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ABSTRACT 

Along the pathway from behavioral symptoms to the development of psychotic disorders sits the 

multivariate mediating brain. The functional organization and structural topography of large-scale 
neural mediators among patients with brain disorders, however, are not well understood. Here, 

we design a high-dimensional brain-wide functional mediation framework to investigate brain 
regions that intermediate between baseline behavioral symptoms and future conversion to full 

psychosis among individuals at clinical high risk (CHR). Using resting-state functional magnetic 
resonance imaging (fMRI) data from 263 CHR subjects, we extract an 𝜶 brain atlas and a 𝜷 brain 

atlas: the former underlines brain areas associated with prodromal symptoms and the latter 
highlights brain areas associated with disease onset. In parallel, we identify the P mediators and 

the N mediators that respectively facilitate or protect against developing brain disorders among 

subjects with more severe behavioral symptoms and quantify the effect of each neural mediator 
on disease development. Taken together, the 𝜶-𝜷 atlases and the P-N mediators paint a brain-

wide picture of neural markers that are potentially regulating behavioral symptoms and the 
development of psychotic disorders and highlight a statistical framework that is useful to uncover 

large-scale intermediating variables in a regulatory biological organization. 
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INTRODUCTION 

How does the human brain intermediate between behavioral symptoms and the development of 

brain diseases? Which brain areas are involved in this process? Can we chart these areas’ 
functional characteristics and structural organization?  

 Researchers studying brain diseases often observe that the patterns of the brain are on 
the one hand associated with behavioral symptoms, and on the other hand linked to disease 

status. Conventionally, the former is called an independent variable, the latter a dependent 
variable (or an outcome), and the brain patterns interposed in-between a mediator. A central 

problem in neural mediation analysis is to identify which brain regions are positioned along the 
causal pathway between behavioral symptoms and disease status. Equally important is to 

quantify the effect of each identified brain area on developing the disease and to determine its 

relative prominence in the causal hierarchy. 
Disorganization symptoms, such as bizarre thoughts and behaviors, are considered to be 

associated with conversion to psychosis among individuals at clinical high risk (CHR); empirical 
studies have shown a significantly higher hazard ratio for psychosis onset in CHR subjects with 

higher disorganization symptoms at baseline1–3. Yet, as properties associated with a mental 
disorder, the disorganization symptoms and disease development are reflected by the patterns of 

the brain. By probing into the neural basis of human behavior and disease development, 
mediation analysis can help us to understand the functional organization and structural 

distribution of the brain patterns that regulate behavioral symptoms and disease development. 
But it can only do so by first charting the neural pathways that make brain mediation possible. 

A beginning in this direction can be made by identifying and isolating neural mediators 

that are interposed between behavioral symptoms and disease development (see Figure 1). 
Neural mediators in psychosis studies are high-dimensional (involving patterns from hundreds of 

thousands of areas distributed across the brain), their patterns functional (they may consist of 
differentiable functional neural signals), and their corresponding outcomes binary (e.g. whether 

one has a full-blown psychotic disorder or not). One must therefore confront several key 
challenges to uncover high-dimensional functional neural mediators. First, although existing 

mediation models have made the search for mediators fruitful, they are not suitable for studying 
high-dimensional mediation analysis with binary disease outcomes. For example, existing multi-

level mediation models assume that the outcomes are continuously distributed4–7; mediation 
frameworks concerning binary outcomes are at present restricted to small-scale mediators4–6,9; 
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high-dimensional mediation models whose outcomes are not normally distributed do not have a 

closed form solution (therefore it is difficult to estimate parameters analytically)see 4. Second, 
although functional mediation analysis8 has advanced considerably knowledge about the 

functional signal organization of the brain in relation to independent and outcome variables, it 
remains unclear whether it is suitable for analyzing high-dimensional brain data, and if so, how 

the underlying data configuration, such as the sample size and noise level, would affect parameter 
estimation. In parallel, its efficacy needs to be evaluated for brain disease studies. Third, the 

underlying functional bases of the brain patterns are largely unknown and could be orthogonal or 
nonorthogonal; additionally, the data can be contaminated by noise. Whether and how the 

functional architecture of the neural bases, their orthogonality, and noise level, would affect 
mediation analysis is an as-of-yet less-well-charted area. If not properly treated, this set of 

circumstances could generate inconsistent methodological results and confusing interpretations. 

Additionally, if one manages to discover functional neural mediators, the discovery naturally raises 
the question of which mediators are facilitative, and which are protective against developing brain 

disorders among subjects with more severe behavioral symptoms.  
 

 
Figure 1. The study layout of the neural mediation analysis. (a) We considered a sample of 263 subjects recruited from eight 
study sites across the United States and Canada who met criteria for a prodromal risk syndrome at the point of recruitment and had 
been clinically followed up for two years as part of the NAPLS-2 project. During the follow-up period, 25 subjects developed a full-
blown psychotic disorder (CHR convertors); 238 did not (CHR non-convertors). (b) The behavioral symptoms of convertors were 
significantly more severe than those of non-convertors. (c) The neural mediation analysis investigated which brain regions were 
intermediating between psychosis symptoms and disease status. Once neural mediators were identified, one could further quantify 
the mediation effect of each mediator to determine its relative prominence in the causal hierarchy. (d) Both convertors and non-
convertors received an eyes-open resting-state functional magnetic resonance imaging (fMRI) scan at the point of recruitment. (e) 
The fMRI BOLD signals from both convertor and non-convertor samples were plotted along 130,992 brain areas. The red shade were 
BOLD signals stacked across the convertor group across the whole-brain space and the blue shade were from the non-convertor 
group. 
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To address these questions and challenges, we designed a high-dimensional functional 

mediation model. Through simulation studies and empirical data analysis, we demonstrate that 
the model is able to (a) analyze large-scale intermediating brain patterns (e.g., fMRI BOLD signals 

from hundreds of thousands of voxels); (b) distinguish distinctive functional patterns of the brain 
between disease groups in relation to behavior symptoms while accounting for covariates; (c) 

quantify each neural mediator’s effect on disease outcome; and (d) identify and separate brain 
areas that are facilitative or protective for developing brain disorders.  

