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Abstract
Analysis of single cell RNA sequencing (scRNA-Seq) datasets is a complex and time-consuming process,
requiring both biological knowledge and technical skill. In order to simplify and systematize this process, we
introduce UNCURL-App, an online GUI-based interactive scRNA-Seq analysis tool. UNCURL-App introduces
two key innovations: First, prior knowledge in the form of cell type, anatomy, and Gene Ontology databases is
integrated directly with the rest of the analysis process, allowing users to automatically map cell clusters to
known cell types based on gene expression. Second, tools for interactive re-analysis allow the user to iteratively
create, merge, or delete clusters in order to arrive at an optimal mapping between clusters and cell types.
Availability: The website is at https://uncurl.cs.washington.edu/. Source code is available at
https://github.com/yjzhang/uncurl_app
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Background
Single cell RNA sequencing (scRNA-seq) has become
an essential and ubiquitous tool for exploring the diver-
sity of cell types in multicellular organisms. Progress in
experimental technology development has driven rapid
growth in the number of scRNA-seq datasets [1, 2] with
a search in 2020 for "single-cell RNA-seq" on NCBI
GEO returning tens of thousands of results. Over lit-
tle more than a decade, scRNA-seq experiments pro-
gressed from first proof-of-principle demonstrations us-
ing a handful of cells [3] to the construction of "cell at-
lases" that enumerate all of the cell types present in an
organ or organism [4–9]. However, while experimental
approaches have become higher throughput and more
widely available, it remains challenging to map exper-
imentally determined single cell transcriptomes to bi-
ologically meaningful cell types. Given the very large
throughput in cell number and the high complexity
of many of the systems under investigation, reliable
data analysis has become the main bottleneck of the
scRNA-seq workflow.
The process of assigning sequenced cells to cell types

is a multi-step process that requires the user to make
decisions based on their judgment, because the ground
truth about abundance and identity of cell types in
an experiment of interest is typically not available. In
practice, sequencing data is often first “pre-processed,”
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i.e. corrected for variability introduced by experimen-
tally sampling the actual cellular transcriptome or
“batch-corrected” if data from multiple experiments
need to be integrated. Then, data are visualized in
two dimensions and cells are clustered. Differential ex-
pression analysis identifies genes that are characteristic
of each cluster, and these differentially expressed genes
are used to assign clusters to cell types based on known
gene-cell type associations. It is almost always neces-
sary to iterate over this process and repeatedly remove,
merge or split clusters to arrive at a satisfactory map-
ping of clusters to cell types consistent with known
biology. These tasks require users who have both tech-
nical proficiency and knowledge of the underlying bi-
ology.
A wide range of computational tools have been de-

veloped to guide and assist each step in the analy-
sis workflow from preprocessing [10–13], to clustering
[14–18], data integration through batch effect correc-
tion [19, 20] and cell type annotation [21–23]. There
are also a number of integrated analysis frameworks
that combine several of these tasks into one package
[24, 25]. However, these tools are typically restricted to
command-line usage and require programming knowl-
edge, hindering the accessibility of scRNA-seq analy-
sis. These tools are also limited in their interactivity;
even web-based tools such as scQuery [23] typically do
not allow cluster assignments or cell type labels to be
changed by the user. Moreover, in particular the last
step of assigning labels to clusters remains heavily de-
pendent on a user’s prior knowledge. Thus, even with
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all of these computational tools, the process of ana-
lyzing a new scRNA-seq data set remains somewhat
idiosyncratic.
To aid in the task of analyzing scRNA-seq data, we

here introduce UNCURL-App. UNCURL-App com-
bines data preprocessing, dimensionality reduction,
clustering, differential expression, and interactive data
analysis within an online graphical user interface.
UNCURL-App introduces two key innovations: First,
cell type databases are integrated directly with the
rest of the analysis process, accelerating mapping of
clusters to cell types. Second, UNCURL-App includes
tools for interactive re-analysis that allow the user to
create, merge, or delete clusters, thus making it possi-
ble to iteratively refine clusters using knowledge about
gene expression, putative cell type annotations, and
other information accessible through UNCURL-App.
Because the entire workflow can be performed in a
browser and because external knowledge is made avail-
able during the analysis process, we expect UNCURL-
app not only to accelerate scRNA-seq analysis but also
to further extend the user base for this technology.

