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Summary 
 
Wild relatives of tomato are a valuable source of natural variation in tomato breeding, as many                
can be hybridized to the cultivated species (Solanum lycopersicum). Several, including Solanum            
lycopersicoides, have been crossed to S. lycopersicum for the development of ordered            
introgression lines (ILs). Despite the utility of these wild relatives and their associated ILs,              
limited finished genomes have been produced to aid genetic and genomic studies. We have              
generated a chromosome-scale genome assembly for Solanum lycopersicoides LA2951 using          
PacBio sequencing, Illumina, and Hi-C. We identified 37,938 genes based on Illumina and             
Isoseq and compared gene function to the available cultivated tomato genome resources, in             
addition to mapping the boundaries of the S. lycopersicoides introgressions in a set of cv. VF36                
x LA2951 introgression lines (IL). The genome sequence and IL map will support the              
development of S. lycopersicoides as a model for studying fruit nutrient/quality, pathogen            
resistance, and environmental stress tolerance traits that we have identified in the IL population              
and are known to exist in S. lycopersicoides. 
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Introduction 
 
Tomato is the most widely consumed fruit crop with the greatest value world-wide. It is relatively                
rich in essential nutrients, particularly provitamin A, folate, vitamin C, vitamin E and vitamin K,               
iron, and calcium although these usually remain below their theoretical maximum levels            
because they are rarely targets for breeding. In addition, yield is often reduced significantly by               
losses caused by adverse environmental conditions, disease, pest damage, and post-harvest           
loss. The narrow germplasm base currently deployed in most breeding programs limits the             
potential for tomato improvement. Close wild relatives present opportunities to add enormous            
genetic diversity to tomato breeding programs and the means to identify and study genes that               
underpin useful novel variation. At least 14 wild relatives can be crossed to cultivated tomato,               
with varying degrees of difficulty, and have been used for decades in breeding programs              
(Grandillo et al., 2011). S. lycopersicoides, belongs to an outgroup to the tomato clade, and               
shows enhanced cold tolerance (Zhao et al., 2005), increased anthocyanin content (Rick et al.              
1994), exceptional resistance to Botrytis cinerea (Guimarães, Chetelat and Stotz, 2004; Davis et             
al., 2009; Smith et al., 2014) and resistance to Pseudomonas (Mazo-Molina et al., 2019). While               
introgression lines (ILs) are available that can assist identification of alleles and mapping of loci               
conferring beneficial traits from S. lycopersicoides (Canady, Meglic and Chetelat, 2005), few loci             
have been cloned partly due to a lack of a reference genome assembly for this species. Despite                 
the importance of wild accessions in tomato breeding, only one such species, S. pennellii, has a                
reference quality genome (Bolger et al., 2014; Schmidt et al., 2017). Four species, S.              
pimpinellifolium (Tomato Genome Consortium, 2012; Razali et al., 2017), S. galapagense           
(Strickler et al., 2015), S. arcanum and S. habrochaites (The 100 Tomato Genome Sequencing              
Consortium et al., 2014) have draft de novo assemblies with small contig size and some have                
no gene annotation.  
 
Of the biparental tomato IL populations developed to date, S. lycopersicoides LA2951 x S.              
lycopersicum cv. VF36 ILs (Canady, Meglic and Chetelat, 2005) represents the widest cross.             
Due to the lack of a S. lycopersicoides genome, introgression boundaries of these lines are               
typically defined based on the published tomato reference genome (Tomato Genome           
Consortium, 2012). Genetic mapping resolution depends on these boundaries being          
well-defined and assumes lack of genome rearrangements or other modifications. Traditionally           
boundaries were defined by PCR markers dispersed across the genome, but more recent             
approaches increase precision by using SNPs derived from resequencing or RNA-Seq data            
(Gonda et al., 2019) (Chitwood et al., 2013). By basing introgression coordinates on the Heinz               
reference genome in wide crosses, information regarding differences in genome size is missing,             
which is relevant when comparing cultivated tomato to wild accessions that often have larger              
genome sizes. While many differences in genome size are accounted for by repetitive elements,              
gene gain and loss are also important to consider especially in regard to rapidly evolving genes                
involved in abiotic stress tolerances and resistance to biotic challenges.  
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To improve understanding of the genes responsible for agriculturally important traits and            
increase the utility of wild species introgression lines, we generated a chromosome scale,             
reference genome and annotation for S. lycopersicoides LA2951. We compared the genome to             
S. pennellii and S. lycopersicum to identify unique features that may be key to understanding               
the genetics of abiotic and biotic stress tolerance in S. lycopersicoides. Using RNA-seq, we              
mapped the introgressions of the ILs to both parental genomes to refine the genetic map of the                 
population. The genome and associated map will facilitate improved understanding of the genes             
responsible for agriculturally important traits enabling their targeted introduction into tomato           
breeding lines. 