 

                                   a                                                                    b 

 
Figure 2. A schematic representation of multivariate mediation analysis. (a) Univariate mediation analysis. The circles indicate 
an independent variable, a univariate mediator, an outcome variable, and covariates. The arrows denote potential causal pathways. 
The letter 𝛼 denotes the effect from the independent variable to the mediator, after accounting for the covariate effect. The letter 𝛽 
denotes the effect of the mediator on the outcome, after controlling the independent variable and covariates. The letter 𝛾 denotes the 
effect from the independent variable to outcome, after accounting for the covariate effect. (b) Multivariate neural mediation analysis. 
Each red circle within the brain represent a potential neural mediator. The arrows denote potential causal links. The letter 𝛼! (1 ≤ 𝑖 ≤
𝑉) denotes the effect from the independent variable to the 𝑖"# neural mediator	(represented by a red circle). The letter 𝛽! denotes the 
effect of the neural mediator on the outcome, after controlling the independent variable and covariates. The letter 𝛾 indicates the direct 
effect from the independent variable to outcome, after accounting for the covariate effect. 

 
 

In the following, we begin with a brief overview of the mediation analytical frameworks 
concerning univariate and multivariate mediators. After discussing these basic concepts, we 

introduce the high-dimensional functional mediation framework. To demonstrate its utility, we 
perform both simulation and case studies. During the simulation study, we consider various 

experimental settings, including different levels of noise, sample sizes, and both orthogonal and 
non-orthogonal basis functions, to ensure that the proposed framework is suitable for studying 

high-dimensional functional mediation. During the case study, we uncover brain areas that 
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regulate psychosis symptoms and disease status from whole-brain resting-state functional 

magnetic resonance imaging (rs-fMRI) data obtained from 263 subjects at clinical high risk (CHR) 
for psychosis.  

 
Univariate mediation analysis 

Univariate mediation analysis considers a single mediator (𝑀) (see Figure 2 (a)). In other words, 

a variable 𝑀 is a mediator if, after accounting for covariates 𝒁, the effect of an independent 
variable 𝑋  on an outcome variable 𝑌  is at least partially carried through 𝑀10,11. Examples of 

univariate mediators are pain catastrophizing, which mediates the clinical treatment (𝑋) and 
disability status (𝑌)12, and intention, which mediates attitudes (𝑋) and behavior (𝑌)13. 

The identification of a univariate mediator consists of two steps10,14–17 (see Supporting 

Information for a comparison between two common mediation analysis frameworks). The first 
step examines if the independent variable 𝑋 has an effect on the mediator 𝑀 after controlling for 

the covariates 𝒁, using the following conditional model: 
 

𝐸(𝑀|𝑥, 𝒛) = 𝜃* + 𝛼𝑥 + 𝒛+𝒕                                                    (i) 
 

where 𝐸  refers to the expectation operation; 𝜃* , 𝛼 , 𝒕  are coefficients for the intercept, the 

observed independent variable 𝑥, and the observed covariates 𝒛. If 𝛼 is significantly different from 
zero, then the independent variable has an effect on the mediator.  

The second step evaluates if the mediator 𝑀  has an effect on the outcome 𝑌 , after 
controlling for the independent variable 𝑋 and covariates 𝒁, using the following conditional model: 

 

𝐸(𝑌|𝑥,𝑚, 𝒛) = 𝜃*, 		+ 𝛾𝑥 + 𝛽𝑚 + 𝒛+𝝉                                        (ii) 
 

where 𝜃*, , 𝛾, 𝛽 and 𝝉 are coefficients for the intercept, the observed independent variable 𝑥, the 
mediator 𝑚 , and the observed covariates 𝒛 . The prime in 𝜃*, 	  is to differentiate it from their 

counterparts in (i). If 𝛽 is significantly different from zero, then the mediator has an effect on the 
outcome after controlling for the independent variable and covariates.  

The univariate variable 𝑀 is said to significantly mediate the relationship between 𝑋 and 
𝑌, if both 𝛼 and 𝛽 are significantly different from zero after accounting for the covariates. Said in 

a different way, if the product 𝛼𝛽 is non-zero, then 𝑀 is a mediator for 𝑋 and 𝑌, and the product 



𝛼𝛽 quantifies the mediation effect. In the language of a graphical model, this means that both 𝛼 

and 𝛽 edges in Figure 2 (a) exist, connecting nodes 𝑋 and 𝑌 via a pathway passing through node 
𝑀.  

 
Multivariate mediation analysis 

Mediation analysis concerning a multivariate mediator can be conducted using structural equation 

models (SEMs)6,8 (see Figure 2 (b)). Formally, consider 𝑉  mediators (𝑉 ≥ 2 ), denoted as 
𝑀(1),𝑀(2), … ,𝑀(𝑉) , an independent variable 𝑋 , and an outcome variable 𝑌 . Multivariate 

mediation analysis considers two conditional models as follows.   
 

𝐸(𝑀(𝑗)|𝑥, 𝒛) 	= 𝜃*(𝑗) + 𝛼(𝑗)𝑥 + 𝒛+𝒕(𝑗),				𝑗 = 1, 2, … , 𝑉                                  (iii) 
 

where 𝑀(𝑗)  is the 𝑗-.  mediator; 𝜃*(𝑗) , 𝛼(𝑗) , and 𝒕(𝑗)  are coefficients for the intercept, the 

observed independent variable 𝑥, and the observed covariates 𝒛 that are associated with the 𝑗-. 
mediator.  
 

𝐸(𝑌|𝑥,𝒎, 𝒛) = 𝜃*, + 𝛾𝑥 + ∑ 𝛽(𝑗)/
012 𝑚(𝑗) + 𝒛+𝝉                                               (iv) 

 
where 𝑴 = (𝑀(1),𝑀(2), … ,𝑀(𝑉))  is a vector representing 𝑉  mediators; 𝜃*, 	 , 𝛾 , and 𝝉  are 

coefficients for the intercept, the observed independent variable 𝑥, and the observed covariates 

𝒛; 𝛽(𝑗) is the coefficient associated with the 𝑗-. mediator.  