Results
Workflow & Interface
From the user’s perspective, the first step in the
UNCURL-App pipeline is to upload the data as a gene-
cell read count matrix (Supplemental Figures 1 & 2).
Next, the app automatically performs preprocessing
and clustering using UNCURL, dimensionality reduc-
tion, and differential expression. Then, the user is redi-
rected to an interactive web site, from which they can
view the results of the previous steps, query for cell
types, or perform interactive re-analysis (Figure 1).
There are three main visualization components: the

dimensionality-reduced scatterplot of cells, the barplot
showing the most differentially expressed genes, and
the cell type query results. A labeled screenshot of
the main UNCURL-App view is shown in Figure 2.
The scatterplot, on the top left of the screen, shows a
dimensionality-reduced view of the cells in the dataset,
where each point represents a cell. This view can be
colored by cluster, gene expression for selected gene(s),
or custom label sets based on uploaded files or user-
defined criteria. For example, a user may select all cells
belonging to a given cluster that also have positive ex-
pression of a certain gene, or select all cells that both
belong to a certain cluster and have a certain label
in an uploaded file (Supplemental Figure 3). The user
may also select cells by drawing a box or shape on the
plot itself.
On the top right of the screen, the barplot shows

the top differentially expressed genes for the selected
cluster or label. The barplot is automatically updated

whenever the user clicks on a cell on the scatterplot,
showing the top genes for the cluster that the cell be-
longs to.
The bottom left of the screen shows the database

query view. From this view, the user may query cell
type databases using the top differentially expressed
genes. Databases include Enrichr [26], CellMarker [27],
and Gene Ontology [28, 29], as well as our new cell
type database, CellMeSH (see Methods). Submitting
a query will return a list of cell types with a confidence
score, overlapping genes, and references for each gene-
cell type pair.

Data preprocessing, clustering, and differential
expression
The first step in the analysis pipeline builds on UN-
CURL, a tool for preprocessing and clustering scRNA-
seq data using probabilistic matrix factorization [12].
UNCURL has been shown to have state-of-the-art per-
formance in clustering large-scale scRNA-seq datasets,
and performs exceptionally well on sparse datasets. It
assumes that the observed read count matrix is dis-
tributed with either a Poisson, Log-Normal, or Gaus-
sian distribution, with the parameters of the distribu-
tion coming from a hidden state matrix. This hidden
matrix is the product of two non-negative matrices of
rank k: M , the archetype matrix, of shape genes× k,
and W , the weights matrix, of shape k × cells, where
each column sums to 1. These two matrices are the
outputs of UNCURL. The rank k can be manually set
as an input parameter, or automatically determined
using the gap score [30]. By default, k is set to 10,
which tends to produce good results in practice, but
can be changed interactively by merging or splitting
clusters as discussed in more detail below.
The result of UNCURL is then used for dimensional-

ity reduction and clustering. Dimensionality reduction
is done using standard methods, such as tSNE [31]
or UMAP [32]. This produces a two-dimensional scat-
terplot of cells. By default, clustering is done using
argmax on the W matrix returned by UNCURL (as
described in [12]). Each column in W represents the
weights for each archetype in one cell, so the archetype
with the maximum weight is the most likely cluster
assignment for that cell. Clustering can also be done
using the Louvain [33] or Leiden [34] community detec-
tion algorithms, which also use the W matrix as input.
However, only clustering using UNCURL is compati-
ble with iterative cluster refinement as detailed below.
In order to identify the most differentially expressed

genes in each cluster, UNCURL-App uses one of two
methods: the t-test, or the ratio of means. These met-
rics can either be calculated for one cluster against all
other clusters, or against a single cluster. The t-test has
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been shown to be one of the best performing methods
for identifying DE genes in scRNA-seq datasets, and
is also much faster than more complex methods [35].

