig. 2B, C). Unlike in case of the spring 

element, the curves now depend on the indentation history and differ for the triangular 
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and sinusoidal ramps. The case of a single dashpot element might correspond to the 

viscous flow or complete plastic deformation.  

The combination of a spring and a dashpot in parallel, known as the Kelvin-Voight 

element, has the following relaxation function: 

( ) ( )
D

E t E t


= + ;       (8) 

where the subscript “∞” symbolizes a long-term response here and thereafter (E∞ 

corresponds to the long-term modulus). The characteristic time of the model is 
inf

KV
E


 =

. At short indentation times 
ind KV

t  , the behavior is dominated by the dashpot, and at 

long indentation times 
ind KV

t   – by the spring (the spring modulus corresponds to E


). Accordingly, the NHA decreases with the indentation time, it is close to zero at slow 

rates, and close to one at fast rates (Fig. 3). The effective YM is proportional to the 

indentation rate at short times, but then it reaches a plateau corresponding to E

 at long 

times. The curve exponent at long times is equal to the Hertzian one, but as for the single 

dashpot model, it is lower by one at short times. In the actual experiments, such a huge 

deviation from the Hertzian exponent could indeed be observed when the dissipation 

(NHA) is large, for example in AFM experiments on cells at very high indentation rates 

[29] (Fig. S3). A notable feature of the model is the jump in the force at the initial contact 

for the case of the cylindrical indenter, that is caused by the dashpot and could be seen 

in FEM simulations as well [25] (Fig. S1). The Kelvin-Voight element can describe the 

plastic flow of the material during the indentation. In the normalized coordinates F  versus  

 

Figure 2. The force versus indentation curves in the normalized coordinates for the spring (A) 

and dashpot (B, C) elements. The spring element provides the curves described by the Hertzian 

mechanics, with the curve exponent defined by the probe geometry and zero hysteresis. In 

contrast, the dashpot provides complete curves with complete hysteresis (zero force during the 

retraction) that depend on the indentation history, triangular (B) or sinusoidal (C) ramp. 
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 , the curve shape is determined solely by the /
ind KV

t   ratio. The curves of NHA, YM, 

and exponent versus normalized contact time only weakly depend on the probe geometry 

(Fig 3C). The data for the sinusoidal ramp demonstrated similar trends and are not shown 

here. 

For another combination, a spring and a dashpot in series, known as the Maxwell 

element, the relaxation function presents a well-known exponential decay: 

0
( )

t

E t E e 
−

= ;        (9) 

 

Figure 3. The force curves and parameters acquired from the force curves for the Kevin-Voight 

model. (A) The force curves for the triangular displacement; cylindrical, spherical, and conical 

indenters, and varied /
ind KV

t  ratio (shown with different line colors). (B) The force curves for 

the sinusoidal displacement. (C) Dependencies for the normalized YM ( /YM E


), NHA, and 

curve exponent on the normalized indentation time /
ind KV

t t = . 
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where the subscript “0” symbolizes the instantaneous response here and thereafter 

(spring modulus corresponds to the instantaneous modulus 
0

E ). The characteristic time 

0

MW
E


 = . At short indentation times 

ind MW
t   the behavior is dominated by the spring, 

and at long indentation times 
ind MW

t   – by the dashpot. Accordingly, the NHA 

increases with the indentation time, it is close to zero at fast rates, and close to one at 

slow rates, which is opposite to the Kelvin-Voight model. The effective YM is proportional 

to the indentation rate at long times, but a plateau corresponding to 
0

E  is observed at 

short indentation times. The curve exponent at short times is equal to the Hertzian one 

and is lower by one at long times. Again, the probe geometry and ramp type only weakly 

affect the observed dependencies (Fig. 4). 