 
Results  
 
Genome assembly and feature prediction 
 
S. lycopersicoides LA2951 was selected for sequencing due to its traits of interest and the               
existence of introgression lines previously generated using this accession (Canady, Meglic and            
Chetelat, 2005). We assembled approximately 17 million PacBio reads with an average length             
of 6.29 kbp totaling 107 Gbp using two different genome assembly strategies relying on Canu               
(Koren et al., 2017) and Falcon (Chin et al., 2016). Canu produced an assembly with 17,507                
contigs and an N50 value of 139,475. This was the more contiguous assembly which captured a                
larger proportion of the BUSCO set (Waterhouse et al., 2017)(Supplemental table 1 ). Thus this              
assembly was selected for further scaffolding using Dovetail Chicago and Hi-C. The final             
assembly is 1.2 Gb in length (Table 1 ) and captures 97% of the BUSCO set (Supplemental                
figure 1 ). The genome assembly is larger than the S. lycopersicum assembly, which was              
expected based on kmer analysis (Table 1 ) and from previous observations (Rick et al., 1986).               
The final assembly N50 was 93.9 Mb and 90% of the assembly was found in 12                
pseudomolecules consistent with most of the assembly being captured by          
pseudochromosomes. Gaps within scaffolds ranged from 1 to 7,590 bp with a median of 970 bp.                
Approximately 1% of sites were found to be heterozygous, which is not surprising for a self                
incompatible species. 
 
Figure 1 shows the twelve pseudochromosomes, along with repeat density and gene feature             
density. About 68% of the sequence contained in the pseudochromosomes was found to consist              
of repeats (Figure 2 , Supplemental table 2 ). Genome annotation predicted a total of 37,938              
putative genes (34,239 located on pseudomolecules) with a mean length of 4,388 bp             
(Supplemental table 3 ). Genes had an average of 5.3 exons and a cds length of 1,232. We were                  
able to identify 96% of the BUSCO set in the protein annotation (Supplemental figure 2 ).  
 
Of all repeat classes, the long terminal repeat retrotransposons (LTR-RT) constituted the            
greatest proportion (~57%) of the S. lycopersicoides genome, as was the case with S.              
lycopersicum and S. pennellii genomes (Supplemental tables 2, 4, 5; Figure 2 ). For LTR-RT              
elements, Gypsy-type LTR-RTs were proportionately more abundant than Copia-type elements          
in each of the three genomes (Supplemental Tables 2, 4, 5). This result had been reported                
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previously for S. lycopersicum and S. pennellii (Bolger et al., 2014). S. lycopersicoides also had               
a greater proportional abundance of younger LTR-RTs (with insertion times < 1MYA) compared             
to the other two genome assemblies (Supplemental figure 3). 
 
