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22 

SUMMARY 23 

Insulin-like growth factor-1 (IGF-1) plays a key role in synaptic plasticity, degenerative 24 

diseases, spatial learning, and anxiety-like behavioral processes. While IGF-1 regulates 25 

neuronal activity in many areas of the brain, its effect on synaptic plasticity and animal 26 

behavior dependent on the prefrontal cortex remain unexplored. Here, we show that 27 

IGF-1 induces a long-lasting depression of the medium and slow post-spike 28 

afterhyperpolarization (mAHP and sAHP), increasing the excitability of layer 5 29 

pyramidal neurons of the infralimbic cortex. Besides, IGF-1 mediates a long-term 30 

depression of both inhibitory and excitatory synaptic transmission that results in a long-31 

term potentiation of the postsynaptic potentials. We demonstrate that these synaptic and 32 

intrinsic regulatory processes mediated by IGF-1 favor the fear extinction memory. 33 

These results show novel functional consequences of IGF-1 signaling on animal 34 

behavior tasks dependent on the prefrontal cortex, revealing IGF-1 as a key element in 35 

the control of the fear extinction memory. 36 

 37 

38 
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INTRODUCTION 39 

Conditioned fear is an associative form of learning and memory in which a 40 

previous neutral stimulus (called “conditioned stimulus” [CS]; e.g., a tone) comes to 41 

elicit a fear response when is associated with an aversive stimulus (called 42 

“unconditioned stimulus” [US]; e.g., an electric shock (Ledoux, 2000; Maren, 2001; 43 

Pape and Pare, 2010). Extinction of conditioned fear is an active learning process 44 

involving inhibition of fear expression. It is a decline in conditioned fear responses 45 

(CRs) following non-reinforced exposure to the CS. However, fear extinction memory 46 

does not erase the initial association between the CS-US but forms a new association 47 

(CS-No US) that inhibits expression of the previous conditioned memory (Quirk and 48 

Mueller, 2008). Fear extinction depends on specific structures such as the amygdala, the 49 

hippocampus, and the prefrontal cortex (PFC) (Milad and Quirk, 2012; Orsini and 50 

Maren, 2012). Dysfunctions in the neuronal circuits responsible for fear cause the 51 

development of anxiety disorders, including specific phobias and post-traumatic stress 52 

(Pavlov, 1927; Quirk and Mueller, 2008).  53 

The consolidation of the extinction memory has been related to long-term synaptic 54 

plasticity and increases in the excitability of pyramidal neurons (PNs) from the 55 

infralimbic cortex (IL) (Kaczorowski et al., 2012; Koppensteiner et al., 2019; Moyer et 56 

al., 1996). The mechanisms of this synaptic plasticity involve NMDA receptors 57 

(Burgos-Robles et al., 2007), mitogen-activated protein (MAP) kinases (Hugues et al., 58 

2004), protein kinase A (Mueller et al., 2008), insertion of Ca
2+

-permeable AMPA 59 

receptors (Sepulveda-Orengo et al., 2013), and protein synthesis (Mueller et al., 2008; 60 

Santini et al., 2004). Moreover, the excitability of PN from IL is a key determinant for 61 

both the acquisition and the extinction of fear, being reduced by fear acquisition and 62 
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increased by fear extinction (Santini et al., 2008). Indeed, IL layer 5 pyramidal neurons 63 

(L5PN) of conditioned fear animals show a higher slow post-spike 64 

afterhyperpolarization (sAHP) amplitude and lower firing frequency relative to non-65 

conditioned or extinguished animals (Santini et al., 2008).  66 

Insulin-like growth factor-1 (IGF-1) is an endogenous polypeptide with plenty of 67 

trophic functions, which can be locally synthesized and released by neurons and 68 

astrocytes (Fernandez and Torres-Alemán, 2012). Similarly, its receptor (IGF-1R) is 69 

widely expressed among all brain cell type (Quesada, et al., 2007; Rodriguez-Perez et 70 

al., 2016). IGF-1 increases neuronal firing (Gazit et al., 2016; Nuñez et al., 2003) and 71 

modulates excitatory and inhibitory synaptic transmission in the central nervous system 72 

(Castro-alamancos and Torres-aleman, 1993; Nilsson et al., 1988; Noriega-prieto et al., 73 

2020; Seto et al., 2002). Furthermore, IGF-1 regulates different ion channels, such as A-74 

type K
+
 channels (Xing et al., 2006) and P/Q-, L-, and N-type voltage-gated Ca

2+
 75 

channels (Blair and Marshall, 1997; Shan et al., 2003), as well as neurotransmitter 76 

receptors activity (Gonzalez de la Vega et al., 2001; Savchenko et al., 2001). However, 77 

the role of IGF-1 on the modulation of L5PN of the IL activity and its consequences in 78 

the fear extinction memory remains to be clarified.  79 

Here, we have examined the effects of IGF-1 in excitability and synaptic transmission 80 

in L5PN from IL. Our results reveal that IGF-1 induces a long-lasting reduction of the 81 

sAHP amplitude and increases the firing frequency of L5PNs. Furthermore, IGF-1 82 

induces a presynaptic long-term depression (LTD) of both excitatory and inhibitory 83 

postsynaptic currents (EPSC and IPSCs, respectively) that results in a long-term 84 

potentiation (LTP) of the postsynaptic potentials (PSPs). Moreover, we show that IGF-1 85 

facilitates the recall of extinction of fear conditioning when applied intracranially 30 86 
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min before the extinction task. In these animals with the favored extinction, the sAHP is 87 

reduced and the excitatory synaptic transmission is depressed. Therefore, we 88 

demonstrate for the first time that IGF-1 facilitates the extinction of fear conditioning, 89 

increasing the excitability and potentiating the synaptic transmission in L5PN from IL. 90 