The 𝑗-. mediator 𝑀(𝑗), for 𝑗 = 1, 2, … , 𝑉, is said to significantly mediate the relationship 
between 𝑋 and 𝑌, if both 𝛼(𝑗) and 𝛽(𝑗) are significantly different from zero after accounting for the 

covariates. The product, or 𝛼(𝑗)𝛽(𝑗), quantifies the mediation effect for the 𝑗-.  mediator (see 
Figure 3).  

 



 
 

Figure 3. A hypothetical experiment and how multivariate mediation analysis can be used to study brain mediation in health 
and disease. (a1) Three individuals’ behavioral symptom scores are measured at baseline. (a2) The fMRI BOLD time series for one 
individual is collapsed into the pattern of activity across voxels in the whole brain averaged over time. Each circle corresponds to one 
voxel. (a3) Individuals’ two-year clinical outcome for psychosis. We use 0 to refer to a non-convertor and 1 for a convertor. (b1) 
Individuals’ brain patterns are arranged corresponding to their behavioral symptom scores and psychosis statuses. Each column 
contains data from a particular subject. (b2) The input system of the brain mediation framework studies the association between the 
behavioral symptom score (the box) and brain patterns across mediators (the circles). The pink arrows indicate pathways from the 
behavioral symptom score to the mediators. The width of the arrows indicates effect size. (b3) The output system of the brain mediation 
framework studies the association between the brain patterns across mediators (the circles) and disease status (the box). (c1) The 
mediation analysis framework combines the input and output systems, and studies how the effect of behavioral symptom score (the 
left box) on the psychosis status (the right box) is intermediated by patterns of the neural mediators (the circles). A voxel significantly 
mediates the relationship if its pattern is associated with both the behavioral symptom score and the psychosis status. (c2) The 
mediation effect of a particular voxel is calculated by multiplying the effect sizes from the input and the output pathway corresponding 
to the voxel.  
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High-dimensional brain-wide functional mediation  

High-dimensional mediation analysis aims at identifying mediators from a high-dimensional 

multivariate variable. For example, a neurobiologist is interested in searching through the entire 
brain to look for neural mediators using fMRI BOLD signals recorded from hundreds of thousands 

of brain regions. The high-dimensional functional mediation framework introduced in the paper 
consists of a dual system: the input system investigates how an independent variable (e.g., 

behavioral symptoms) affects brain patterns, after controlling for covariates; the output system 
examines how brain patterns give rise to the outcome variable (e.g., psychosis disease status), 

after controlling for the independent variable and covariates (see Figure 3). In the following, we 
introduce the key concepts of the framework and leave derivations and discussions to the 

Methods and Supplementary Information sections.  

Consider 𝑁 subjects and 𝑉 brain areas, where 𝑉 is high-dimensional (in our study 𝑉 =
130,992). Let 𝑥3 and 𝑦3 be the independent and outcome variables for subject 𝑖, respectively. Let 

𝒛3 = (𝑧23, 𝑧43, 𝑧53) denote the covariates of subject 𝑖, for example, the site (from which data are 

collected), age, and gender, respectively. Finally, let 𝑚30 be the neural activity from the 𝑗-. brain 

area of subject 𝑖, The high-dimensional functional brain-wide mediation framework consists of a 

dual functional system: an input system and an output system.  
The input system (see Figure 3 b2) consists of the following conditional model: 

 

𝐸(𝑚3(𝑗)|𝑥3 , 𝒛3) = 𝜃*(𝑗) + 𝑥3𝛼(𝑗) + 𝒛3+𝒕(𝑗)									                         (v) 

 
where 𝜃*(𝑗) , 𝛼(𝑗) , and 𝒕(𝑗)  are coefficients for the intercept, the independent variable, and 

covariates that are associated with the 𝑗-. mediator.  
The output system (see Figure 3 b3) is represented by the following functional model: 
 

𝑔(𝐸(𝑦3|𝚫3) = 𝛽* + 𝑥3𝛾 + ∑ ∑ 𝜉36𝜑6(𝑗)𝛽(𝑗) +7
612

/
012  𝒛3+𝝉           (vi) 

 
where 𝛽*, 𝛾, and 𝝉 are coefficients for the intercept, the independent variable, and covariates. 𝜉36 

and 𝜑6(𝑗) are the Karhunen-Loève expansion18,19 of 𝑚30, the 𝑗-. mediator of subject 𝑖; in other 

words 𝑚30 =  ∑ 𝜉36𝜑6(𝑗)7
612 ≈ ∑ 𝜉36𝜑6(𝑗)8

612  (without loss of generality, assume 𝑚30  is zero 

centered), where 𝜉36~𝑁(0, 𝜆6), 𝜆2 ≥ 𝜆4 ≥ ⋯ ≥ 𝜆7, for 𝑖 ∈ {1, 2, … ,𝑁}, 𝑗 ∈ {1, 2, … , 𝑉}, and 𝐾 is a 

finite integer such that ∑ 𝜉36𝜑6(𝑗)8
612  captures the importance of modes of variations of 𝑚30 (see 



Methods for more detailed explanation). 𝝋 = {𝜑2, 𝜑4, … , 𝜑7} denotes the basis functions. 𝛽(𝑗) is 

the coefficient associated with the 𝑗-. mediator. The link function 𝑔(∙) takes various forms based 
on the outcome distribution. For example, when 𝑦3  is Gaussian, binary, or Poisson, the link 

function is 𝑔(𝑦) = 𝑦,  𝑔(𝑦) = log Y 9
2:9

Z, or 𝑔(𝑦) = log	(𝑦), respectively.  