Functional annotation and gene families 
 
For annotation the automated functional annotation pipeline Mercator was used which reached            
classification and annotation rates in line with high quality genomes (Schwacke et al., 2019).              
The Mercator classification was used to investigate potential gene family expansion in the             
Solanum lycopersicoides genome assembly. This showed that in the case of the histone MLK              
kinase, there are six genes located on chromosomes 1, 8, 10, 11 and two copies on                
chromosome 12 both in S. pennellii and S.lycopersicum. However, in S. lycopersicoides there             
were three copies each in tandem configuration on chromosomes 1 and 8 (Supplemental table              
6 ). In the case of protein elongation, there were multiple copies of genes encoding enzymes               
involved in synthesizing diphthamide, a modified histidine found only in elongation factor-2            
(EEF2) including two DPH1 (Solyd06g065750, Solyd06g065840) and two DPH4         
(Solyd12g069970, Solyd12g070080) diphthamide synthesis genes in S. lycopersicoides,        
respectively, but only one each in S. lycopersicum and S. pennellii. Similarly, there were twice               
as many deoxyhypusine synthase genes (contig2598g050010, Solyd01g058930,       
Solyd01g058950, Solyd02g069410). Deoxyhypusine synthase catalyzes the first step in         
conversion of a lysine residue in eIF5A to the non-standard amino acid, hypusine using              
spermidine. Similarly, there were twice as many deoxyhypusine hydroxylase proteins (catalysing           
the second step in the synthesis of hypusine) (Solyd08g069360, Solyd08g069410) presumably           
generated by tandem duplication, encoded by the S. lycopersicoides genome compared to S.             
lycopersicum. This hypusine residue is essential for activity of eIF5A. 

Interestingly, within secondary metabolism, both the MVA and MEP pathways providing           
precursors for isoprenoid biosynthesis were expanded in S. lycopersicoides. The domesticated           
tomato and the S. pennellii genomes feature three HMG-CoA Synthases each, while the S.              
lycopersicoides genome features five (Solyd08g053200, Solyd08g072110, Solyd08g072130,       
Solyd08g072140, Solyd12g068050), due to a tandem expansion on chromosome 8.          
Furthermore, there might be more HMG-CoA reductase genes in S. lycopersicoides, but several             
were detected on unanchored contigs, only. Similarly, in the MEP pathway, in contrast to the               
domesticated tomato and S. pennellii, which feature one gene each encoding the D-xylulose             
5-phosphate transporter, DXR 1-deoxy-D -xylulose 5-phosphate reductase,      
4-diphosphocytidyl-2-C-methyl-D -erythritol kinase and 4-hydroxy-3-methylbut-2-enyl    
diphosphate reductase, S. lycopersicoides features two genes in each case. 

We detected an expansion of some genes involved in flavonoid synthesis and modification.             
Whilst dihydroflavonol 4-reductase was triplicated (Solyd02g073780, Solyd02g073830,       
Solyd02g073850) compared to the domesticated tomato and S. pennellii,         
flavonol-3-O-glycoside-rhamnosyltransferase existed in two copies on chromosomes 3 and 5 in           
the genome of domesticated tomato, S. pennellii showed a tandem duplication of the gene on               
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chromosome 3 and S. lycopersicoides showed a (near) tandem duplication on both            
chromosomes (Solyd03g076070, Solyd03g076130, Solyd05g056030, Solyd05g056040).     
Finally, we detected a putative expansion of the gene family encoding Phenylalanine Ammonia             
Lyase (PAL) in S. lycopersicoides. 

In terms of co-enyzme metabolism, the genome featured several expansions in chlorophyll            
metabolism. 
 
When investigating potential mechanisms for adaptations to an adverse environment, we noted            
that CAU1 encoding a histone methylase, which is an epigenetic suppressor of Ca signalling              
involved in stomatal closure, was duplicated in S. lycopersicoides, as well as an expansion of               
the salt overly sensitive pathway. Here, there was one SOS2 kinase which was duplicated in               
both wild tomato species compared to domesticated tomato. 
 
In addition, the domesticated tomato as well as the S. pennellii genome harbors two SOS1               
sodium:protein antiporters whereas there were four in S. lycopersicoides due to a tandem             
triplication on chromosome 4. 
 
Related to immunity, we detected an expansion in S. lycopersicoides compared to the             
domesticated tomato genome and S. pennellii of genes encoding members of the G protein              
family (eight versus five), and AGG1/2 G-gamma component (four versus three in S.pennellii or              
two in the domesticated genome) as well as for the LysM-RLK Lyk5 (two in S.lycopersicoides               
Solyd02g083440, Solyd02g083470). Related specifically to effector-triggered immunity, SGT1        
exists in four copies (one being unplaced) but only two in the case of S. pennellii and                 
domesticated tomato and there is a dramatic expansion of NLR receptor-encoding genes. Other             
genes encoding LysM-RLKs, which are typically involved in symbiosis or defense response,            
depending on species (Buendia et al., 2018), were expanded in S. lycopersicoides            
(Solyd02g078930, Solyd09g070440). 
 