The standard linear solid model (Zener model) can be represented as the Maxwell 

element in parallel with a second spring (
2s

E ) that determines the long-term modulus of 

the system. The short-term modulus is a combination of the moduli of the two springs 

0 1 2s s
E E E= + . The relaxation function is: 

1 2 0
( ) ( )

t t

s s
E t E e E E E e E 

− −

 
= + = − + ;     (10) 

which differs from the relaxation function of the Maxwell element by the presence of the 

E

 term. The model has the characteristic times 

0
( )

rel
E E






=
−

 and 0

0
( )

creep

E

E E E




 

=
−

, 

known to be characteristic times of relaxation and creep, respectively. From here, for the 

larger 0
/E E


 ratio and the same 

rel
  value, the relaxation will be more pronounced and 

will take more time. At short and long indentation times, there are plateaus for all 

dependencies, with the moduli corresponding to 0
E  and E


, respectively, the curve 

exponent corresponding to the Hertzian one, and NHA close to zero. The maximum NHA 

is observed at values slightly larger than 
rel

  and 
creep
 ; the larger 

0
/E E


 ratio provides a 

larger and wider negative peak. At the very large 0
/E E


 ratios, the model behaves as a 

single dashpot in this intermittent regime, while at small ratios the viscoelastic behavior 

will be unnoticeable. The curve exponent is affected in a similar way (Fig. 5A-C).  

The SLS model could be seen as a particular case of the generalized Maxwell 

model, where several Maxwell elements are connected in parallel. We analyzed a case 

with two such elements and a spring: 

1 2

1 2 3
( )

t t

s s s
E t E e E e E 

− −

= + + ;       (11) 
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where 
0 1 2 3s s s

E E E E= + + , 
inf 3s

E E= . The main outcome of such a model is that, locally, 

near the relaxation time of one of the Maxwell elements, the shape of the force curves 

will be determined by this particular element. If the relaxation times of both Maxwell 

elements are close to each other, then larger and wider peak for the NHA and curve 

exponent will be observed instead of two separate peaks (Fig. 5D). 

 

Figure 4. The force curves and parameters acquired from the force curves for the Maxwell 

model. (A) The force curves for the triangular displacement; cylindrical, spherical, and conical 

indenters, and varied /
ind MW

t  ratio (shown with different line colors). (B) The force curves for 

the sinusoidal displacement. (C) Dependencies for the normalized YM (
0

/YM E ), NHA, and 

curve exponent on the normalized indentation time /
ind MW

t t = . 
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Figure 5. The force curves and parameters acquired from the force curves for the SLS model. 

(A) The force curves for the triangular displacement; cylindrical, spherical, and conical 

indenters, and varied /
ind rel

t   ratio (shown with different line colors). (B) The force curves for 

the sinusoidal displacement. (C) Dependencies for the normalized YM ( ( )
0

/YM E E


− ), 

NHA, and curve exponent on the normalized indentation time /
ind rel

t t =  for different 
0

/E E


ratios. (D) Generalized Maxwell model with two relaxation times, two cases with a small and 

large difference in the relaxation times. Dependencies for the YM, NHA, and curve exponent 

on the indentation time. 
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3.2. Fractional viscoelastic models 

From the Fractional Calculus theory, another type of the basic viscoelastic element 

is a so-called springpot with a governing equation  


 =( ) ( ) /t K d t dt . The element has 

two parameters, the unitless power-law exponent and the parameter K

with units of [Pa 

s-α]. The Young’s relaxation function can be written as: 

( ) 1
(1 ) (1 )

 
t

E t
K E

t E t 



 


 

−

− −= =
 −  −

 
=  

 
;    (12) 

where Γ() is the Gamma function. It is worth stressing the meaning of the other 

parameters in the equation. The K parameter with units of [Pa s-α] is not very convenient 

and does not have a straightforward physical meaning. It is commonly replaced with 

K E 

 
= , where E

  is the Young modulus in [Pa] and   is in [s]. However, these two 

parameters are not independent and are linked via K
 . To reduce the number of 

independent parameters back to two, we might assign  =1 s, then the parameter 

, 11
/ (1 )EE

 


=
=  −  will arise with units of [Pa] and a simple meaning of the value of the 

relaxation function at t=1s. However, for the correspondence of the units, the time in the 

last part of Eq. (12) should be considered as unitless ( / [ 1 ]t s = ). Notably, the model can 

be easily rescaled to any other characteristic time  .  