MATERIALS AND METHODS 91 

Animals. Male Sprague Dawley rats were group-housed in transparent 92 

polyethylene cages. Rats were maintained on a 12:12 h light/dark scheduled cycle with 93 

free access to food and water. All animal procedures were approved by the Universidad 94 

Autónoma of Madrid Ethical Committee on Animal Welfare and conform to Spanish 95 

and European guidelines for the protection of experimental animals (Directive 96 

2010/63/EU). Effort was made to minimize animal suffering and number. 97 

Electrophysiology. Prefrontal cortical slices were obtained from rats at postnatal day 98 

(P20 to P30) age. Rats were decapitated and the brain removed and submerged in 99 

artificial cerebrospinal fluid (ACSF). Coronal slices (400 µm thick) were obtained with 100 

a Vibratome (Leica VT 1200S). To reduce swelling and damage in superficial layers 101 

(especially after the behavior tests), brain slices were obtained using a modified ACSF, 102 

containing (in mM): 75 NaCl, 2.69 KCl, 1.25 KH2PO4, 2 MgSO4, 26 NaHCO3, 2 CaCl2, 103 

10 glucose, 100 sucrose, 1 sodium ascorbate, and 3 sodium pyruvate. After that, brain 104 

slices were transferred to regular ACSF (in mM: 124 NaCl, 2.69 KCl, 1.25 KH2PO4, 2 105 

Mg 2SO4, 26 NaHCO3, 2 CaCl2, and 10 glucose, 0.4 sodium ascorbate, bubbled with 106 

carbogen [95% O2, 5% CO2]) and incubated for >1h at room temperature (22–24°C). 107 

Slices were then transferred to an immersion recording chamber and superfused with 108 

carbogen-bubbled ACSF. Cells were visualized under an Olympus BX50WI 109 

microscope. Patch-clamp recordings were obtained from the soma of pyramidal neurons 110 
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located at the layer 5 of IL (IL-L5PNs) using patch pipettes (4–8MΩ) filled with an 111 

internal solution that contained (in mM): 130 KMeSO4, 10 HEPES-K, 4 Na2ATP, 0.3 112 

Na3GTP, 0.2 EGTA, 10 KCl (buffered to pH 7.2–7.3 with KOH). Recordings were 113 

performed in current- or voltage-clamp modes using a Cornerstone PC-ONE amplifier 114 

(Dagan Corporation). Pipettes were placed with a micromanipulator (Narishige). The 115 

holding potential was adjusted to −60 mV and the series resistance was compensated to 116 

~80%. Recordings were accepted only when series and input resistances did not change 117 

>20% during the experiment. Data were low-pass filtered at 3 kHz and sampled at 10 118 

kHz, through a Digidata 1440 (Molecular Devices). The pClamp software (Molecular 119 

Devices) was used to acquire the data. Chemicals were purchased from Sigma-Aldrich 120 

Quimica and Tocris Bioscience (Ellisville; distributed by Biogen Cientifica) and R&D 121 

Systems, Inc. (distributed by Bio-Techne). In current-clamp mode, we examined the 122 

afterhyperpolarizing potentials (AHPs) in IL-L5PNs. We injected 0.4 nA depolarizing 123 

current pulses of 10, 200, and 800 ms in duration to record fAHPs, mAHPs, and sAHPs, 124 

respectively. We measured the amplitude of afterhyperpolarizing potentials as the 125 

average of the maximum peak value, after the end of each depolarized pulse. The 126 

temporal window of each one was 5-10 ms for fAHPs, 5-100 ms for mAHPs, and 0.1-3 127 

s for sAHPs, measured in ACSF and in the presence of 10 nM IGF-1. We applied the 128 

same protocol but in the voltage-clamp mode to record the currents that underline these 129 

potentials. We fixed the membrane potential at -60 mV and then we depolarized the cell 130 

at 0 mV during 10, 200, and 800 ms for 40 min to measure the amplitude of fIAHP, mIAHP, 131 

and sIAHP, respectively, at the end of each depolarized pulse in control conditions 132 

(ACSF) and after IGF-1 addition to the bath. The number of action potentials (spike 133 

frequency) elicited in response to a series of long (1 s) depolarizing current steps (25–134 
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200 pA for basal condition and 25-350 pA for neurons recorded after the behavioral 135 

tests; 25 pA increments) were used to assess excitability of  IL-L5PNs. 136 

Bipolar stimulation was applied through a Pt/Ir concentric electrode (OP: 200 μm, IP: 137 

50 μm; FHC) connected by 2 silver-chloride wires to a stimulator and a stimulus 138 

isolation unit (ISU-165 Cibertec). The stimulating electrode was placed at 100 μm 139 

below the soma of the recorded neuron (at the level of layer 6), close to the basal 140 

dendrites of the recorded IL-L5PNs. Paired pulses (100 μs in duration and 20–100 μA 141 

and 50 ms interval) were continuously delivered at 0.33 Hz. Excitatory postsynaptic 142 

currents (EPSCs) were isolated in the presence of GABAAR (50 μM picrotoxin; PiTX) 143 

and GABABR (5 µM CGP-55845) antagonists. Inhibitory postsynaptic currents (IPSCs) 144 

were isolated adding AMPAR (20 μM CNQX) and NMDAR (50 μM D-AP5) antagonists. 145 

In both cases, after 5 minutes of stable baseline, we superfused IGF-1 for 35 min to 146 

check for long-term synaptic plasticity by analyzing the EPSCs and IPSCs peak 147 

amplitudes. In current-clamp mode, after a stable baseline of postsynaptic potentials 148 