Interactive data analysis
UNCURL-App has the capacity to merge, split, or
delete clusters of cells in an interactive fashion. After
the initial analysis process is completed, there are of-
ten refinements to the clustering that users would like
to make, no matter the quality of the initial clustering.
For example, the user may want to split a large clus-
ter, merge multiple similar clusters, or delete a group
of poor quality cells or potential doublets. This cluster
refinement might be based on the shape of the scatter-
plot, differential expression results, cell type queries,
or some other metrics.
The user-driven changes in clustering are incorpo-

rated into UNCURL by using them to generate new
initializations and then re-running the optimization
process, as shown in Figure 3. This process fundamen-
tally relies on the UNCURL algorithm [12], and was in-
spired by the UTOPIAN software for interactive non-
negative matrix factorization [36], but in UNCURL-
App, cells take the place of documents. Say that we
have matrices M and W , with shapes g×K and K×c.
In order to split a selected cluster, we first run k-means
with k = 2 on the cells assigned to the selected cluster.
This generates new matrices Mcluster and Wcluster, of
shape g × 2 and 2× c representing the means and cell
cluster assignments. The column and row correspond-
ing to the selected cluster are deleted from M and W ,
and Mcluster and Wcluster are appended to M and W ,
creating Mnew and Wnew, with shapes g× (K+1) and
(K+1)× c. Then, UNCURL is re-run with Mnew and
Wnew as the initializations, which affects other clusters
as well. The process is analogous for merging clusters
and assigning cells to new clusters: we create new ini-
tializations for M and W using the selected clusters or
cells, and then re-run the optimization process.
After generating Mnew and Wnew, a new visualiza-

tion, clustering, and differential expression results are
calculated using Wnew. Running re-clustering also au-
tomatically updates the differential expression results.

Examples
In order to validate the UNCURL-App workflow, we
used the app to analyze three different scRNA-seq
datasets, as described below. For these datasets, we
performed clustering and cell type annotation using
UNCURL-App with default settings. Cell type labels
were generated by querying the top 50 genes by 1-vs-
rest ratio with the CellMeSH database (see Methods).
The running times of the non-interactive steps are

shown in Table 1. The running time for UNCURL

scales linearly with the number of cells, while the run-
ning time for tSNE scales with order n log n, where n
is the number of cells. With larger numbers of cells,
running tSNE is the most time-consuming step. This
can be obviated by using UMAP as the dimensionality
reduction method.

Example: Tabula Muris lung cells
As a first example, we consider a subset of the Tabula
Muris dataset from [7] containing only cell types found
in the lung. This dataset contains 5449 cells and 14
annotated cell types. The labels in the original study
were generated by first running graph-based clustering
and then manually examining the marker genes for
each cluster.
After uploading the dataset and processing it with

default settings, we see the clustering and initial cell
type assignments in Figure 4a. The clustering was
based on UNCURL, and the scatterplot visualization
was generated using tSNE. Based on the scatterplot,
it was apparent that cluster 4 appeared to consist of at
least two groups of cells that should not be grouped to-
gether. In addition, the top cell types from a CellMeSH
query on the top genes in this cluster included both B
and T cells (Figure 4b), suggesting that this cluster
might be a mixture of at least these two cell types.
Based on these observations, we decided to split this
cluster using our interactive data analysis tools, result-
ing in the clusters given in Figure 4c. The post-split
cell type assignments (Figure 4d) appeared to be more
consistent with known biology than the original assign-
ments.
Based on Figure 4f, there is generally good concor-

dance between the generated clusters and original clus-
ters, as well as between assigned labels and the original
labels. Of the labels that were different, in most cases
UNCURL-App assigned cell types that were closely re-
lated to the original ground truth label (for example,
pneumocytes and columnar cells are subsets of epithe-
lial cells, and neutrophils are a subset of leukocytes).
The stromal cells are split into multiple clusters in
UNCURL-App, which could represent heterogeneity in
the original sample that was not captured by the orig-
inal labels. No prior information about the cell types
present in the dataset was used at any point in this
process.