The springpot element intermediates between a spring and a dashpot through a 

fractional-order derivative   of the strain history (0< <1). The force curves constructed 

with the model demonstrate some interesting features: 1) In the normalized coordinates, 

the shape of the curve is defined solely by  ; 2) The NHA and curve exponent 

parameters are independent of the indentation time and are also determined by  . The 

larger   value corresponds to the larger hysteresis. The curve exponent value 

approximately equals to its Hertzian value minus  ; 3) Effective Young’s modulus 

increases with the indentation rate following the power-law dependency with the same 

exponent  (Fig. 6C). These effects were similar for all the considered geometries, for 

the sinusoidal and triangular ramp loadings. Such behavior makes a simple guidance for 

the identification of the power-law behavior in experiments: the constant hysteresis in the 

force curves acquired at different rates, the power-law dependency of the effective 

modulus on the indentation rate. Such effects are indeed observed in experiments on 

cells in a wide range of indentation rates [5] (Fig. S4). 
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The springpot element could be used in various combinations with other elements, 

including other springpot elements. We will address some basic combinations here. A 

springpot in parallel with a spring will provide the following relaxation function: 

( ) 1
 E t E t E



−


= + ;      (13) 

where 1
E E


 . This combination is also known as the fractional Kelvin-Voight model 

[31,32]. The difference with a single dashpot element is the presence of the long-term 

modulus at slow indentation rates. Therefore, the YM, curve exponent and NHA observe 

the gradual prolonged transition between the power-law and elastic regimes. The 

transition point is defined by the characteristic time 
1

1

/ ( )EE 





=  [s]; at shorter times,  

 

Figure 6. The force curves and parameters acquired from the force curves for the springpot 

model. (A) The force curves for the triangular displacement; cylindrical, spherical, and conical 

indenters, and varied  . (B) The force curves for the sinusoidal displacement. (C) 

Dependencies for the YM, NHA, and curve exponent on the indentation time, only for the 

spherical indenter, triangular displacement. 
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the behavior is dominated by the springpot. Thus, hysteresis increases with the 

indentation rate toward the certain limit defined by the   value (Fig. 7). 

For a springpot and a spring in series, the resulted relaxation function is more 

complex due to the presence of the Mittag-Lefler function (ML) in the equation:  

( ) 0

1

0
 E t t

E

E
E ML







= −
 
 
 

.      (14) 

The Mittag-Leffler function is a special function that arises from the solution of certain 

fractional differential equations and is calculated numerically. As opposed to the parallel  

 

Figure 7. The force curves and parameters acquired from the force curves for the fractional 

Kelvin-Voight model. (A) The force curves for the triangular displacement; cylindrical, spherical, 

and conical indenters, 0.2 =  and varied /
ind

t   ratio. (B) The force curves for the sinusoidal 

displacement. (C) Dependencies for the normalized YM, NHA, and curve exponent on the 

normalized indentation time /
ind

t t =  for different   values.  
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combination, now the spring ( 0s
E E= ) dominate in response at short timescales and the 

springpot – at long timescales (Fig. 8). The characteristic transition time is 10
/E E

  [s]. 

The same analogy could be observed in combinations of a springpot and a dashpot: 

when placed in parallel, the short-time response is controlled by the dashpot, and when 

in series – by the springpot. The relaxation functions are: 

( ) 1
( ) 

D
E t E t t


− += ;       (15) 

( ) ( )
1

11

1

1

1 ,1

1  E ME
E

t t L t


 








 −

−

− −−

−
= −

 
 
 

;    (16) 

 

Figure 8. The force curves and parameters acquired from the force curves for the model 

representing by a springpot and a spring in series. (A) The force curves for the triangular 

displacement; cylindrical, spherical, and conical indenters, 0.4 =  and varied /
ind

t   ratio. 

(B) The force curves for the sinusoidal displacement. (C) Dependencies for the normalized YM, 

NHA, and curve exponent on the normalized indentation time /
ind

t t =  for different   values.  
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for the parallel and serial arrangements, respectively (Fig. 9, A-B). More generally, when 

a combination of two springpot elements is considered, the parallel arrangement leads to 

the short-time behavior controlled by the element with the higher exponent, and the long-

time response – by the element with the lower exponent. The opposite is true when the 

elements are arranged in series. The relaxation functions for two springpot elements are 

as follows: 

( ) 1 1
 E t E t E t 

 

− −+= ;       (17) 

for the parallel arrangement; and for the serial arrangement: 

( ) ( ) ( ) 1

1 1

1

,1
 

E
E E t M tLE t

E


    

 







 

− −−−
− −

 
 


=


− ;    (18) 

where   (Fig. 9, C-D). All the previously considered models for serial arrangements 

of the elements could be seen as a particular case of the two serial springpot elements. 