The first 𝐾 basis functions or {𝜑2, 𝜑4, … , 𝜑8} in Equation (vi) are functional representations 

of 𝐾 dominant population-specific (i.e., shared by all 𝑁 subjects) patterns of brain data, ranked 

decreasingly (according to {𝜆2, 𝜆4, … , 𝜆8}) based on the amount of information each basis function 
explains about the neural mediator 𝑴 . Although by Mercer’s theoremChapter 4 of 20, the basis 

functions are orthogonal, and researchers indeed are oftentimes interested in uncovering 
orthogonal signals of brain patterns in relation to mediation, it remains possible that the brain 

patterns consist of non-orthogonal signals. Despite the central focus herein being on mediation 
studies, it is important to understand how the underlying orthogonality of brain data’s basis 

functions may affect the identification of neural mediators and the estimation of the mediation 
effect. To that end, we performed simulation studies under different noise levels and sample sizes, 

and the results showed that our framework was successful to uncover neural mediators 
regardless of the orthogonality of basis functions. Naturally, the mediation analysis performance 

was better when the underlying basis functions were orthogonal, and the estimation results 

improved as the noise decreased or the sample size increased (see Supporting Information). 
The key steps of the framework can be summarized as follows. First, it estimates the effect 

of the independent variable (e.g., the difference between the prodromal + and prodromal − group) 
on each brain area, after controlling for all covariates; this yields an 𝜶 brain atlas (see Figure 3 

(b2)). Next, it extracts subject-specific principal component (PC) scores or eigen-values 𝝃3 =
{𝜉32, 𝜉34, … , 𝜉38}  from each individual 𝑖 ’s brain patterns (𝒎3 ), and estimates the effect of the 

transformed lower-dimensional mediators (i.e. 𝝃3) on the disease outcome 𝑦3 controlling for the 
independent variable and the covariates. Subsequently, the low-dimensional mediator-on-

outcome effect is translated to the high-dimensional brain space using the estimated brain-wide 
basis functions of 𝝋; this produces a 𝜷 brain atlas (see Methods and Supporting Information). 

Finally, it obtains the brain-wide mediation effect using the 𝜶 and 𝜷 brain atlases and bootstrap 

tests (see Figure 3 (c1) - (c2) and Methods).  
We evaluated the efficacy and utility of the framework using both simulated (see 

Supporting Information) and empirical data from the second phase of the North American 
Prodrome Longitudinal Study (NAPLS-221) (see Results). During simulation studies, we 



considered 12 scenarios of data generating mechanisms, consisting of different levels of sample 

sizes, noise, and both orthogonal and nonorthogonal basis functions. The simulation results 
showed that the framework performed well across different scenarios; the performance improved 

when the sample size increased or when the noise level decreased. For the empirical data, we 
aimed at identifying brain regions that mediated individuals’ psychotic symptoms and clinical 

outcomes in a sample of 263 subjects at clinical high risk (CHR) for psychosis, among whom 25 
subjects developed a full-blown psychotic disorder during a 2-year clinical follow-up (CHR 

convertors). Our results unveiled two sets of neural mediators: the P mediators and the N 
mediators. The P mediators contained brain areas that positively mediated higher prodromal 

symptoms and psychotic conversion; the N mediators consisted of brain regions that negatively 
mediated higher prodromal symptoms and psychotic conversion (suggesting a potential 

protective effect). 

 
 
RESULTS 

We first conducted simulation studies to ensure that the proposed framework was able to identify 
brain areas that intermediate the treatment and the outcome under different settings (Supporting 

Information).  
After verifying the performance of the proposed framework using simulated data, we 

applied the framework to an empirical study to identify and isolate functional brain regions that 
mediate prodromal symptoms at baseline and two-year clinical outcome in subjects at clinical high 

risk (CHR) for psychosis. The sample included 263 subjects recruited from eight study sites 

across the United States and Canada who met criteria for a prodromal risk syndrome22 at the 
point of recruitment and were clinically followed up for two years as part of the NAPLS-2 project21. 

During the follow-up period, 25 subjects developed a full-blown psychotic disorder (CHR 
convertors); 238 did not (CHR non-convertors). All participants received an eyes-open resting-

state functional magnetic resonance imaging (fMRI) scan at the point of recruitment.  
After data preprocessing, the time series for each voxel within a binary whole-brain mask (130,992 

voxels in total) were extracted. These time series were further corrected for physiological and 
head motion noise and were temporally filtered (bandpass 0.008-0.1 Hz). The prodromal 

symptoms were quantified using the Scale of Prodromal Symptoms23, and the clinical outcome 
was labeled as convertor or non-convertor.  



Since disorganization symptoms have been shown to be a potential clinical predictor for 

psychosis1–3, we first investigated whether such measure was significantly different between 
convertors and non-convertors at baseline. Using the Welch two sample t-test and Pearson's 

(product moment) correlation coefficient test, the data confirmed that the convertors and non-
convertors in the study indeed had significantly different behavioral symptom scores (𝑡 = 3.49, P 

< 0.005; Pearson correlation 𝑟 = −0.22, P < 0.001) (see Figure 2 b). We then continued to 
investigate which brain regions would functionally mediate this association. First, we tested if 

behavioral symptoms had an effect on any of the 130,992 voxels, controlling for covariates (see 
Figure 3 (b2)). This analysis yielded the 𝜶 brain atlas (see Figure 4 (a)); each of its 130,992 

elements indicated the effect of behavioral symptoms on a brain voxel, after controlling for 
covariates. Second, we tested if activity from a brain voxel would increase (or decrease) the 

likelihood of developing psychosis, while controlling for behavioral symptoms and covariates (see 

Figure 3 (b3)). This was conducted in a generalized principal component estimation model (see 
Methods). This analysis yielded the 𝜷 brain atlas (see Figure 4 (b)); each of its 130,992 elements 

represented the effect from a brain voxel to the likelihood of developing psychosis, controlling 
behavioral symptoms and covariates. Third, we obtained the brain-wide functional mediators 

using the 𝜶 and 𝜷 brain atlases and classified them into two categories: the P neural mediators 
and the N neural mediators (see Figure 3 (c1) - (c2)). Finally, we conducted bootstrap experiments 

to test whether the mediation effect of each voxel was statistically significant (see Methods). All 
steps had included site (from which data were collected), gender, and age as covariates to remove 

their confounding effects. Results were reported after Bonferroni correction across all voxels in 
the brain (see Figure 4).  