Example: 10X PBMCs
Next, we turned to a dataset comprised of 8000 human
peripheral blood mononuclear cells (PBMCs) from
[37]. This dataset was created by randomly sampling
1000 cells from each of 8 scRNA-seq datasets com-
prised of cells that were flow-sorted based on known
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cell-type markers. Thus, the ground truth cell type la-
bels represent pure samples, as opposed to the compu-
tational assignments used as ground truth in the other
example datasets.
UNCURL-App was run with default settings to gen-

erate 10 initial clusters (Figure 5a). Looking at the
resulting clusters and putative cell type assignments
(5b), it appeared that clusters 2 and 6, labeled Neu-
trophils and Monocytes, were very similar, and could
just represent a single group of cells. A pairwise dif-
ferential expression analysis (Figure 5c) further illus-
trates that only related genes, S100A8 and S100A9,
appear to be significantly differentially expressed be-
tween these clusters. Plotting the expression levels of
these genes (Figure 5d), it seems that the small group
of cells to the left of the main cluster has much higher
expression of these genes, suggesting that this group
might constitute a separate cluster. Thus, we first
merged clusters 2 and 6, and then split off that small
group of cells. These operations resulted in the clus-
tering shown in Figure 5f.
As with the previous dataset, there now is good cor-

respondence with the ground truth clusters and labels
(Figure 5h, i). Cells of the same ground truth type
are generally assigned to the same cluster, and the
cluster labels returned by CellMeSH generally corre-
spond to the ground truth labels. CD34+ cells are gen-
erally recognized as hematopoietic stem cells [38], so
the CellMeSH label here seems to be accurate. One
major difference is that CellMeSH labeled all four T
cell subtypes as "T-Lymphocytes", even though they
were clustered into distinct clusters. To investigate fur-
ther, we looked at the full list of CellMeSH labels for
these clusters, not just the top one. These results are
shown in Figure 5g, with the cell types most similar
to the ground truth highlighted in green. For exam-
ple, Cluster 0 corresponds to naive T-cells, which are
selected as CD4+. Cluster 5 corresponds to naive cy-
totoxic T-cells, which are CD8+, and the "CD8+ T-
Lymphocytes" label is the third highest label, below
"T-Lymphocytes" and "Lymphocytes" (Figure 5g).
Cluster 6 corresponds to memory T-cells, which can
be either CD8+ or CD4+; the second and third la-
bels are "CD8+ T-Lymphocytes" and "CD4-Positive
T-Lymphocytes". Cluster 7 corresponds largely to reg-
ulatory T-cells, which are CD4+, and the second
and third highest CellMeSH labels are "CD4-Positive
T-Lymphocytes" and "T-Lymphocytes, Regulatory".
This shows a good correspondence between the true
and assigned labels at a more fine-grained level.

Example: SPLiT-seq spinal cord
For a final test we turned to a larger dataset com-
prised of 22,614 mouse spinal cord nuclei from 2 and

11-day old mice sequenced using SPLiT-seq [9]. This
dataset has 44 annotated cell types, which is substan-
tially more than the previous two datasets. However,
many of these annotated cell types are closely related
(for example, there are 15 types of excitatory neu-
rons), so for the "ground truth" comparisons in this
section, we combine many of the annotated cell types
into larger clusters of similar cells. Even after this pro-
cess, many of the cell types are similar, with many
subtypes of neurons.
We first ran UNCURL-App with default settings to