When 1 = , the springpot element reduces to the dashpot, and when 0 =  , it reduces 

to the spring. The characteristic transition times, as was shown in [8], can be presented 

as 
1

1

1 
parallel

E

E










− 




=


and 1

1

1

(1  )
serial

E

E









 
− 

− 
  

= . 

The addition of a spring in parallel to another element results in the addition of the 

long-term modulus E

 to the relaxation function. We will consider two such models here, 

the first one is a spring in parallel with a springpot and spring combination, also known as 

a fractional SLS (fractional Zener) model [33], with the following relaxation function: 

( ) inf 0 inf

1

inf
( ) 

fSLS

s

s

E t
E ML EE t M

E
E Et E L

 








 
= − − 

 

  
 + = − + 
    

;  (19) 

where 
0 infs

E E E= +  and the characteristic time is 

1

1

fSLS

s

E

E




 

=  
 

. As in the common SLS 

model, this model has plateau regions at short and long times corresponding to 0
E  and 

inf
E elastic moduli. At  0 = , the model reduces to the SLS model. Increase in  leads to 

the stretching of the transition region around the transition time, similar to the model 

known as the stretched exponent model [34]. Accordingly, the hysteresis in force curves 

is observed over a wider range of indentation times, while diminishing to zero at extremes 

(Fig. 10A). 
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The second model is a spring in parallel with a springpot and dashpot combination. The 

model was comprehensively studied in the recent works [8,35]. The relaxation function 

is: 

 

Figure 9. The parameters acquired from the force curves for a springpot and a dashpot in 

different combinations. Dependencies for the YM, NHA, and curve exponent on the normalized 

indentation time /
ind

t t =  , where   is the characteristic time of the corresponding model, 

for different   (and  ) values for a springpot in parallel with a dashpot (A); a springpot in 

series with a dashpot (B); a springpot in parallel with another springpot; (D) a springpot in series 

with another springpot. 
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( ) ( )
1

11

1 ,

11

1 i1 nf
 

E
E t MLt EE t


 










−−

− −

−−
 

+ 


= −


.    (20) 

The behavior of the model, as expected, is similar to the springpot - dashpot combination 

with a transition to the elastic regime at the long timescales. On the other hand, the model 

reduces to the SLS model when 0 = . The largest hysteresis in force curves is observed 

in the middle region where the dashpot is active, then, at short timescales, the hysteresis 

reduces toward the values defined by the springpot exponent   (Fig. 10B). 

 

3.3 General dependencies of the curve parameters on the relaxation function 

Some general dependencies could be drawn from the provided numerical analysis. 

Importantly, the shape of the force curves is strongly affected by the relaxation function 

of the material. A huge deviation from the Hertzian curve exponent (up to minus one) is 

possible then relaxation is significant. It correlates with the large hysteresis, NHA, of the 

curve. Since the elastic assumption is often used to fit the force curves, the lower curve 

caused by viscoelasticity might be misinterpreted as non-linear elasticity (strain-

softening), since the fit of shallower regions will provide a higher YM and the fit of the 

 

Figure 10. The parameters acquired from the force curves for the two three-element fractional 

viscoelastic models: a spring in parallel with a springpot and spring combination (A), a spring 

in parallel with a springpot and dashpot combination (B). Dependencies for the YM, NHA, and 

curve exponent on normalized indentation time /
ind

t t =  , where   is the characteristic time 

of the corresponding model, for different   values. 
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deeper regions – a lower YM. Otherwise, if the real non-linearity like strain-stiffening is 

presented, viscoelasticity might conceal it to some extent.  

The dependencies of the apparent YM, NHA, and curve exponent versus 

indentation time were close for the studied indenter geometries and indentation histories. 