A total of 159,589 out of 208,760 proteins from Capsicum annum, S. tuberosum, S.              
lycopersicoides, S. pennellii, and S. lycopersicum were clustered into 25,763 orthogroups           
(Figure 3). There were 14,270 orthogroups containing 103,354 proteins that included at least             
one representative from each of the five species. A total of 29 gene families containing 185                
genes were found to be unique to S. lycopersicoides. A total of 2,429 orthogroups containing               
13,419 genes were unique to Solanum.  
 
Genome synteny and evolution 
 
Alignment and visualization of paired chromosomal segments of at least 8kb and 92% sequence              
identity shows the high degrees of synteny between S. lycopersicoides and both S.             
lycopersicum and S. pennellii (Figure 4 ). Syntenic dot plots performed at a finer scale identified               
small inversions relative to the tomato genome (Supplemental figure 4). One inversion found on              
chromosome 10 is supported by a previously characterized inversion on chromosome 10 in S.              
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lycopersicoides relative to S. lycopersicum and S. pennellii (Canady, Ji and Chetelat, 2006).             
Another inversion is found near the beginning of chromosome 4. 
 
Introgression mapping 
 
RNA-Seq libraries from 71 unique S. lycopersicum cv. VF36 x S. lycopersicoides LA2951 IL              
accessions were used to assemble genotype maps of the population (Sx-Sy). The map based              
on the current domestic parental reference genome (SL4.0) provides the coordinates delimiting            
the introgression boundaries within the reference parent background (Sx). An additional map            
based on the present S. lycopersicoides reference provides the coordinates which define the             
introgressed regions within the wild donor parent (Sy) (Figure 5 ). Approximately 87% of the S.               
lycopersicoides reference genome chromosomes is represented across these IL accessions.          
Our analysis revealed numerous previously unidentified introgressed segments and         
chromosomal features. For example, LA4245 is believed to harbor a single introgression on             
chromosome 4 (Canady, Meglic and Chetelat, 2005). Our results show that LA4245 harbors an              
additional ~400kb introgressed region at the distal end of the short arm of chromosome 4. In                
addition, although this introgression appears on the end of the chromosome within LA4245, it is               
derived from a region closer to the centromere of chromosome 4 in S. lycopersicoides (Sy). This                
example exposes the risks of low resolution genotype mapping in missing introgressed            
segments and highlights the potential for error in downstream analyses. Without adequate            
genotyping, QTL mapping may be suspect. The present genome allowed for high resolution             
genotype mapping of associated ILs, providing a resource for the community to map QTLs more               
efficiently and to characterize the variation available from S. lycopersicoides. 
 
Discussion 
The last few years have seen a tremendous advance in plant genomic sciences driven by               
technologies such as long read PacBio and lately Oxford Nanopore sequencing (Bolger et al.,              
2019) as well as new technologies to obtain long range structural information such as optical               
mapping and Hi-C based information (Schreiber, Stein and Mascher, 2018). Indeed, it has been              
shown that these technological advances can be used to get (near) chromosome scale             
assemblies of sub-Gigabase genomes (Belser et al., 2018) and that they are particularly useful              
to unravel the genomes of wild species which are close relatives of important crops providing               
information about exotic germplasm and its use (Wu et al., 2018). However, whilst this would be                
particularly useful in the tomato clade, currently reference-style assemblies exist only for the             
domesticated tomato (Tomato Genome Consortium, 2012; Razali et al., 2017) and for the wild              
species Solanum pennellii (Bolger et al., 2014; Schmidt et al., 2017). Here, we present a novel                
high-quality chromosome-scale assembly for the genome of the wild tomato relative S.            
lycopersicoides, which represents an exotic germplasm donor, as together with its sister species             
S. sitiens it makes up the Solanum sect. Lycopersicoides, which is sister to the sect.               
Lycopersicon clade harboring the domesticated tomato (Knapp and Peralta, 2016). Unlike           
typical members of sect. Lycopersicon, S. lycopersicoides does produce large quantities of            
anthocyanins in the fruit, which might explain it harboring more          
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flavonol-3-O-glycoside-rhamnosyltransferase and flavonol-3-O-glycoside-rhamnosyltransferase   
genes.  
 