 
 

Figure 4. Brain areas that mediate behavioral symptoms and the development of psychosis. A high-dimensional mediation 
analysis on 130,992 brain voxels of 263 subjects demonstrates that the pathway between behavioral symptoms and psychosis is 
positively mediated by the right lateral prefrontal cortices, bilateral insular and opercular areas, bilateral sensorimotor areas, striatum, 
and cerebellar lobules 4, 5, and 6, and negatively mediated by the bilateral medial frontal and orbitofrontal cortices, left lateral prefrontal 
cortices, posterior cingulate, precuneus, visual cortex, and cerebellar Crus 1 and lobule 9. (a) The 𝜶 brain atlas shows surface and 
subcortex areas associated with behavioral symptoms when controlled for covariates. (b) The 𝜷 brain atlas shows surface and 
subcortex areas associated with psychosis status when controlled for behavioral symptoms and covariates. (c) The P and N neural 
mediators. The neural mediators include surface and subcortex areas that are jointly associated with behavioral symptoms and brain 
disease status, after all covariates are controlled. The areas highlighted in red are P mediators, and those highlighted in blue represent 
N mediators. (d) Explanations regarding the pathways and color codes of figures (a) - (c). The color bars indicate effect sizes from 
bootstrap experiments. 

 

 
The	𝜶 and 𝜷 brain atlases 

We further inquired into the 𝜶 brain atlas (Figure 4 (a)) and the 𝜷 brain atlas individually (Figure 

4 (b)) in order to investigate how the input and output systems contribute to overall mediation. 

Specifically, the 𝜶  brain atlas included brain regions that were associated with behavioral 
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symptoms when controlled for covariates; the 𝜷 brain atlas consisted of brain areas that were 

associated with psychosis status when controlled for behavioral symptoms and covariates. In the 
𝜶 brain atlas, activities of the majority of brain regions were positively associated with behavioral 

symptoms, while activities of the orbitofrontal cortex and cerebellar crus 1, crus 2, and vermis 
were negatively correlated with behavioral symptoms. In the 𝜷 brain atlas, positive associations 

were present in the lateral prefrontal cortex, sensorimotor cortex, insular and opercular areas, 
anterior cingulate cortex, striatum, and cerebellar lobule 9, crus 1, and crus 2. In contrast, negative 

associations were shown in the medial prefrontal cortex, posterior cingulate cortex, visual cortex, 
and cerebellar lobules 6, 7b, and 8.  

 
The P and N mediators 

Discovering brain areas that are positively and negatively mediating behavioral symptoms and 

disease development is a central problem in neuropathology. To promote discussion, here we 
defined the P mediators as brain areas whose activities were positively mediating higher 

behavioral symptoms and increased chance of conversion to psychosis (see regions with positive 
weights in see Figure 4 (c)). In other words, they are potentially facilitative of conversion to 

psychosis among subjects with higher behavioral symptoms. Our results revealed that the P 
mediators were mainly present bilaterally at the right lateral prefrontal cortices, bilateral insular 

and opercular areas, bilateral sensorimotor cortices, striatum, and cerebellar lobules 4, 5, and 6. 
In contrast, we defined the N mediators as brain areas whose activities were negatively mediating 

higher behavioral symptoms and increased chance of conversion to psychosis (see regions with 
negative weights in see Figure 4 (c)). In other words, they are potentially protective of psychosis 

conversion among subjects with higher behavioral symptoms. The N mediators were located 

chiefly at the bilateral medial frontal and orbitofrontal cortices, left lateral frontal cortex, posterior 
cingulate, precuneus, visual cortex, and cerebellar crus 1 and lobule 9.  

 
 
DISCUSSION 

In this study, we designed a brain-wide functional mediation analysis framework, and, through its 
lenses, identified and isolated P and N neural mediators that mediate psychosis prodromal 

behavioral symptoms and disease status among individuals at CHR and quantified each mediator’ 
effects on developing psychosis. The P mediators consisted of neural signatures associated with 

positive mediation, which were primarily distributed in the brain’s sensorimotor system, insular 



and opercular areas, and striatum; the N mediators consisted of neural signatures associated with 

negative mediation, which were chiefly located in the brain’s default-mode system and visual 
system. The isolation of the P-N mediators highlights the neurobiological pathways from early 

psychotic signs to full-blown psychosis and their identification demonstrates the utility of the 
proposed methodological framework in clinical neuroscience studies. 

The proposed framework showed promise to study how brain patterns may intermediate 
between an independent variable (such as prodromal behavioral symptoms) and an outcome 

variable (such as developing psychosis). Using a generalized principal component estimation 
model and functional data analysis, the framework extends multivariate mediation analysis to the 

terrain of high-dimensional functional mediation analysis with non-Gaussian outcomes. To inquire 
into the functional organization of the mediator, the model extracts subject-specific principal 

component (PC) scores and functional representations (population-specific brain-wide basis 

functions) of brain patterns. The estimated effect from PC scores to psychosis status is then 
translated to the whole brain space via the brain-wide basis functions. A logit link function was 

employed to couple patterns of the brain and the independent variable with the disease outcome. 
Since the model allows for a variety of link functions, it can assist other mediation problems with 

outcome distributions from the exponential family. 
There are a few additional properties of the proposed framework that may be useful in 

other studies. First, the framework integrates a generalized principal component estimation model 
into a dual regulatory system connecting an input system and an outcome system. This technique 

may shed some light on how to build biological architecture consisting of sub-systems. Second, 
when the outcomes are binary, one can use the framework to evaluate controlled direct effects, 

and natural direct and indirect effects on the odds-ratio scale (Supporting Information). Third, 

high-dimensional brain patterns may contain multilevel information. This framework allows us to 
extract both group-level (i.e., the group-level basis functions) and subject-specific features (i.e., 

the subject-specific PC scores) of the brain data. The subject-specific features may be used as 
compact neural signatures to assess individual differences in the future (Supporting 