By comparison with the actual relaxation functions, we have found that the apparent YM 

corresponds very closely to the time-averaged value of the relaxation function with the 

limits from 0t =  to / 4
ind

t t=  (Fig. 11A): 

( )
0

/41

/ 4

indt

ind

E E t dt
t

 =  .      (21) 

The upper limit corresponds to half of the approach time since only the approach curve 

data are used for the YM calculation. The dependencies of the NHA and curve exponent 

values are more complex. As a first approximation, they are related to the local slope of 

the relaxation function on a logarithmic scale. Indeed, we have found that the doubled 

slope of the time-averaged relaxation function, shown in Fig. 11A, is close to the observed 

NHA values (Fig. 11B). A zero slope corresponds to the elastic regions with a zero NHA 

and Hertzian exponent value; and the maximum slope, which is equal to one (for the 

dashpot), leads to the NHA=1 and a decrease in the exponent by one. It should also be 

noted, that NHA is a fraction of the energy dissipated during the indentation cycle, and 

thus it is related to the loss tangent (ratio of the loss modulus to the storage modulus) at 

the frequency corresponding to 1/
ind

t . 

 

4. Concluding remarks 

The shape of the force-indentation curves is well-predicted by the underlying 

viscoelastic relaxation function; the analytical, numerical, and simulation solutions provide 

well-matched results. Viscoelasticity causes substantial deviation of the curve shape from 

the purely elastic response. The curve exponent decreases from the Hertzian value, 

which might be misinterpreted as strain-softening if the elastic assumption is used. The 

presence of the hysteresis area is a clear sign of the viscoelastic response (in the absence 

of strong adhesion and plasticity).  

Several approaches might be used to extract the information about the relaxation 

function from the indentation data. One of simple ways is to observe the dependencies of 

the apparent YM and NHA on the indentation rate and to compare them with the 

predictions from the relaxation functions. For example, the presence of the constant NHA 

over the wide range of times is an indicator of the power-law rheology. The idea of using 

the YM versus indentation rate was implemented in the previous studies [36,37]. In the  
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case of the power-law rheology, the power-law exponent might be extracted from such a 

dependency. The empirical comparison shows that the apparent modulus does not follow 

the relaxation function exactly, but it is very close to the time-averaged value of this 

function (Fig 11A). The NHA is related to the local slope of the relaxation function on a 

logarithmic scale. A large hysteresis in the curve correlates with the strong dependency 

of the YM on the indentation rate. 

More advanced approaches involve algorithms for the fitting of the force curves to 

the preselected viscoelastic models [5,15,16] or algorithms for the direct reconstruction 

of the relaxation function. In both cases, however, it is useful to obtain experimental 

curves in a wide range of indentation rates, and thus, it is useful to know how the curves 

should look for different viscoelastic models. 
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Figure 11. Comparison of the apparent YM (A) and NHA (B) acquired from the force curves 

with the relaxation function for the three viscoelastic models: Generalized Maxwell model with 

two relaxation times; a spring in parallel with a springpot and spring combination; a spring in 

parallel with a springpot and dashpot combination. (A) the YM, the relaxation function E(t), and 

the time-averaged relaxation function. (B) the NHA and slope of the time-averaged relaxation 

function on the logarithmic scale. 
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Appendix A. 

Analytical solutions of the Ting’s equations for selected viscoelastic models, 

probe geometries and indentation histories. 

For the acquisition of analytical solutions, the equations were solved 

symbolically with SageMath [38] and Wolfram Alpha integral calculator [39]. We will 

reproduce the relaxation functions here and provide analytical solutions for the Ting’s 

equations describing a common indentation experiment with the triangular or sinusoidal 
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displacement. The solutions for the approach (tip deepens into the sample, contact area 

increasing) and retraction (contact area decreasing) curves will be provided separately. 

The solutions for the approach curve (Lee-Radok’s solution) could also be extended for 

the case of the retraction curves, we did it for some situations where the complete Ting’s 

solution was not obtained. The Lee-Radok’s and Ting’s solution match for the cylindrical 

probe since the contact area is constant or has a zero value. 

The spring element,  =( ) ( )t k t . The relaxation function is constant in time 

(E(t)=E), and the Ting’s equation solution corresponds to the well-known Hertzian solution 

of the form: 

( )( ) n

geom
F t C E = .      (A1) 

The n=1, 1.5, 2 for the cylindrical, spherical and conical probe, respectively, the 

geometrical coefficients are: ( )2    2 / 1
cylinder с

C R = − , ( )2   4 / 3 / 1
sphere

C R = − , 

( ) ( )2   2   / / 1
cone

C tan  = − . 