generate an initial clustering with 10 clusters, sev-
eral of which exhibit substantial heterogeneity (Figure
6a). For example, cluster 8 (labeled as "Endothelial
Cells") represents at least four different groups of non-
neuronal cells. Thus, we split them into four different
clusters (Figure 6b). It is clear that splitting the clus-
ters worked to separate what appeared to be distinct
cell types. In addition, the clusters that CellMeSH la-
bels as "Neurons" or "Interneurons" (3, 6, 9, 0) all ap-
pear to be rather heterogeneous. Results after splitting
some of the neuronal clusters are shown in Supplemen-
tal Figures 4-7.
As with the previous datasets, there is generally good

concordance between the cell types from the origi-
nal paper and the clusters generated by UNCURL-
App, as shown in Figure 6d. Also similarly to previ-
ous datasets, the CellMeSH annotations were gener-
ally coarser grained than the original hand-annotated
labels, with all of the neuron clusters being labeled
as "Interneurons" or just "Neurons". For the non-
neuronal results, interpreting the labels identified by
CellMeSH is more challenging (Supplemental Fig-
ure 5). Oligodendrocytes, astrocytes, and endothe-
lial cells were correctly identified. For cluster 8, the
ground-truth label was "VLMC", or "vascular and
leptomeningeal cells". This is a highly specific cate-
gory that does not appear in the CellMeSH ontology
but was used as a cell label in Ref. [39]. Still, while
coarse, the first three labels suggested by CellMeSH
(Stromal Cells, Fibroblasts, Mesenchymal Stem Cells)
seem consistent with cells derived from the meninges,
the membrane enveloping the brain and spinal cord. In
cluster 10, the ground-truth label "Ependymal" was
not correctly identified by CellMeSH, and the returned
results did not seem to relate to ependymal cells. This
points to a paucity of annotated publications with gene
markers for this cell type. For cluster 11, all of the top
CellMeSH results were immune cells, a group which the
published label, "microglia", belongs to. "Microglia"
was one of the top 10 cell types returned.
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Discussion
Comparison with existing tools
Unlike other general-purpose toolkits for scRNA-seq
analysis such as scanpy [24], Seurat [25], and Mon-
ocle 2 [40], UNCURL-App is a web-based GUI tool
that does not require command line usage. This al-
lows a much wider range of potential users, such as
biologists who are not programmers. One compara-
ble web-based tool is scQuery [23]. Both scQuery and
UNCURL-App perform clustering and dimensionality
reduction on uploaded single-cell datasets, and can
identify cell types. With regards to the user interface,
whereas UNCURL-App is a single-page application
that presents all of its information on a single screen,
scQuery has multiple views for different tasks. Unlike
in scQuery, where cell type annotations are ultimately
derived from scRNA-seq data from GEO, cell type an-
notations in UNCURL-App are based on the published
scientific literature. UNCURL-App is also capable of
interactively merging, splitting, and deleting clusters
of cells, unlike scQuery.
There are a number of tools that classify cells given

gene markers for known cell types, such as [21, 41].
We view these tools as complementary to UNCURL-
App and CellMeSH. These tools require some knowl-
edge of the cell types present in the dataset, as well
as a way to manually find gene markers for these cell
types, whereas such prior knowledge is unnecessary
in the UNCURL-App/CellMeSH pipeline. In addition,
CellMeSH can be used to improve the workflow for
these tools by automatically selecting gene markers,
obviating the need for manually finding them.
There also exist tools that perform single cell sim-

ilarity search on reference datasets, such as CellAt-
lasSearch and scMatch [22, 42]. Rather than using
marker genes, these methods compare the entire gene
expression profile of every single cell to a reference
database, using locality-sensitive hashing in the case
of CellAtasSearch [22] or Pearson or Spearman corre-
lation in the case of scMatch [42]. These tools do not
include functionality for clustering or low-dimensional
visualization. The advantage of UNCURL-App comes
with its integration of clustering, differential expres-
sion, interactive re-analysis, and cell type querying into
one easy-to-use platform.