(PSPs), the stimulation intensity was increased until suprathreshold responses reached 149 

were ≈21% for 5 min. Next, we applied IGF-1 for 15 min and measured the number of 150 

APs; afterward, we returned to initial stimulation intensity and measured the amplitude 151 

of PSPs to study the effect of IGF-1 on synaptic transmission. Miniature EPSCs 152 

(mEPSCs) were recorded at -60 mV in ACSF in the presence of 1 μM TTX, 20 μM 153 

PiTX, and 5 µM CGP-55845 to isolate excitatory synaptic transmission.  154 

Conditioned fear. Rats were anesthetized with ketamine (70 mg/kg i.p.; 155 

Ketolar™), xylazine (5 mg/kg i.p.; Rompum™), and atropine (0,05 mg/kg i.p.; B. 156 

Braun Medical S.A) and maintained with isoflurane (2-3% in oxygen). Animals were 157 

positioned in a stereotaxic apparatus (David Kopf Instruments, Tujunga, CA, USA) and 158 
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placed on a water-heated pad at 37ºC. The midline of the scalp was sectioned and 159 

retracted, and small holes were drilled in the skull. Rats were implanted with a single 26 160 

gauge stainless-steel guide cannula (Plastics One) in the mPFC. Stereotaxic coordinates 161 

aiming toward the IL were (AP: 2.8 mm, LM: 1.0 mm, and DV: 4.1 mm) from bregma 162 

according to rat brain atlas (Paxinos and Watson, 2007), with the cannula angled 11° 163 

toward the midline in the coronal plane as described previously (Santini et al., 2004). A 164 

33 gauge dummy cannula was inserted into the guide cannula to prevent clogging. 165 

Guide cannulas were cemented to the skull with dental acrylic (Grip Cement) and the 166 

incision was sutured. Buprenorphine hydrochloride (75 mg/kg s.c.; Buprex™) was 167 

administered for post-surgical analgesia. Rats were allowed at least 7 days for surgery 168 

recovery. Trace fear conditioning was conducted in a chamber of 25x31x25 cm with 169 

aluminum and Plexiglas walls (Coulbourn, Allentown, PA). The floor consisted of 170 

stainless-steel bars (26 parallel steel rods 5 mm diameter, 6 mm spacing) that can be 171 

electrified to deliver a mild shock. A speaker was mounted on the outside wall, and 172 

illumination was provided by a single overhead light (miniature incandescent white 173 

lamp 28 V). The rectangular chamber was situated inside a sound-attenuating box (Med 174 

Associates, Burlington, VT) with a ventilating fan, which produced an ambient noise 175 

level of 58 dB. The CS was a 4 kHz tone with a duration of 30 s and an intensity of 80 176 

dB. The US was a 0.4 mA scrambled footshock, 0.5 s in duration, which co-terminated 177 

with the tone during the conditioning phase. Between sessions, floor trays and shock 178 

bars were cleaned with soapy water and the chamber walls were wiped with a damp 179 

cloth.  An additional Plexiglas chamber served as a novel context for the auditory cue 180 

test. This chamber, which was a triangle with a black smooth Plexiglas floor, was 181 

physically distinct from the fear conditioning chamber. All the environmental 182 
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conditions were completely different regarding the fear conditioning test (the intensity 183 

of light was lower, 10 V), except for the ventilating fan. Before placing rats into this 184 

chamber, chamber floor and walls were wiped with 30% vanilla solution to provide a 185 

background odor distinctive from that used during fear conditioning. The activity of 186 

each rat was recorded with a digital video camera mounted on top of each behavioral 187 

chambers. 30 min before extinction training, saline (NaCl 0.9%), IGF-1 (10 μM; 188 

Preprotech), or the IGF-1R antagonist 7-[cis-3-(1-azetidinylmethyl)cyclobutyl]-5-[3-189 

(phenylmethoxy)phenyl]-7H-pyrrolo[2,3-]pyrimidin-4-amine (NVP-AEW 541, 40 μM; 190 

Cayman Chemicals) plus IGF-1 were infused into the IL. For the infusions, cannula 191 

dummies were removed from guide cannulas and replaced with 33 gauge injectors, 192 

which were connected by polyethylene tubing (PE-20; Small Parts) to 100 μl syringes 193 

mounted in an infusion pump (Harvard Apparatus). Drugs were infused at a rate of 0.5 194 

μl/min for 1 min as described previously (Fontanez-Nuin et al., 2011).  195 

Non-cannulated animals. Animals were divided into two groups, the conditioned group 196 

(COND) and the extinguished group (EXT). On day 1, rats received three habituation 197 

trials (tone-no shock; habituation phase) into two different contexts (context 1: square 198 

shock box and context 2: triangle box with soft floor). On day 2, rats received three 199 

conditioning trials (tone paired with shock; context 1; condition phase). On day 3, rats 200 

of COND group remained in their home cage, whereas rats of EXT group received 201 

twenty tone-alone trials (context 2; extinction phase). On day 4, both groups of rats 202 

received five tone-alone trials to test for recall of conditioning or extinction (test phase) 203 