The dashpot element,   =( ) ( ) /t d t dt  (  is the viscoelastic coefficient or 

viscosity) according to the behavior of an ideal Newton liquid. The relaxation function is 

=( ) ( )
D

E t t , where  ( )
D

t  is the Dirac delta function. The common analytical solution of 

the Ting’s equation for all the geometries is: 

( )( ) 1( ) ( )n

appr geom
F t C n t t  −= ;      (A2) 

( )( ) 0
retr

F t = ;        (A3) 

1 m
( , ) 0t t t t = .        (A4) 

As expected for a viscous material, the force drops to zero then the cantilever goes up 

(retracts).  

The Kelvin-Voight element, a combination of a spring and a dashpot in parallel, 

has the following relaxation function: ( ) ( )
D

E t E t


= + . We will split the solutions for the 

approach Fap and retraction Fretr curves. 
1
( )t t  function can be found from Eq. (3), which 

leads to the condition: 

1 1
( , ) ( ) ( )

m
t t t t t

E



  += ;      (A5) 

which for the triangular ramp leads to: 

1
( ) 2

m
t t t t

E


= − − ;       (A6) 
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and for the sinusoidal ramp: 

2

1

1

1
( ) arcsin 1 sin tan

m
t t t t

E E

 




−
     
  + +          

= .   (A7) 

The common solution for all the geometries for the triangular (ramp) and sinusoidal 

(sin) indentation histories are, respectively: 

( )( ) ( ),

1

1 1
( )

appr ramp geom

nF t C v E n vt vt −= + ;    (A8) 

( )( ) ( ), 1
(2 ;)

n

n

retr ramp geom geo mm
F t C v Ct vE t t E

E


 
=  

 
= − −   (A9) 

( )( ) ( )
1

1

1 1 1 [ ,,sin ]
( sin( sin()) s ) ;) co (n

K t tappr geom
F t C A Et tA A tn      −= +  (A10) 

( )( ) ( ),sin 1
)sin( ;

n

retr geom
tF Et C A =     (A11) 

solution for the approach curve was also obtained before in [30]. 

For the Maxwell element, the relaxation function is: 
0

( )
t

E t E e 
−

= . The 
1
( )t t  function 

for the triangular displacement is: 

1
ln(2 1)

mt t

t t e 
−

−

+ −= ;      (A12) 

The solution for 
1
( )t t  in the case of the sinusoidal load could not be isolated, but it can be 

numerically found from the following relation: 

1

1 1
( sin( ) cos( )) sin( ) cos( )

t t

e t t t t      
−

+ = + .   (A13) 

For the approach curve, the solutions for the triangular displacement and different probe 

geometries are: 

( )( ), , 0
(1 )

t

appr cyl ramp geom
F t C E v e  

−

= − ;    (A14) 

( )( )
3

2

, , 0

3
( )

2 4

t

appr sphere ramp geom

t t
F t C E v erfi e 


 

 

−  
= −   

  

;  (A15) 

( )( ) 2

, , 0
2( ) ( 1 )

t

appr cone ramp geom

t
F t C E v e  



−

= − + ;   (A16) 

( )( ), , 0
(2 1)

mt t t

retr cyl ramp geom
F t C E v e e  

− +
−

= − − ;   (A17) 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.15.041640doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.041640
http://creativecommons.org/licenses/by/4.0/


28 
 

( )( )
3

2

, , 0

1
3( ) ln(2 1) ln(2 1)

16 2

m m mt t t t t tt

retr sphere ramp geom

t t
F t C E v i e erfi e e e   


 

 

− − −
−    

= − − + + − − +         

;     (A18) 

( )( ) 2

, , 0

1 1 1
4( ) ( ln 2 1 )

2 2 2 2

m m mt t t t t t t

retr cone ramp geom

t t
F t C E v e e e e   


 

 

− − −
−−   

= − − + + − +   
   

;    (A19) 

where erfi() is the imaginary Gauss error function. For the sinusoidal displacement, there 

is no closed-form analytical solution for the case of the spherical probe:  