By making use of long read sequencing technology and Dovetail scaffolding, we provide not              
only a genome, where >90% of the genome can be gathered in 12 chromosome-like scaffolds,               
but we also show very high completeness of the gene content. This is of particular importance                
as S. lycopersicoides has been used to establish an introgression line population (Canady,             
Meglic and Chetelat, 2005) which has been used to map several QTL for abiotic and biotic                
stress tolerance already, given the enhanced resilience of this wild species. Thus, this genome              
provides a unique reference to fine map and find causative genes underlying QTL when using               
this IL population. In line with previous marker based data, we also observed an inversion on                
chromosome 10 of the cultivated tomato relative to the ancestral S. lycopersicoides            
configuration (Pertuzé, Ji and Chetelat, 2002). We found an additional inversion between the             
cultivated tomato and S. lycopersicoides on chromosome 4 which had previously been            
speculated to be a hotspot as well (Albrecht and Chetelat, 2009).  
 
In addition to improving QTL analyses, we also demonstrate the importance of this genome in               
assessing gene expression data. Given the large evolutionary distance between S.           
lycopersicoides and the domesticated tomato genome, simply mapping RNA-Seq data to the            
domesticated gene models showed a low mapping rate. Mapping to closely related relatives has              
been used (Hekman, Johnson and Kukekova, 2015) and was recommended as a better             
strategy than transcriptome assemblies (Vijay et al., 2013). Our data shows that this approach              
can be problematic, especially with distant crosses. While sophisticated bioinformatics pipelines           
allowing more flexible read alignment and iterative analysis of data and or normalization (Zhou              
et al., 2019) can reduce these problems, a high-quality reference genome provides the best              
solution. To improve gene expression analyses within ILs we propose a reference grafting             
strategy. Using the coordinates from the IL map and both parental reference genomes we              
assemble synthetic genomes specific for each IL (Supplemental Figure 5 ). These grafted            
reference genomes dramatically improve RNA-Seq mapping efficiency within introgressed         
regions of ILs. IL populations can be powerful tools for both breeding and research communities               
and the  wild reference genome can improve their utility. 
 
Finally, we show that our high-quality genome, together with the available tomato genome data,              
allows for the assessment of mechanisms of potential adaptation driven by, for example,             
tandem duplications leading to family expansion.  
 
Experimental Procedures 
 
Plant Material 
LA2951 seeds were obtained from TGRC and transferred to soil and further cultivated in a               
greenhouse supplemented with artificial light to a light intensity of at least 200 µmol m−2 s−1                
generated using Phillips hpi-t plus 400w/645 metal-halide lamps for 16 h a day. To preserve the                
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genotype of the used cultivar, one plant was chosen and propagated by cuttings, which were               
used for DNA extraction. 
 
RNA was prepared from fruit, flowers, and leaves by grinding tissue in liquid N2 into very fine                 
powder, aliquoting 200mg of tissue into a 2ml tube, and extracting total RNA using Qiagen               
RNeasy mini kit. RNA-Seq libraries were prepared following the method described in (Zhong et              
al., 2011). 
 
Genome sequencing and assembly 
 
A single S. lycopersicoides LA2951 plant was chosen for all genome sequencing efforts. DNA              
was extracted from young leaves as previously described in (Bolger et al., 2014) and              
sequenced using PacBio P6C4 technology at Weill Cornell. In addition to this, one Illumina              
Nextera library, three Illumina TruSeq PCR-based and two Illumina PCR-free libraries were            
generated and sequenced on an Illumina MiSeq at Research Center Juelich following standard             
Illumina protocols. The PacBio sequence was assembled using Canu (main version 1.3, commit             
b147f45b114a9090568d78 fe409557bf5aeeb74f, with the parameter "genomeSize=1.3g")      
(Koren et al., 2017) and Falcon (Chin et al., 2016) assemblers (Table 1). BUSCO (Waterhouse               
et al., 2017) was used to assess the quality of the draft genome assemblies (Figure 2). The                 
Canu genome was polished using Quiver with PacBio reads followed by three iterative rounds              
of Pilon (Walker et al., 2014) with Illumina paired-end reads and then scaffolded with SSPACE               
(Boetzer et al., 2011) and Illumina mate pair sequences (Table 1). The assembly was submitted               
to Dovetail Genomics for further scaffolding using Chicago and Hi-C technologies. Scaffolding            
gaps were filled with PBJelly (English et al., 2012) using PacBio reads. Heterozygosity was              
estimated by mapping Illumina reads from genomics DNA to the final assembly with hisat2 and               
calling SNPs with the GATK (Poplin et al., 2018) pipeline. 
 