(Figure supplement 3A). 204 

Cannulated animals. Animals were divided into the saline group (SAL) and the 205 

different drug groups (IGF-1 or NVP+IGF-1). On day 1, rats received three habituation 206 
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trials into the two contexts aforementioned. On day 2, rats received three conditioning 207 

trials. On day 3, rats were infused with saline or drug 30 min before the beginning of the 208 

extinction phase. On day 4, all groups of rats received five tone-alone trials in the same 209 

chamber (context 2) to test for recall of extinction (Figure supplementupplement 3A). In 210 

all phases of the experiment, the interval between successive tones was variable, with an 211 

average of 2 min. All groups were tested on the same day to determine the long-term 212 

changes occurring in the mPFC that gate subsequent memory retrieval.  213 

Data analysis. Data were analyzed using pClamp (Molecular Devices), Excel 214 

(Microsoft), and GraphPad Prism 8.3 software. Twenty responses were averaged except 215 

when otherwise indicated. The magnitude of the change in peak EPSCs, IPSCs, and 216 

PSPs amplitude was expressed as a percentage (%) of the baseline control amplitude 217 

and plotted as a function of time. The presynaptic or postsynaptic origin of the observed 218 

regulation of EPSCs and IPSCs amplitudes was tested by estimating the paired-pulse 219 

ratio (PPR) changes, which were considered to be of presynaptic origin (Clark et al., 220 

1994; Creager et al., 1980; Kuhnt and Voronin, 1994) and were quantified by 221 

calculating a PPR index (R2/R1), where R1 and R2 were the peak amplitudes of the 222 

first and second synaptic currents, respectively. To estimate the modifications in the 223 

synaptic current variance, we first calculated the noise-free coefficient of variation 224 

(CVNF) for the synaptic responses before and 40 min after applying IGF-1 in the bath 225 

with the formula CVNF = √(δXPSC
2
 − δnoise

2
)/m; δXPSC

2
 and δnoise

2
 (X= E 226 

excitatory or X= I inhibitory) are the variance of the peak EPSC or IPSC and baseline, 227 

respectively, and m is the mean EPSC or IPSC peak amplitude. The ratio of the CV 228 

measured before and 40 min after applying IGF-1 (CVr) was obtained for each neuron 229 

as CV after IGF-1 responses/CV control (Clements, 1990). Finally, we constructed plots 230 
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comparing variation in M (m after IGF-1 responses over m at control conditions) 231 

against the changes in response variance of the EPSC or IPSC amplitude (1/CVr2) for 232 

each cell. In these plots, values were expected to follow the diagonal if the EPSC or 233 

IPSC depression had a presynaptic origin. Results are given as mean ± SEM (N = 234 

numbers of cells). There were no gender differences in our experiments. MiniAnalysis 235 

software (SynaptoSoft Inc) and pCLAMP software were used for the analysis of the 236 

frequency and amplitude of mEPSCs. See Supplementary Table 1 for a detailed 237 

description of the statistical analyses performed in these experiments.  238 

The total freezing time during the 30 s tone was measured and converted to 239 

percentage of freezing. Freezing was defined as the cessation of all movements except 240 

respiration. The percentage of freezing time was used as a measure of conditioned fear 241 

(Blanchard DC, 1972). The behavioral data were analyzed by manual evaluation of the 242 

videos and/or using the image J free software with the pulgging developed for this 243 

purpose (Shoji et al., 2014). No differences were observed with both methods. Values 244 

are reported as the means ± SEM. See Supplementary Table 1 for a detailed description 245 

of the statistical analyses performed in these experiments.   246 

Blind experiments were not performed in the study but the same criteria were 247 

applied to all allocated groups for comparisons. Randomization was not employed. The 248 

sample size in whole-cell recording experiments was based on the values previously 249 

found sufficient to detect significant changes in past studies from the lab. 250 

RESULTS 251 

IGF-1 increases the excitability of IL-L5PNs. 252 
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Ca
2+

-activated K
+
 currents that mediate the post-spike medium and slow 253 

afterhyperpolarization (mAHP and sAHP, respectively) are crucial in the regulation of 254 

neuronal excitability (Alger and Nicoll, 1980; Madison and Nicoll, 1984). We first 255 

tested the effect of IGF-1 on different components of afterhyperpolarizing potentials of 256 

IL L5PNs. In the current-clamp mode, we recorded mAHPs or sAHPs before and during 257 

bath application of IGF-1 (10 nM). IGF-1 reduced mAHP (Figure 1A,B) and sAHPs 258 

(Figure 1C,D), whereas the fast AHP (fAHP) was unaffected (Figure supplement 1A-259 

B). We also checked the effect on neuronal excitability by analyzing the number of 260 

actions potentials evoked by increasing current injection steps. We observed that the 261 

number of action potentials evoked by these protocols was higher during IGF-1 262 

perfusion, indicating an increase in neuronal excitability mediated by IGF-1 (Figure 1E, 263 

F). 264 

We next performed voltage-clamp recordings to analyze the effect of IGF-1 on the 265 

currents that underlie the mAHP and sAHP (Alger and Nicoll, 1980; Storm, 1990) 266 

(mIAHP and sIAHP, respectively). IGF-1 also decreased mIAHP (Figure 2A,B) and sIAHP 267 

(Figure 2D,E), while the fast afterhyperpolarization current remained unaltered (Figure 268 

supplement1C-D). We observed a gradual current reduction that reached a plateau 20 269 

min after IGF-1 application in both the mIAHP and sIAHP (Figure 2 C and F). However, in 270 

the absence of IGF-1, the neuronal depolarization did not modify the AHP currents 271 

(Figure supplement 2A). Interestingly, we observed a long-lasting reduction of sIAHP 272 

that remained after the wash-out of IGF-1 (Figure supplement 2B) and required the 273 

activation of the AHPs by the depolarizing protocol (Figure supplement 2C).  274 

Moreover, the IGF-1-dependent modulation of the mIAHP and sIAHP was prevented by the 275 