( )( ), ,sin 0 2

sin( ) cos( )
( )

( ) 1

t

appr cyl geom

t t e
F t C E A

t

  
 



−

+ −
=

+
;   (A20) 

( )( )
( )

, ,sin

0

3
sin( )cos( )

2

t xt

appr sphere geom
F t C A e x x dx   

−
−

=  ;   (A21) 

( )

2

2

, ,sin 0 2

2sin( )cos( )
4cos( ) 2 2

( )
4( ) 1

t

appr cone geom

t t
t e

F t C E A
t


 






− 
− + + 

=  
+ 

 

; (A22) 

( )( )
( )

1

1 1

, ,sin 0 2

sin( ) cos( )
( )

( ) 1

t t t

retr cyl geom

e t t e
F t C E A

t

   
 



−
−

+ −
=

+
;  (A23) 

( )( )
1 ( )

, ,sin

0

3
sin( ) cos( )

2

t t x

retr sphere geom
F t C A e x x dx   

−
−

=  ;  (A24) 

( )

1

1

1

2

, ,sin 0 2

sin(2 )
2cos(2 ) 2

( )
4( ) 1

t

t

ret cone geom

t
e t

F t C E A e
t













−

  
− +  

  =
+ 

 
 

.  (A25) 

By comparing Eqs. A12-14 and A23, it follows that for the cylindrical indenter the solutions 

for the approach and retraction curves match, as stated above. It is true for other 

considered viscoelastic models as well.  

The relaxation function of the Standard linear solid model is 

0 inf inf
( ) ( )

t

E t E E e E
−

= − + . The 
1
( )t t  function for the triangular ramp is:  
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0

inf

2( )
2 1 1

0 0

1

inf inf

2 1 12 1

t tm
m

m

E t t
t t e

E

m

E E
t t t e W e

E E






−
−   −

 − − − + 
−    

  
      − + − − − −          

  

= ; (A26) 

where W is the Lambert W function. For the sinusoidal displacement, the 
1
( )t t  function 

can be numerically found from the following relation: 

1

1 1

1 1 0 inf inf 1 0 inf 0 inf
( sin( ) cos( ))( ) ( ( ) )sin( ) ( )cos( ) ( ( ) )sin( )

t t

e t t E E E t E E t E E t          
−

− −+ − − + = − + +

.    (A27) 

The solutions for the approach curves are: 

( )( ), , 0 inf 0 inf inf
( ( ) ( ) )

t

appr cyl ramp geom
F t C v E E e E E E t  

−

= − − + − + ;  (A28) 

( )( )
3 3

32 2

, , 0 0

3 3
( ) ( )

4 2

t

appr sphere ramp geom inf inf inf

t
F t C v E E erf e E E t E t  



−  
= − − − − + − +   

  

;    (A29) 

( )( ) 2 2 2

, , 0 inf inf
(2 ( )( 1) )

t

appr cone ramp geom

t
F t C v E E e E t 



−

= − + − + ;  (A30) 

For the retraction curves, the analytical solutions for the spherical and conical probes are 

too long and complex, so here only the solution for the cylindrical probe is presented: 

( )( ), , 0 inf inf
( ( )(2 1) ( 2 ))

mt t t

retr cyl ramp geom m
F t C v E E e e E t t  

− +
−

= − − − − − . (A31) 

The solutions for the sinusoidal displacement were found except for the case of sphere-

retraction, but are not presented here due to complexity. 

For a single springpot element (Power-law rheology model), we will use the Young’s 

relaxation function in the form of ( ) 1  



−=E t E t . The analytical solutions for the Ting’s 

equations for triangular indentation were obtained previously by Bruckner et al. [15]. The 

1
( )t t  function for the triangular ramp is: 

1

1

1
( ) 2 ( )

m
t t t t t−= − − ;      (A32) 

the solution was not acquired for the sinusoidal ramp. 