Information). 
We applied our proposed framework in a psychosis neuroimaging study, where we 

investigated how functional brain activities may mediate prodromal behavioral symptoms and 
clinical outcome. The findings observed in this study confirmed previous studies and provided 

additional, useful insights for future psychosis research. First, our findings suggest that the P 

mediators are largely distributed in the brain’s primary functional systems (e.g., sensorimotor 



cortex, cerebellar lobules 4, 5, 6, insular-opercular area including the superior temporal cortex 

and Heschl’s gyrus). These regions are involved in basic sensory functions in humans such as 
perception, hearing, and motion. A large number of studies have demonstrated that increased 

activities in the insular-opercular area are strongly associated with auditory hallucinations in 
patients with schizophrenia24–26, and increased sensorimotor connectivity is robustly present 

across the entire course of schizophrenia from prodromal phase to chronic patients27–29. The exact 
mechanisms underlying the hyperactivity state of these sensory systems are, however, unclear; 

they have been putatively considered as either a result of sensory gating deficits disrupted by 
excessive mesolimbic dopamine input30 or as reflective of aberrant top-down cognitive control 

associated with strong perceptual priors26. In line with previous findings, the current study further 
shows that such increased activities may be potential mediators between prodromal symptoms 

and psychosis conversion, pointing to a critical role of sensory systems in the development of 

psychotic disorders. Second, the N mediators are primarily distributed in the brain’s default-mode 
network (DMN) and limbic system, including medial frontal cortex, orbitofrontal cortex, posterior 

cingulate cortex, precuneus, and cerebellar crus 1. The DMN is one of the most frequently 
reported systems whose function is strongly associated with psychosis. The most prominent 

finding regarding DMN in patients is the failure to deactivate this network during cognitive tasks31–

33, which may relate to exaggerated internally-focused thoughts and lack of sufficient suppression 

of these thoughts during cognition34. Here, the finding of negative mediation effect in DMN 
activities during resting state is parallel to such interpretation, suggesting lower activity (indicating 

insufficient activation) during rest may potentially mediate prodromal symptoms and psychosis 
status. In contrast, higher DMN activity during rest may serve as a protector against conversion. 

A few reasons have made the blood-oxygen-level-dependent functional magnetic 

resonance imaging (BOLD fMRI) data suitable for studying brain-wide mediation. First, although 
studies have used resting state electroencephalography (EEG) data and discovered brain areas, 

such as the frontal regions, that are associated with psychosis35, imaging modalities with greater 
spatial resolution, such as fMRI, may both confirm and extend neural signatures beyond those 

identified using EEG. Second, reduced auditory P300 event-related potential (ERP) amplitude 
(from a functional neurophysiological test) is a primary candidate electrophysiologic biomarker of 

psychosis36; it nevertheless may not capture as much variability that occurs in spontaneous brain 
activity as the fMRI data to work well as a biomarker for conversion. Third, slow wave power has 

been shown to correlate with reduced blood flow and glucose utilization in schizophrenia patients, 

and is therefore thought to reflect reduced functioning in the frontal area37,38. This supports the 



utility of fMRI BOLD data in mediation studies. Finally, structural MRI studies are beginning to 

discover associations between structural brain information and conversion to psychosis9; here we 
have shown that functional MRI data could add new insights into studies of neural markers 

associated with psychosis.  
Although we demonstrated high-dimensional functional neural mediation analysis in the 

domain of brain studies, the framework may also be useful to study other high-dimensional 
mediation problems, such as how genome-wide genotypes mediate the effect of environmental 

factors on phenotypes. With the recent convergence in neuroimaging, genomics, health 
informatics, wearable and digital sensors, the model has the potential to identify a broad range of 

novel, informative, and previously unavailable biomarkers that play an important role in mediating 
the relationship between healthy and diseased agents and their environment. For example, the 

model may be used to understand how gene expression, brain physiology, and circadian patterns 

jointly mediate environment and biological phenotypes, uncover brain regions that mediate 
sensory input and behavior outcome collected by wearable devices, and study how computers 

can act as a mediating artificial intelligence (AI), transferring human input into computer-
generated intelligent responses.  

There are several limitations with the proposed method. First, in clinical practice, one 
assumes that changing brain patterns can first cause prodromal signs and symptoms, followed in 

some cases by later conversion to psychosis. In this paper, we aimed at studying the influence of 
the underlying brain patterns, which were not directly observable, on the link between two directly 

and clinically observable sets of variables: prodromal signs and symptoms on the one hand, and 
conversion state on the other hand. The framework we designed to map the pathways contained 

directed arrows that clarified the statistical model was mediation analysis and did not suggest a 

definitive causal flow from prodromal signs via brain patterns towards conversion status (see 
Figures 1 and 2). When confusion about the causal direction existed, one can interpret the 

identified neural mediators as brain areas that are jointly associated with behavioral symptoms 
and psychosis conversion. In other words, the mediators exclude brain areas that are associated 

with conversion, but that are not associated with prodromal symptoms, and vice versa. Second, 
we were mainly interested in identifying brain regions that were simultaneously mediating 

behavioral symptoms and psychosis status. This naturally left out the cases where some 
mediators were interposed before or after other mediators. Future analysis may incorporate 

dynamic mediating systems and information feedback components. Third, throughout, we 

assumed that behavioral symptoms did not interact with the mediators. Future work that includes 



interaction between the independent variable and the mediator may be useful to expand current 

analysis (see Supporting Information for an example and see39 for a special case). Fourth, 
although dimension reduction could reduce biases caused by spurious correlation, our framework 

cannot remove the coincidental association between some (voxel) features and the residual term 
(i.e., incidental endogeneity). This is an active research area in high-dimensional data analysissee 

40. Fifth, the proposed model focused on neural markers by averaging the brain time courses over 
time. This omitted the territory of mediation analysis where the mediation effect changes over 

time. Future work needs to extend the framework to longitudinal settings: such extensions are 
particularly useful for studying causal mediation effect related to brain development during 

childhood and adolescence, brain aging between health and disease, and brain degeneration 
along the trajectory of a neurodegenerative disease development. We are currently investigating 

how to extend the techniques used in our framework to improve our understanding about large-

scale longitudinal mediation, such as combing functional data analysis (FDA) and dual mediation 
system with autoregressive models41,42, latent growth curve (LGM)43, parallel process models44, 

latent difference score (LDS) models45, and autoregressive LGM models46. 
To summarize, in the present study, we propose a framework that leverages statistical- 

and machine-learning algorithms for neuroscientific insights into understanding the properties of 
large-scale functional intermediating neural markers that mediate the relationship between an 

independent variable and a binary disease outcome. The conceptual and analytical architecture 
of the framework in dealing with high-dimensional data and its flexibility in handling non-normally 

distributed outcomes have the potential to be widely adapted to diverse scenarios of causal 
paradigms to uncover intermediating pathways in complex regulative systems.  