Annotation 
 
For gene model prediction, de novo repeats were predicted using RepeatModeler, known            
protein domains were removed from this set which was then used with RepeatMasker in              
conjunction with the Repbase library. For gene prediction, RNA was prepared from leaves,             
flowers, and fruits and sequenced on one lane of Illumina. Reads were mapped to the genome                
with hisat2 (Kim, Langmead and Salzberg, 2015). Portcullis (Mapleson et al., 2018) and Mikado              
(Venturini et al., 2018) were used to process the resulting bam files. PacBio IsoSeq data was                
also generated from a pool of leaves, fruits, and flowers and corrected using the Ice pipeline.                
Augustus and Snap were trained and implemented through the Maker pipeline, with Iso-Seq,             
proteins from Swiss-prot, and processed RNA-Seq added as evidence. Functional annotation           
and classification was performed using the automated Mercator pipeline (Schwacke et al.,            
2019). 
 
Repeat Analysis 
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The genomes of S. lycopersicoides, S. lycopersicum, and S. pennellii were analyzed for LTR              
retrotransposons using LTRharvest (Ellinghaus, Kurtz and Willhoeft, 2008) with the parameters           
“-seqids yes -minlenltr 100 -maxlenltr 5000 -mindistltr 1000 -maxdistltr 20000 -similar 85 -mintsd             
4 -overlaps best”. The genomes were then analyzed using LTR_finder (Xu and Wang, 2007)              
with parameters “-D 20000 -d 1000 -L 5000 -l 100 -p 20 -C -M 0.85 -w 0”. LTR_retriever was                   
used to filter the LTR-RT candidates using default parameters, except that the neutral mutation              
rate was set at 1.0x10 -8 using the -u parameter. This neutral mutation rate was selected as it                 
has been used previously for tomatoes (Lin et al., 2014), assuming one generation per year               
(Beddows et al., 2017).  
 
Candidate miniature inverted-repeat TEs (MITEs) were obtained using MITE-Hunter (Han and           
Wessler, 2010), with default parameters except for “-P 0.2”. Output candidate MITEs were             
manually checked for their TSDs and TIRs as suggested in the MITE-Hunter manual. The              
candidate MITEs were also assigned to superfamilies based on best hits obtained by BLAST              
against the P-MITE database (http://pmite.hzau.edu.cn/download/), with an e-value cutoff of          
1e -5. Any candidates that could not be unambiguously classified in this way were classified as               
unknowns.  
 
The genomes were then masked using the repeat libraries generated by LTR_retriever and             
MITE-Hunter using Repeatmasker. Additional repeats were then identified de novo in the            
genomes using RepeatModeler. These repeats were classified using blastx against the Uniprot            
and Dfam libraries and protein-coding sequences were excluded using the script           
ProtExcluder.pl (Campbell et al., 2014). The masked genomes were then re-masked with            
Repeatmasker and the corresponding repeat libraries generated by RepeatModeler. Coverage          
percentages for the various repeat types were calculated using the fam_coverage.pl and            
fam_summary.pl scripts, both of which are included with LTR_retriever. All coverage           
percentages were calculated based on the length of the twelve chromosomes as the size for               
each genome. 
 
Genome Visualizations and Synteny 
 
Circular genome visualizations were generated using Circos (Krzywinski et al., 2009). For S.             
lycopersicoides, gene and repeat densities were calculated by generating 1MB windows and            
calculating percent coverage for each feature type (either annotated gene features or repeat             
elements identified in the repeat analysis) using a bedtools (Quinlan and Hall, 2010; Quinlan,              
2014) command of the form: bedtools coverage -a [windows.bed] -b <( sortBed -i [gene or               
repeat .bed file] ) > output.tab. 
  