The solutions for the triangular ramp are as follows: 

( )( ) 11

, ,
1

appr cyl ramp geom

E
F t C v t 



−=
−

;    (A33) 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2020. ; https://doi.org/10.1101/2020.04.15.041640doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.041640
http://creativecommons.org/licenses/by/4.0/


30 
 

( )( )
3 3

12 2

, ,

(1 )

5
( )
2

3

4
appr sphere ramp geom

E
F t C v t











− −

 −

= ;  (A34) 

( )( ) 2 21

, , 2

2

3 2
appr cone ramp geom

E
F t C v t 

 

−=
− +

;    (A35) 

( )( ) 1 11

, ,
( 2( ) )

1
retr cyl ramp geom m

E
F t C v t t t 



− −= − −
−

;   (A36) 

The solutions for the retraction curves for the spherical and conical geometries are too 

long and not presented here. For the sinusoidal ramp, only the following solutions were 

obtained for the approach curves: 

( )( )
1 2

, ,sin

3 ( )
1,(1 , ),

1 2 2 2 4
appr cyl geom

t t
F t C A

   
 



−
 

= − − − −  
;  (A37) 

( )( ) ( )
2

2 2

, ,sin 2

2 3
1,( ,2 ), ( )

3 2 2 2 2
appr cone geom

t
F t C A t

  
  

 

−
 

= − − − − +  
; (A38) 

where ( ), ,a b z  is the generalized hypergeometric function. The analytical solutions could be 

obtained for some other viscoelastic functions and particular sets of indentation histories and 

probe geometries, but it is beyond the tasks of the current study. 
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Supplementary material 

 

Figure S1. A comparison of numerical, analytical, and simulation solutions for the 

Kelvin-Voight and Maxwell models, different probe geometries (flat-ended cylinder, 

sphere, and cone) and indentation histories (triangular and sinusoidal probe 

displacement). The parameters of the Kelvin-Voight model: 1) E

=1000 Pa,  =10 Pa*s; 

2) E

=1000 Pa,  =100 Pa*s. The parameters of the Maxwell model: 1) 0

E =1000 Pa, 

=2 s; 2) 0
E =1000 Pa,  =0.8 s. The indentation speed for the triangular ramp was 50 

nm/s, the frequency of the sinusoidal ramp was 0.25 Hz (total time was 2 s for both cases), 

the amplitude was 50 nm. There is no analytical Ting’s solution for the Maxwell model-

sphere-sinusoidal ramp case, the Lee-Radok’s solution is presented. 
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Figure S2. A comparison of numerical, analytical, and simulation solutions for the 

SLS and PLR models, different probe geometries (flat-ended cylinder, sphere, and 

cone) and indentation histories (triangular and sinusoidal probe displacement). 

The parameters of the SLS model: 1) 0
E =1000 Pa,  =2 s, E


=300 Pa; 2) 0

E =1000 Pa, 

 =0.5 s, E

=300 Pa. The parameters of the PLR model: 1) 1

E
 =1000 Pa, =0.2; 2) 0

E

=1000 Pa,  =0.4. The indentation speed for the triangular ramp was 50 nm/s, the 

frequency of the sinusoidal ramp was 0.25 Hz (total time was 2 s for both cases), the 

amplitude was 50 nm. There is no analytical Ting’s solution for the SLS model-sphere-

triangular ramp, PLR model-sphere-cone-sinusoidal ramp cases, the Lee-Radok’s 

solution is presented where available. 
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Figure S3. A force curve obtained with AFM indentation on a cell (NIH 3T3 

fibroblast) at a high indentation rate. The force curve was obtained at the indentation 

rate of 660 Hz that corresponds to the indentation time of 0.0015 s, 140 nm diameter 

spherical (parabolical) probe, sinusoidal displacement. Due to a strong dissipation (the 

NHA=0.81), the Hertzian fit does not follow the curve closely, and the curve exponent 

(0.73) is twice lower than the Hertzian one (1.5). The experimental data are taken from 

[29]. 
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Figure S4. Force curves obtained with AFM indentation on cells (NIH 3T3 

fibroblasts) can be described well with the power-law rheology model (single 

springpot). (A) The force curves obtained at different indentation times (showed in the 

legend) over three orders of magnitude, a 5 μm diameter spherical probe. (B) In the 

normalized coordinates, the curves match each other well since they all have very close 

values of the NHA and curve exponent. Moreover, these values are close to the values 

from the numerical prediction (NHA = 0.28 vs 0.26; curve exponent = 1.4 vs 1.4; for the 

experimental 0.1  ). The experimental data are taken from [5]. 
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