IGF-1R antagonist NVP-AEW541 (400 nM, Figure 2A-F), indicating that these effects 276 
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were mediated by the activation of the IGF-1R. Taken together, these results 277 

demonstrate that IGF-1 induced a long-term decrease of sIAHP leading to an increase of 278 

neuronal firing frequency.   279 

IGF-1 induces long-term potentiation of the synaptic transmission of IL-L5PNs 280 

We next examined whether IGF-1 modulates the EPSCs. After isolating the EPSCs (see 281 

materials and methods), we measured their amplitude and analyzed the paired-pulse 282 

ratio and coefficient of variance. We found that IGF-1 induced long-term depression of 283 

EPSC peak amplitude (72.63% of baseline, Figure 3A) that was prevented in the 284 

presence of NVP-AEW541 (97.72% of baseline, Figure 3A). The IGF-1-mediated 285 

depression of the EPSCs was associated with changes in the paired-pulse ratio (PPR) 286 

(Figure 3B) and coefficient of variation (1/CV
2
) (Figure 3C), indicating a presynaptic 287 

mechanism. Additionally, this modulation was not observed when the synaptic 288 

stimulation was absent (Figure 3D), suggesting that the evoked synaptic responses were 289 

required for this LTD of the EPSCs. 290 

We also analyzed whether IGF-1 regulates the IPSCs. We isolated the IPSC (see 291 

materials and methods) and after 35 minutes of IGF-1, we observed a long-term 292 

depression of IPSCs (41.99% of baseline, Figure 3E) that were dependent of IGF-1R 293 

activation, since this effect was prevented by NVP-AEW541 (99.0% of baseline, Figure 294 

3E). The IGF-1-mediated depression of the IPSCs was associated with changes in the 295 

paired-pulse ratio (PPR) (Figure 3F) and coefficient of variation (1/CV
2
) (Figure 3G), 296 

pointing to a presynaptic mechanism. Nevertheless, the LTD of the IPSC did not require 297 

the evoked IPSCs since IGF-1 was able to induce it when the synaptic stimulation was 298 

absent (Figure 3H).  299 
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Finally, we studied the effect of IGF-1 on the postsynaptic potentials (PSPs). After 300 

recording a stable baseline of PSPs, we increased the intensity of stimulus until that 301 

≈21% of the responses recorded during 5 min were suprathreshold and then we added 302 

IGF-1 (Figure 3I and J). IGF-1 induced a significant increase in the number of AP 303 

during 5 min of recording (Figure 3J). When we returned to the basal intensity of 304 

stimulation, we observed a long-term potentiation (LTP) of the PSPs (Figure 3I). 305 

Together, our results reveal that IGF-1 induces a presynaptic depression of both EPSCs 306 

and IPSCs, which triggers a LTP of PSPs.   307 

IGF-1 facilitates fear extinction. 308 

Since a reduction of the sAHP was previously shown to favor recall of extinction 309 

(Santini et al., 2008), we next analyzed whether IGF-1 was able to facilitate it. First, we 310 

performed a set of experiments to determine the number of sessions required to induced 311 

fear conditioning and extinction as previously described (Fontanez-Nuin et al., 2011) 312 

(Figure supplement 3). On day 2, the different groups of rats acquired similar levels of 313 

conditioned freezing (COND, 74%; EXT, 77%) with three sessions of association (CS-314 

US, fear conditioning). On day 3, rats from the EXT group showed gradual within-315 

session extinction across twenty trials to a final freezing level of 12% (CS-No US), 316 

while rats from the COND group remained in their home cage. On day 4, rats from 317 

COND group showed high levels of freezing (77-95%) on the test tones, whereas rats 318 

from EXT group showed low levels of freezing (50-35%), indicating good recall of 319 

extinction during five sessions (Figure supplement 3A-B).  320 

To study the effect of IGF-1 on fear extinction memory, we infused saline or IGF-1 or 321 

NVP+IGF-1 through a cannula guide previously implanted into the IL (Figure 4A) 30 322 
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min before the extinction training (Figure 4B). Although the level of freezing reached 323 

on day 2 was comparable in the three groups (Saline, 89%; IGF-1, 79%; NVP+IGF-1 324 

81%), the rats from IGF-1 group showed less freezing in the last session on day 3 325 

(Saline, 51%; IGF-1, 14%; NVP+IGF-1 59%). On day 4, IGF-1-treated rats exhibited 326 

less freezing than the saline and NVP+IGF-1 rats (Figure 4B). This result demonstrates 327 

that IGF-1 induces the facilitation of extinction memory dependent on the IGF-1Rs 328 

activation. 329 

IGF-1 induces an increase in neuronal excitability and a reduction in mEPSCs in 330 

rats exposed to the extinction memory task. 331 

Fear extinction is paralleled by an increase in the excitability of pyramidal neurons from 332 

layers 2/3 and 5 from IL (Santini et al., 2008). Therefore, we tested whether a change in 333 

the excitability of IL-L5PNs occurs in the animals in which IGF-1 facilitated the 334 

extinction memory. For this purpose, we recorded IL-L5PNs from all behavioral groups 335 

after the last extinction session on day 4. We observed that the sIAHP amplitude of the 336 

IGF-1 group was smaller than the sIAHP amplitude of the saline group (Figure 4C-D). 337 

Importantly, this sIAHP amplitude difference was not present when comparing the saline 338 

group with the group treated with NVP+IGF-1 (Figure 4C-D). Moreover, the firing 339 

frequency of IL-L5PNs from the IGF-1-treated group was significantly increased 340 

compared with saline or NVP+IGF-1 groups. These results support that IGF-1 induces 341 

the facilitation of extinction through the reduction of sIAHP and the increase of IL-L5PNs 342 

firing frequency. 343 

Since we have demonstrated that IGF-1 induces a presynaptic LTD of the EPSCs (see 344 