For synteny analysis, alignment of S. lycopersicoides to S. lycopersicum (SL4.0) and S. pennellii              
LA0716 v 2 (Bolger et al., 2014) was conducted with nucmer using the parameters              
--maxgap=500 --mincluster=100, followed by delta-filter -r -q -i 92 -l 8000 and show-coords.             
Output was then used for links in Circos. 
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Gene family analysis 
 
For the Venn diagram, proteins from C. annuum v1.55 (Kim et al., 2014), S. tuberosum v3.4, S.                 
lycopersicoides v 1.0 , S. pennelli v 2 (Bolger et al., 2014), and S. lycopersicum Heinz v 4.0                 
(Tomato Genome Consortium, 2012) were clustered into orthogroups using OrthoFinder v 2.3.3            
(Emms and Kelly, 2015).  
 
Introgression line maps 
 
RNA-Seq reads were first processed with Trimmomatic-0.36 (Bolger, Lohse and Usadel, 2014)            
to trim and filter low quality reads. Using Bowtie2 (Langmead and Salzberg, 2012) the reads               
were then aligned to databases of ribosomal RNA (Quast et al., 2013) and plant virus               
sequences (Zheng et al., 2017) to filter out non-mRNA reads. The reads were then used to call                 
SNPs following the best practices in the Genome Analysis Toolkit documentation (McKenna et             
al., 2010). Both S. lycopersicum (SL4.0) and S. lycopersicoides reference genomes were used             
to establish a set of SNP markers within the population which distinguish between background              
and introgressed regions. Using a custom python script, SNPs that did not match either              
reference genome were filtered out. Only loci that were homozygous for a single parent or               
heterozygous with one base from each parent were used. This high density genotype marker              
map was then converted into a map of introgressions using SNPbinner (Gonda et al., 2019).               
Again, both parental reference genomes were used to map the introgression boundaries within             
the context of the domesticated background, as well as to positively define the introgressed              
segments within S. lycopersicoides. 
 
Accession Numbers 
The genome sequence is available at Solgenomics.net (Fernandez-Pozo et al., 2015) at 
https://solgenomics.net/organism/Solanum_lycopersicoides/genome 
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Figures 

 
Figure 1 shows the 12 Solanum lycopersicoides chromosomes. Circos diagram illustrating the 
genome of S. lycopersicoides with (A) gene densities in the outer data track and (B) repeat 
densities in the inner data track plotted relative to chromosome position. Densities are 
calculated for 1 Mb windows and range from 0% to 100%. Different colors are used for values 
falling within 0% to 25%, 25% to 50%, 50% to 75%, and 75% to 100%. 
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Figure 2 shows the Proportional contributions of component classes to the genomes of (A) S. 
lycopersicoides, (B) S. lycopersicum, and (C) S. pennellii. These figures relate to the 12 
chromosomes for each genome, and the size of each 12-chromosome assembly is shown at the 
bottom of each panel.  
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Figure 3  shows number of orthogroups overlapping amongst species. Values in brackets are 
the number of genes contained in the orthogroups. 
 

 
Figure 4 shows syntenic relationships (A) between S. lycopersicoides and S. lycopersicum as 
well (B) between S. lycopersicoides and S. pennellii. Lines in the center of the diagram link 
aligned sequences from one genome to the other. The color of the lines matches the color given 
to the corresponding S. lycopersicum or S. pennellii chromosome in the illustration. 
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Figure 5 shows the mapping of S. lycopersicoides introgression lines onto the genome of S. 
lycopersicoides. Green indicates homozygous S. lycoperscoides mapping and blue indicates a 
mapping of heterozygous regions. 
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Tables 
Table 1 Summary statistics of S. lycopersicoides and other tomato genome assemblies 
 

 S. lycopersicoides  S. pennellii  v2 

S. lycopersicum 

Heinz v 4.0 

No. of pseudomolecules 12 12 12 

longest sequence (Mbp) 133.5 109.3 90.9 

Contig N50 (bp) 253,764 60,347 6,007,830 

total length (Mbp) 1,152 926 782.5 

Total size (bp) of unanchored contigs 

(% of assembly) 135,089,793 (10.5) 

63,101,713 

(6.4%) 9,643,250 (1.2%) 
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