 
 

METHODS 

The NAPLS-2 Data. The fMRI data were drawn from the second phase of the North American 

Prodrome Logitudinal Study (NAPLS-2) consortium21, which included 263 subjects recruited from 
eight study sites across the United States and Canada. All subjects met the criteria for the 

prodromal syndromes at the point of recruitment according to the Structured Interview for 
Prodromal Syndromes (SIPS, 23) and were clinically followed-up for two years. During follow-up, 

25 subjects developed one type of the Axis-I psychotic disorders (CHR convertors, age 18.52 ± 
4.08 years, 17 males) and 238 did not (CHR non-convertors, 19.07 ± 4.16 years, 136 males). All 



subjects received an eyes-open resting-state functional magnetic resonance imaging (fMRI) scan 

at the point of recruitment. 
 

Data Acquisition. During the 5-min eyes-open resting-state scan (154 whole-brain volumes), 
participants were asked to lay still in the scanner, relax, gaze at a fixation cross, and not engage 

in any particular mental activity. After the scan, investigators confirmed with the participants that 
they had not fallen asleep in the scanner. Data were acquired from 3T MR scanners located at 

eight study sites with identical fMRI protocols. Siemens scanners were used at Emory, Harvard, 
University of California Los Angeles (UCLA), University of North Carolina at Chapel Hill (UNC) 

and Yale, and GE scanners were used at Calgary, University of California San Diego (UCSD) and 
Zucker Hillside Hospital (ZHH). Functional images were collected using gradient-recalled-echo 

echo-planar imaging (GRE-EPI) sequences: TR/TE 2000/30 ms, 77 degree flip angle, 30 4-mm 

slices, 1-mm gap, 220-mm FOV. In addition, we also acquired high-resolution T1-weighted 
images for each participant with the following sequence: 1) Siemens scanners: magnetization-

prepared rapid acquisition gradient-echo (MPRAGE) sequence with 256 mm x 240 mm x 176 mm 
FOV, TR/TE 2300/2.91 ms, 9 degree flip angle; 2) GE scanners: spoiled gradient recalledecho 

(SPGR) sequence with 260 mm FOV, TR/TE 7.0/minimum full ms, 8 degree flip angle. 
 

Preprocessing of rs-fMRI Data. Data were preprocessed using the standard pipeline 
implemented in the Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) 

software following previously published work47–50, including slice-timing correction, realignment, 
individual structural-functional image coregistration, normalization to the Montreal Neurological 

Institute (MNI) template and spatial smoothing with 8-mm full width at half maximum (FWHM). 

Preprocessed fMRI time series were extracted from a total of 130,992 voxels covering the entire 
brain for each subject. The extracted time series were corrected for white matter and 

cerebrospinal signals, 24 head motion parameters (6 translation and rotation parameters, their 
first derivatives, and the square of these 12 parameters), and frame-wise displacement, and were 

then temporally filtered (band-pass 0.008-0.1 Hz). Secondary data analysis was conducted using 
the R software. 

 
The Model.  We designed a dual system for high-dimensional functional mediation analysis. The 

input system tests if the independent variable (e.g. behavioral symptoms) has an effect on each 

mediator, after controlling for all covariates (see Figure 3 (b2)). The output system uses a 



generalized principal component estimation model to test if each mediator has an effect on the 

outcome, after controlling for the independent variable and covariates (see Figure 3 (b3)).  
Formally, consider 𝑁 subjects and 𝑉 brain areas, where 𝑉 = 130,992. Let 𝑥3 ∈ ℝ be the 

independent variable for subject 𝑖, let covariates 𝒛3 ∈ ℝ5 consists of the site (from which data are 
collected), age, and gender, respectively, of subject 𝑖, 𝒎3 ∈ ℝ/ be the brain patterns of subject 𝑖 
spanning 𝑉 brain areas, and 𝑦3 be the outcome for subject 𝑖 (in this study 𝑦3 ∈ {0,1}).  

We first review the basics of functional principal component analysis. Let 𝑚(𝑗), 𝑗 ∈ [0,1], 

be a squared integrable random function with mean 𝜇(𝑗) and covariance function 𝐾(𝑠, 𝑡). In other 

words, 𝜇(𝑗) = 𝐸(𝑚(𝑗)) and 𝐾(𝑠, 𝑡) = 𝑐𝑜𝑣(𝑚(𝑠),𝑚(𝑡)). By Mercer’s theoremChapter 4 of 20, one can 
obtain the spectral decomposition of 𝐾(𝑠, 𝑡) as: 

 

𝐾(𝑠, 𝑡) = i𝜆6𝜑6(𝑠)𝜑6(𝑡),
7

612

 

 

where 𝜆2 ≥ 𝜆4 ≥ ⋯ ≥ 𝜆7 are decreasingly ordered nonnegative eigenvalues and 𝜑6 ’s are their 

corresponding orthogonal eigenfunctions with unit ℒ4 norms.  
Karhunen-Loève expansion18, 19 of the random function 𝑚(𝑗) yields: 
 

𝑚(𝑗) = 	𝜇(𝑗) +i𝜉6𝜑6(𝑗),
7

612

 

 

where 𝜉6 = ∫ {𝑚(𝑗) − 𝜇(𝑗)}𝜑6(𝑗)𝑑𝑗
2
*  are uncorrelated random variables with zero mean and 

variance 𝜆6. For a given functional sample, the mean function 𝜇(𝑗) and covariance function 𝐾(𝑠, 𝑡) 

can be consistently estimated using the method of moments. The eigen -values and -functions 
are estimated from the empirical covariance function, and the principal component scores (𝜉6 ’s) 

can be estimated by numeric integration. 
Next, we enquire further into Equations (v) and (vi) from the Introduction section.  