Figure 3), we tested whether the excitatory synaptic transmission was depressed by 345 
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IGF-1 in animals in which IGF-1 facilitated the extinction. For this purpose, we 346 

recorded miniature EPSCs (mEPSCs) in IL-L5PNs from all behavioral groups after the 347 

last extinction session on day 4. We observed that the mEPSCs frequency of the IGF-1 348 

group was lower than in saline and NVP+IGF-1 groups (Figure 5A-C), with no changes 349 

in the amplitude among groups (Figure 5A,D,E). Taken together, these results 350 

demonstrate that IGF-1 facilitates the establishment of fear extinction memory, 351 

generating synaptic and intrinsic plasticity at IL-L5PN. 352 

DISCUSSION 353 

Interactions among the amygdala, the hippocampus, and the IL prefrontal cortex are 354 

important for the extinction of conditioned fear memory (Milad and Quirk, 2012; Orsini 355 

and Maren, 2012; Pape and Pare, 2010; Quirk and Mueller, 2008). Although the effects 356 

of IGF-1 on the amygdala (Stern et al., 2014) and the hippocampus (Chen et al., 2011; 357 

Stern et al., 2014) have been previously studied, there is no evidence about its possible 358 

actions on the IL. Our results demonstrate for the first time that IGF-1 applied to IL 359 

favors the extinction of conditioned fear memory causing an increase in L5PN 360 

excitability, by reducing the sAHP, and synaptic plasticity through the activation of the 361 

IGF-1R. We present new evidence showing that IGF-1 induced a long-lasting increase 362 

in excitability and LTP of the synaptic potentials at IL-L5PNs. The former is mediated 363 

by a significant reduction in the mAHP and sAHP, whereas the latter results from the 364 

interaction between presynaptic LTD of the EPSCs and IPSCs. Therefore, our results 365 

show a novel functional consequence of IGF-1 signaling on animal behavior in the 366 

mPFC. From this point of view, IGF-1 appears as a key endogenous molecule in the 367 

modulation of the extinction of conditioned fear memory, supporting the role of IGF-1 368 

as a crucial piece in behavioral tasks. 369 
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There is a growing body of evidence supporting that fear extinction memory is encoded 370 

by IL neurons (Quirk and Beer, 2006) that show enhanced responses to extinguished 371 

cues during extinction recall (Milad and Quirk, 2002). Pharmacological (Hugues et al., 372 

2004; Laurent and Westbrook, 2009; Sierra-Mercado et al., 2011; Sotres-Bayon et al., 373 

2007), electrical (Milad et al., 2004), or optogenetic (Do-Monte et al., 2015) 374 

manipulations of IL have been described to modulate the acquisition of fear extinction. 375 

In addition, IL is involved in the recall of this memory since lesions of the IL produce 376 

deficits in its retention (Morgan and LeDoux, 1995; Quirk et al., 2000). In the present 377 

study, we infused IGF-1 into IL before the extinction protocol and found that the action 378 

of IGF-1 in these neurons induced a significant improvement of fear extinction memory 379 

compared to the groups treated with saline or NVP+IGF-1. Consistent with that fact, 380 

IGF-1 (LLorens-Martín et al., 2010; Trejo et al., 2008), and most recently also IGF-2 381 

(Chen et al., 2011), have been related to cognitive function. Injections of IGF-1, IGF-2, 382 

or insulin into the amygdala did not affect memories critically engaging this region. 383 

However, bilateral injection of insulin into the dorsal hippocampus transiently enhances 384 

hippocampal-dependent memory whereas injection of IGF-1 has no effect (Stern et al., 385 

2014). IGF-2 produces the most potent and persistent effect as a memory enhancer on 386 

hippocampal-dependent memories (Chen et al., 2011). Like insulin, IGF-2 did not affect 387 

amygdala-dependent memories when delivered into the BLA. Contextual fear extinction 388 

is facilitated when IGF-2 is injected into the dentate gyrus whereas inhibition of 389 

physiological IGF-1 signaling, via intrahippocampal injection of an IGF-1 blocking 390 

antibody, did not affect fear extinction (Chen et al., 2011). However, a single 391 

intravenous injection of IGF-1 before the training of contextual fear extinction increases 392 

the density of mature dendritic spines in the hippocampus and mPFC, favoring the 393 
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memory of extinction (Burgdorf et al., 2017). All these reports are consistent with the 394 

idea that IGF-2 would have a specific role in the hippocampus while IGF-1 could have a 395 

selective role in the IL.  396 

IGF-1 produces a strong potentiation of Ca
2+

 channel currents and the inhibition of A-397 

type K
+
 channels in hippocampal and somatosensory neurons in the dorsal column 398 

nuclei, respectively (Blair and Marshall, 1997; Nuñez et al., 2003; Shan et al., 2003; 399 

Xing et al., 2006). Interestingly, our recordings from IL-L5PNs of animals treated with 400 

IGF-1 showed a long-term decrease of sAHP current, which is highly related to 401 

behavioral recall (Moyer et al., 1996; Santini et al., 2008), suggesting that IGF-1 also 402 

modulates the channels responsible for this current, at least in IL-L5PNs. Reduction in 403 

the amplitude and the duration of AHPs from IL-L5PNs caused by IGF-1 resulted in a 404 

significant increase in their excitability, as reflected in the increase of their firing 405 

frequency, a phenomenon that has been previously associated with fear extinction 406 

memory (Santini and Porter, 2010). Moreover, our results also suggest that IGF-1 could 407 

modulate the M-type K
+
 channels since the current generated by these channels mediate 408 

partially the sIAHP and enhance the bursting of the IL during the acquisition of fear 409 

extinction (Santini and Porter, 2010). Since increases in excitability favors the induction 410 

of synaptic plasticity (Sepulveda-Orengo et al., 2013), our results suggest that IGF-1 411 

would enhanced IL excitability, facilitating the induction of synaptic plasticity and 412 

improving the extinction memory (Santini and Porter, 2010).  413 

Previous studies have demonstrated that the activation of metabotropic glutamate 414 

receptor type 5 (mGluR5) increase IL-L5PN excitability and favors the LTP of 415 

glutamatergic synaptic transmission, effects that are crucial in the recall of extinction 416 