Conclusion
UNCURL-App provides a useful way to perform inter-
active scRNA-seq data analysis, including cell type an-
notation. In the future, we hope to augment UNCURL-
App with new analysis capabilities, such as cell lineage
and gene network analysis. We also hope to connect
UNCURL-App to additional sources of information for
cell type and functional annotation. This could come

in the form of connections to new databases, or expan-
sions to the CellMeSH database. Our ultimate goal is
to increase UNCURL-App’s utility as a general tool
for scRNA-seq analysis.

Methods
Cell type annotation
UNCURL-App has a number of interfaces to external
databases, which are used to assist with identifying
cell types present in the dataset, as well as helping
to better understand underlying biological processes.
First, UNCURL-App contains an interface to the En-
richr tool for gene set analysis [26, 43]. This tool con-
tains interfaces to a variety of gene set databases that
can be used to help identify cell function. We also pro-
vide an interface to Gene Ontology [28, 29], which is
queried using the goatools package [44]. In addition,
we have two databases specifically for cell type identi-
fication, CellMarker and CellMeSH.
CellMarker [27] is a hand-curated database of cell

types, annotated with marker genes based on a liter-
ature search. This dataset consists of 673 cell types,
where each cell type is associated with an average of
72 and a median of 9 marker genes. To search this
database given a list of query genes, we use the hyper-
geometric test for the overlap between the query gene
set and the marker genes.

1−
kc−1∑
k=0

(
Kc

k

)(
N−Kc

n−k

)(
N
n

) (1)

where N is the total number of genes, n is the num-
ber of genes in the query set,Kc is the number of genes
for the cell type, and kc is the number of genes that
overlap between the query and the cell type. This is
the probability that, given that the query gene set is
randomly sampled, the overlap is greater than or equal
to the actual overlap. To find the top cell types for a
query gene set, this p-value is calculated for all cell
types and ranked in ascending order.
CellMeSH is a new database that maps cell types

to their associated genes. It was created by combining
two existing literature indices: the MEDLINE citation
index [45], which contains publication abstracts with
associated metadata, and the gene2pubmed database
[46], which contains a mapping of genes to publica-
tions. The key metadata from MEDLINE are the as-
sociated Medical Subject Headings, or MeSH terms
[47], a subset of which represent cell types. For each
cell type from MeSH, we found all publications where
they occur, and all genes that occur in the same publi-
cations, thus creating an association between cell types
and genes. This database contains 292 cell types with
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at least one associated gene. Searching this database
can be done using a hypergeometric test. A query re-
turns an ordered list of cell types sorted by relevance.

Implementation
UNCURL-App and the associated backend tools and
databases are written in Python. The primary pack-
age is the uncurl-app package, which uses the Flask
library as the server backend. Visualization is done
in javascript using the plotly library [48]. The back-
end, which interfaces with the dimensionality reduc-
tion and differential expression methods, is provided
by the uncurl-analysis package, and the databases are
provided by the cellmarker and cellmesh packages.

Deployment
UNCURL-App has been tested to run on Ubuntu
16.04 and above, and can be deployed on a local or
cloud server using Docker. We have created an exam-
ple UNCURL-App deployment at https://uncurl.
cs.washington.edu/. This deployment limits its up-
load size to 100MB.
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Table 1 Runtime of UNCURL-App. These times were based on an Amazon Web Services (AWS) t2.medium instance, with two
processors and 4GB of memory. Times can be reduced based on the settings; using UMAP for dimensionality reduction will
greatly reduce the time taken for that step. All times are in seconds.

Dataset # of Cells UNCURL Dimensionality
Reduction
(tSNE)

Differential Ex-
pression

Total

Tabula Muris Lung 5449 127 96 11 234
10X PBMC 8000 104 129 9 242
Split-seq Spinal Cord 22614 268 550 16 834