The input system consists of the following model: 
 

𝐸(𝑚30|𝑥3 , 𝒛3) = 𝜃*(𝑗) + 𝑥3𝛼(𝑗) + 𝒛3+𝒕(𝑗)									       

 



𝜃*(𝑗), 𝛼(𝑗), and 𝒕(𝑗) are coefficients for the intercept, the independent variable, and covariates 

that are associated with the 𝑗-. mediator. Specifically, 𝛼(𝑗) captures the effect of the independent 

variable on the 𝑗-. mediator, 𝜃*(𝑗) indicates an intercept, and 𝒕(𝑗) denotes the coefficients for the 

covariates with respect to the 𝑗-. mediator. Without loss of generality, consider 𝑗 ∈ {2
/
, 4
/
, … , /

/
}. 

The output system consists of the following functional model: 
 

𝑓(𝑦3|	𝚫3) = expqr𝑦3𝜃3 − 𝑎(𝜃3) + 𝑏(𝑦3)u𝜙w                (vii) 

 

where 𝜃3 = ℎ(𝜂3), 𝜂3 is called a linear predictor with 𝜂3 = 𝚫3𝝎, 𝚫3 = (1, 𝑥3,𝑴3
+, 𝒛3+) denotes the data, 

𝑴3
+ = (𝑚32, 𝑚34, … ,𝑚3/), and 𝑚30 = ∑ 𝜉36𝜑6(𝑗)7

612 ≈ ∑ 𝜉36𝜑6(𝑗)8
612 , where 𝜉36~𝑁(0, 𝜆6), 𝜆2 ≥ 𝜆4 ≥

⋯ ≥ 𝜆7, for 𝑖 ∈ {1, 2, … ,𝑁} and 𝑗 ∈ {2
/
, 4
/
, … , /

/
}, and 𝝋 = {𝜑2, 𝜑4, … , 𝜑8} is a set of basis functions. 

𝝎 = (𝛽*, 𝛾, 𝜷, 𝝉)+  denotes the corresponding parameters for 𝚫3 . ℎ(∙) , 𝑎(∙)  and 𝑏(∙)  are proper 

functions. 𝜷 is a 𝑉 × 1 vector, whose 𝑗-. entry 𝛽(𝑗) estimates the effect of the 𝑗-. mediator on the 
outcome, controlling the independent variable and covariates. 𝜙 is a nuisance parameter.  

By taking the expected value of 𝑦3 conditioning on 𝚫3, Equation (vii) yields Equation (vi) in 
the Introduction section. Particularly, when 𝑦3 is binary, (vi) has the following form: 

 

𝑦3 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝3)                                       (vii) 
 

where 𝑝3 =
2

2=>?@A:(C!=	DE"=∑ ∑ G"#H#(0)C(0)=$
#%&

'
(%& 	𝒛"

)𝝉)K
. 

 
Thanks to spectral decomposition of 𝑴, parameter estimation of 𝜷 can be performed on 

𝝃 = (𝝃2, 𝝃4, … , 𝝃L)+ , where 𝝃3 = {𝜉32, 𝜉34, … , 𝜉38} . To see this, rewrite 𝛽* + 𝛾𝑥3 +

∑ ∑ 𝜉36𝜑6(𝑗)8
612 𝛽(𝑗) +M

012 𝒛3+𝝉  in (vii) as 𝛽* + 𝛾𝑥3 + ∑ ∑ 𝜉36𝛽�6(𝑗)8
612 +M

012 𝒛3+𝝉 , where 𝛽�6(𝑗) = 

𝜑6(𝑗)𝛽(𝑗). The estimation problem now translates to estimating the low-dimensional mediator-on-

outcome effect, or 𝜷� = (∑ 𝛽�2(𝑗),
M
012 	∑ 𝛽�4(𝑗),

M
012 … ,∑ 𝛽�8(𝑗),

M
012 ). Subsequently, the estimation of 𝜷 

can be retrieved by projected the estimated 𝜷�� back to the brain space using the estimated basis 

functions 𝝋�; in other words, 𝜷� = 𝝋�:𝜷��. 
Although in real world brain data, the (unknown) basis functions 𝝋  can be either 

orthogonal or non-orthogonal, simulation studies showed that, regardless of the orthogonality of 



basis functions, our framework was successful to uncover the 𝜶  and 𝜷  brain atlases under 

different noise levels and sample sizes (Supporting Information).

Since 𝑁𝐼𝐸(𝑗) = 𝛼(𝑗)𝛽(𝑗) has a one-to-one relationship to the 𝑗-. voxel’s mediation effect 
(Supporting Information), for simplicity we estimate 𝑁𝐼𝐸(𝑗), for 𝑗 = 1, 2, … , 𝑉. In words, 𝑁𝐼𝐸(𝑗) 

is the 𝑗-. voxel’s natural indirect mediation effect on the log odds-ratio scale per unit increase of 
the independent variable. When 𝑉 is small, Sobel’s Test51 evaluates the statistical significance of 

𝑁𝐼𝐸(𝑗); when 𝑉 is high-dimensional, the statistical significance of 𝑁𝐼𝐸(𝑗) can be evaluated using 
a bootstrap approach52 (Supporting Information); the results are further adjusted for multiple 

comparisons.  
 

Brain-wide functional mediation analysis. We conducted brain-wide functional mediation 
analysis on the rs-fMRI data from the NAPLS-2 sample using the proposed framework. We first 

assessed if there was any effect from the independent variable on each voxel, controlling for all 

covariates, using Equation (v) and obtained the 𝜶 brain atlas. We then estimated the effect each 
mediator had on the outcome, controlling for the independent variable and all covariates, using 

Equation (vi) and obtained the 𝜷 brain atlas. Finally, we identified P neural mediators and N neural 
mediators and estimated their mediation effect via bootstrap experiments. We presented the 

empirical results in Figure 4. 
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