(Fontanez-Nuin et al., 2011; Sepulveda-Orengo et al., 2013). Additionally, the 417 
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administration of IGF-1 was reported to enhance synaptic plasticity in the hippocampus 418 

and the mPFC (Burgdorf et al., 2017; Ramsey et al., 2005). Therefore, we cannot rule 419 

out that an IGF-1-mediated increase in glutamatergic signaling could mediate both 420 

effects through the activation of mGluR5.  421 

In conclusion, the present findings reveal novel mechanisms and functional 422 

consequences of IGF-1 signaling in IL. On the one hand, IGF-1 induces a reduction in 423 

sIAHP and increases the excitability of layer 5 pyramidal neurons of IL. On the other 424 

hand, IGF-1 modulates the excitatory and inhibitory synaptic transmission resulting in a 425 

long-lasting enhancement of the synaptic efficacy. Both the synaptic and intrinsic 426 

plasticity regulate the neuronal connectivity, which leads to the facilitation of 427 

consolidation of fear extinction memory. Altogether, these results strongly support the 428 

potential role of IGF-1 as a new therapeutic target for the treatment of anxiety and mood 429 

disorders. 430 

 431 

 432 

 433 

 434 
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FIGURE LEGENDS 450 

 451 

Figure 1. IGF-1 increases the excitability of IL-L5PNs. A. Representative recordings 452 

from IL-L5PNs of hyperpolarizing potentials elicited by a 200 ms depolarizing pulse to 453 

study medium AHP, in control conditions (ACSF, left) and in the presence of NVP-454 

AEW541 (40 nM, right), before (black) and after of IGF-1 (10 nM, red) (spikes are 455 

truncated). B. Bar diagram summarizing mAHP amplitudes (n=5-9) ** p< 0.01, ns 456 

(non-significant) Student paired t-test. C. Same as A., but applying an 800 ms 457 

depolarizing pulse to study slow AHP. D. Bar diagram summarizing sAHP amplitudes 458 

(n=5-9) ** p< 0.01, ns (non-significant) Student paired t-test. E. Representative traces 459 

recorded from IL-L5PNs after 100pA current injection in ACSF (gray) and after IGF-1 460 

application (red). F. Frequency-injected current relationships for IL-L5PNs in ACSF 461 

(gray) and after IGF-1 application (red) (n=8) * p < 0.05, Multiple t-test (Holm-Sildak 462 

methods). See also Figure 1—Figure supplement 1. 463 

 464 

Figure 2. IGF-1 reduces mI
AHP

 and sIAHP 
in IL neurons.  A. Representative current 465 

traces recorded from IL-L5PNs in response to a 200ms  depolarizing pulse from -60 mV 466 

to 0 mV in control condition  (ACSF, left) and in the presence of (400 nM) NVP-467 

AEW541 (right), before (black) and after addition of 10 nM IGF-1 (red). B. Normalized 468 

current amplitude of 
m
I
AHP 

(n=5-8). ** p< 0.01, ns (non-significant) paired t-test. C. 469 

Time curse of mIAHP in ACSF (red) and in presence of NVP-AEW541 (n=6-4) 470 

***p<0.001 Student paired t-test. D. Same as A, but a 800ms depolarizing pulse was 471 

evoked. E. Same as B, but for 
s
I

AHP
 (n=5-8) ** p< 0.01, ns (non-significant) paried t-472 

test. F. Same as C, but for 
s
I

AHP
 (n=6-5). See also Figure 2—Figure supplement 2. 473 
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 474 

Figure 3. IGF-1 induces long-term potentiation in IL-PNL5. A and E. Time curse of 475 

EPSCs (n=5) or IPSCs (n=5) were recorded from IL-L5PNs in whole-cell voltage-476 

clamp mode. After a stable (~5-min) baseline, the IGF-1 was bath applied at zero time 477 

for 35 min. Student paired t-test *p>0.05.  B and F. Representative traces, which 478 

correspond to the numbers in the time-course plot, are shown on the top. Bar diagrams 479 

summarizing the paired-pulse ratio (PPR) before and after IGF-1, on the bottom. 480 

Student paired t-test *p>0.05; (n=5). C and G. Representative traces are showed before 481 

and after IGF-1 on the top. Plot of the variance (1/CVr2) as a function of the mean 482 

EPSC or IPSC peak amplitude (M) 30 min after IGF-1 and normalized to control 483 

condition (ACSF) (n=5). D and H. Time curse of EPSCs or IPSCs showing long-term 484 

depression effect of IGF-1 in the absence of synaptic stimulus for 15 min. . Student 485 

paired t-test *p>0.05 ***p>0.001 (n=6). I. Time curse of PSP were recorded from IL-486 