Figure 1 Overview Major components and workflow of UNCURL-App. Given the user-uploaded gene-cell matrix: 1) UNCURL is run on
the data, producing a clustering; 2) dimensionality reduction is used for visualization, and 3) differentially expressed genes are identified.
Then, the user may do cell type annotation using database queries on the top genes, and perform interactive re-clustering.
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Figure 2 User Interface Main user interface of UNCURL-App. The top left contains the scatterplot, showing a views of the cells and
clusters. The top right is a barplot containing the top genes per cluster. Clicking on a cluster in the scatterplot updates the top genes. On
the bottom is the database query view, which is used to identify cell types present in the dataset. Options: (1) These are options for
what type of visualization to show in the scatterplot."Cluster means" shows one point for each cluster. "Post-processed cells" shows a
dimensionality-reduced view of cells that takes the W matrix returned by UNCURL as input. "Pre-processed cells" (default) shows a
similar view, but using the original data as input for dimensionality reduction. "Label heatmap" shows a comparison of two cell label sets.
"Dendrogram heatmap" shows a clusters vs genes dendrogram. (2) Options for how to color the cells/points in the scatterplot. Can be
based on cluster, gene expression, or a custom label set. (3) Options for how to identify the top genes. Can be 1-vs-rest or pairwise,
p-value or ratio. (4) "Get cell/cluster info": get read/gene count for the selected cell and cluster. "Recluster": options to merge, split,
delete, or create a new cluster. "Reanalyze": options to re-run the whole analysis. (5) There are a number of databases that can be used
for cell type identification, including CellMarker, CellMeSH, and Gene Ontology.
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Figure 3 Splitting/Merging clusters Process of splitting and merging clusters works in UNCURL-App. Both processes begin with the
M and W matrices returned by UNCURL, and the cluster(s) to merge or split. In order to split a cluster, a new initialization for M and
W is created by running k-means on the cluster of cells to be split. Then, the UNCURL optimization process is re-run to create new
matrices. The process for merging is analogous. A new initialization is created using the mean of the selected cells, and then the UNCURL
optimization process is re-run to create a new M and W .
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Figure 4 Tabula Muris Lung Examples of running UNCURL-App on the Tabula Muris lung dataset from [7] (a) (c) (e) These show
the same tSNE scatterplot, with clusters from the initial clustering and labels from CellMeSH, the clusters and labels after splitting cluster
4, and the ground truth labels from the original paper, respectively. (b) (d) These show the most relevant cell types returned by
CellMeSH for the given clusters. Cell types matching ground truth labels are highlighted in green. (f) This is a heatmap showing the
relationship between the ground truth clusters and the clusters generated by UNCURL-App, after the split. The colors indicate the
proportion of the ground truth cluster (left) that overlap with the UNCURL-App cluster (bottom).
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Figure 5 10X PBMC Examples of running UNCURL-App on the 10X PBMC dataset from [37] (a) (f) (h) These show the same tSNE
scatterplot, with clusters from the initial clustering and labels from CellMeSH, the clusters and labels after merging clusters 2 and 6 and
creating cluster 9, and the ground truth labels from the original dataset, respectively. (b) (g) These show the most relevant cell types
returned by CellMeSH for the given clusters. Cell types matching ground truth labels are highlighted in green. (d) This shows the sum of
the gene expressions of the two genes S100A8 and S100A9. (e) This shows the process by which the user can select a group of cells to
create a new cluster, using the "Box Select" tool from plotly. (i) This is a heatmap showing the relationship between the ground truth
clusters and the clusters generated by UNCURL-App, after the split. The colors indicate the proportion of the ground truth cluster (left)
that overlap with the UNCURL-App cluster (bottom).
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Figure 6 Spinal Cord Examples of running UNCURL-App on the split-seq spinal cord dataset from [9] (a) tSNE scatterplot, with 10
clusters from the initial clustering and labels from CellMeSH. Cluster 8 which consists of multiple disconnected groups of cells is
highlighted. (b)Clusters and labels from CellMeSH after splitting cluster 8. (c) Clusters and labels after refinement with ground truth
labels from the original dataset. (d) This is a heatmap showing the relationship between the ground truth clusters and the clusters
generated by UNCURL-App, after the split. The colors indicate the proportion of the ground truth cluster (left) that overlap with the
UNCURL-App cluster (bottom).
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