L5PNs in whole-cell current-clamp mode. After a stable (~5-min) baseline, the IGF-1 487 

was bath applied at zero time for 35 min. Student paired t-test ***p>0.001 (n=6). J. Bar 488 

diagrams summarizing the number of action potential in ACSF and after IGF-1 bath 489 

applied * p< 0.05 vs basal levels Student paired t-test (n=6). 490 

 491 

Figure 4. IGF-1 facilitates the memory of extinction by reducing the sIAHP and 492 

increasing the firing frequency. A. (upper) Image adapted to atlas of brain rats 493 

showing infralimbic cortex (IL) localization. (bottom) Nissl-stained coronal section of 494 

rat infralimbic cortex, orange arrow indicates the tip of cannula implanted on the IL. B. 495 

Time curse of the percentage of freezing during the extinction protocol for the three 496 

groups studied. Saline (n=11), IGF-1 (n=14), and NVP-AEW541+IGF-1 (n=12) were 497 
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directly applied into the IL through an implanted cannula 30 min before extinction 498 

training (day 3). The black arrow indicates the time of infusion. (*p<0.05 **p>0.01 499 

Saline vs IGF-1 and NPV+IGF-1 #p>0.05; ##p>0.01; ###p>0.001 IGF-1 vs NPV+IGF-500 

1; One-way ANOVA; Tukey´s multiple comparisons test). C. Representative sIAHP 501 

current traces recorded from IL-L5PNs from animals that showed fear extinction D. Bar 502 

diagrams summarizing the sIAHP for all the groups studied (n=6-10). Recordings were 503 

performed in day 4 (test) after finishing the extinction protocol; *p<0.05 Saline vs IGF-504 

1 ##p>0.01 IGF-1 vs NPV+IGF-1 One-way ANOVA; Tukey´s multiple comparisons 505 

test. E. Representative traces recorded from IL-L5PNs from animals that showed fear 506 

extinction after 200 pA (left) current injection in Saline (black); IGF-1 (red) and 507 

NVP+IGF-1 (gray). Frequency-injected current relationships for IL-L5PNs in Saline 508 

(black) IGF-1 (red) and NVP+IGF-1 (gray). (*) IGF-1 vs. Saline and (#) IGF-1 vs. 509 

NVP+IGF-1; n=6-10; One-way ANOVA; Tukey´s multiple comparisons test). See also 510 

See also Figure 4—Figure supplement 3. 511 

 512 

Figure 5. IGF-1 decreases the frequency of mEPSC. A. Representative currents 513 

traces recorded at -60 mV in IL-L5PNs from animals that showed fear extinction, in the 514 

presence of 1 µM TTX, 50 µM PiTX, and 5 μM CPG-55845 to isolate mEPSCs. 515 

Asterisks denote mEPSC events. Note the decreased mEPSCs frequency induced by 516 

IGF-1. B. Summary data (n=4-6) showing mean mEPSCs frequency from Ext-Saline 517 

(black); Ext-IGF1 (red) and Ext-NVP+IGF-1 (gray). One-way ANOVA; Tukey´s 518 

multiple comparisons test. C. Cumulative probability plots of mean inter-mEPSC 519 

interval in Ext-Saline (black); Ext-IGF1 (red) and Ext-NVP+IGF-1 (gray). Note that 520 

IGF-1 increased the mean inter-mEPSC interval (p < 0.05; Kolmogorov–Smirnov test).  521 
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D. Summary data (n=4-6) showing mean mEPSCs amplitude. E. Cumulative probability 522 

plots of mean amplitude-mEPSC in Ext-Saline (black); Ext-IGF1 (red) and Ext-523 

NVP+IGF-1 (gray). Note that IGF-1 does not change the mean mEPSCs amplitude 524 

(same cells as in C). 525 

 526 

Figure supplement 1 (referred to Figure 1). IGF-1 has no effect on fAHP and 
f
I

AHP
 527 

A. Representative recordings from IL-L5PNs of hyperpolarizing potentials elicited by a 528 

10-ms depolarizing pulse to study the fast components of the AHP, in control conditions 529 

(ACSF, left) and in the presence of NVP-AEW541 (right), before (black) and after 530 

addition of IGF-1 (red) (spikes are truncated). B. Bar diagram summarizing fAHP (n=5-531 

8) ns (non-significant), Student paired t-test. C. Representative current traces recorded 532 

from IL-L5PNs in response to a 10ms  depolarizing pulse from -60 mV to 0 mV in 533 

control condition  (ACSF, left) and in the presence of (400 nM) NVP-AEW541 (right), 534 

before (black) and after addition of 10 nM IGF-1 (red). D. Normalized current 535 

amplitude of 
f
I

AHP 
(n=5-8) ns (non-significant) Student paired t-test. 536 

 537 

Figure supplement 2 (referred to Figure 2). Time curse of mIAHP and sIAHP.  A. Time 538 

curse of mIAHP (left) and sIAHP (right) in control conditions (ACSF) after applying 200 539 

and 800 ms depolarizing pulses, respectively (n=4 in each group). Note the protocol 540 

applied no change the currents B. Extended time curse of sIAHP showing the persistent 541 

effect of IGF-1 after washout (n=8) *** p<0.001 vs basal levels; Student paired t-test. 542 

C. Time curse of sIAHP showing long term depression effect of IGF-1 in the absence of 543 

the 800-ms depolarizing protocol (n=6) ***p<0.001 vs basal levels; Student paired t-544 

test. 545 
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 546 

Figure supplement 3 (referred to Figure 4). Protocol of behavior. A. Experimental 547 

design. B. Time curse of the percentage of freezing during the experiment for the two 548 

groups studied: conditioned (COND; n=7) and extinction (EXT; n=11) groups. As 549 

expected, animals in the COND group showed higher levels of freezing to the test tones 550 

compared with the EXT groups (***p<0.001; **p<0.01; One-way ANOVA, Tukey´s 551 

multiple comparisons test). 552 

553 
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