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ABSTRACT 17 

Efforts to understand activity patterns of bees, our most important pollinators, often rely 18 

on opportunistically collected museum records to model temporal shifts or declines. This type of 19 

data, however, may not be suitable for this purpose given high spatiotemporal variability of 20 

native bee activity. By comparing phenological metrics calculated from intensive systematic 21 

inventory data with those from opportunistic museum records for bee species spanning a range of 22 

functional traits, we explored biases and limitations of data types to determine best practices for 23 

bee monitoring and assessment. We compiled half a million records of wild bee occurrence from 24 

opportunistic museum collections and six systematic inventory efforts, focusing analyses on 45 25 

well-represented species that spanned five functional traits: sociality, nesting habits, floral 26 

specialization, voltinism, and body size. We then used permutation tests to evaluate differences 27 

between data types in estimating three phenology metrics: flight duration, number of annual 28 

abundance peaks, and date of the highest peak. We used GLMs to test for patterns of data type 29 

significance across traits. All 45 species differed significantly in the value of at least one 30 

phenology metric depending on the data type used. The date of the highest abundance peak 31 

differed for 40 species, flight duration for 34 species, and the number of peaks for 15 species. 32 

The number of peaks was more likely to differ between data types for larger bees, and flight 33 

duration was more likely to differ for larger bees and specialist bees. Our results reveal a strong 34 

influence of data type on phenology metrics that necessitates consideration of data source when 35 

evaluating changes in phenological activity, possibly applicable to many taxa. Accurately 36 

assessing phenological change may require expanding wild bee monitoring and data sharing. 37 
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INTRODUCTION 40 

Accurately estimating species phenology is central to understanding ecological systems 41 

(J. Forrest & Miller-Rushing, 2010; Inouye, 2008; Nakazawa & Doi, 2012). When species are 42 

active determines the abiotic conditions they face; the identity, quality, and quantity of resources 43 

available to them; and the specific competitors and predators they encounter. Yet the relative 44 

timing of ecosystem components can be difficult and costly to assess. The activity pattern of any 45 

given species may vary both temporally (across years) and spatially, in response to a cacophony 46 

of abiotic and biotic conditions, which themselves fluctuate at various scales (de Keyzer et al., 47 

2017). The more environmentally-sensitive and species-rich the taxon of interest, the more 48 

complicated it can be to determine the magnitude, or even the direction, of any generalized 49 

phenological trends (de Keyzer et al., 2017; Primack et al., 2009). On top of these biological 50 

considerations, the amount and type of data necessary to evaluate phenological patterns or 51 

navigate known biases remains unclear (de Keyzer et al., 2017; Isaac & Pocock, 2015; Miller-52 

Rushing et al., 2010; Strien et al., 2008). A better understanding of these consequential 53 

uncertainties is necessary to reliably determine the effects of environmental change on both 54 

natural and managed systems. 55 

Native bees include highly variable and diverse taxa that are of particular interest for 56 

phenological studies due to their value as pollinators and their vulnerability to ecosystem change 57 

(Fabina et al., 2010; Ogilvie & Forrest, 2017; Rafferty & Ives, 2011). Many native bees are 58 

solitary, and respond to a host of environmental cues to time emergence from overwintering 59 

nests, including changes in soil moisture from snowmelt or precipitation, and temperature, which 60 

can influence the rate at which larvae exhaust food supplies and undergo metamorphosis 61 

(Danforth, 1999; Helm et al., 2017; Michener, 2007). The interplay of species-specific 62 
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demography and responses to abiotic emergence cues is poorly understood for the majority of 63 

native bee species, and may or may not align with factors determining local seed germination 64 

and bloom time (Aldridge et al., 2011; Danforth, 1999; Miller-Rushing et al., 2010). The 65 

potential for temporal mismatches between pollinators and their host plants, which could result 66 

in inadequate pollination for plant reproduction and nutritional deficits for bees, has inspired 67 

many recent studies of phenological shifts. Studies of this phenomenon have returned mixed 68 

results, with evidence both of problematic disruptions of historical pollinator-plant relationships 69 

(Aldridge et al., 2011; Burkle et al., 2013; Robbirt et al., 2014; Schenk et al., 2018) and of 70 

inconclusive or parallel shifts in emergence and bloom time (Bartomeus et al., 2011; J. R. K. 71 

Forrest, 2015; J. R. K. Forrest & Thomson, 2011; Ogilvie & Forrest, 2017). Little attention, 72 

however, has been paid to how the type, quantity, or quality of data used to measure phenology 73 

in bees – or other species – may produce conflicting conclusions. 74 

To assess the vulnerability of plant-pollinator relationships to climate change, we first 75 

need to examine whether data used to assess bee phenology accurately reflects real changes in 76 

bee activity, as opposed to noise from unevenly-sampled biological variability, biased collecting 77 

protocols, or sample-size limitations of the data. Sampling diverse organisms at large spatial and 78 

temporal scales can be an incredibly laborious and expensive process. As a result, our knowledge 79 

of bee trends necessarily draws from patchy and inconsistently-collected data ( Meiners et al., 80 

2019). Understanding what available data can and cannot tell us about phenological trends over 81 

time is an oft-overlooked prerequisite for accurately modeling the status, trends, and impacts of 82 

wild bee abundance, as well as forecasting declines, range shifts, risks to network stability, and 83 

vulnerability of particular species to climate change (Biesmeijer et al., 2006; Forrest, 2015; 84 

Meiners et al., 2017; Potts et al., 2016). This oversight is apparent in pollinator studies but may 85 
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impact phenological analyses of other taxa as well. Furthermore, testing and communicating all 86 

sources of error and uncertainty is an important step in advancing scientific understanding and 87 

maintaining public trust and investment in the ability of science to measure and mitigate changes 88 

in our natural world. 89 

Data available to researchers interested in large-scale animal activity trends can generally 90 

be divided into two types: “opportunistic” and “inventory”. "Opportunistic" data usually consist 91 

of records compiled from museum specimens belonging to specific groups of interest that are the 92 

result of various disparate project collections, often of unknown and unspecified purposes. With 93 

millions of records served from curated, digitized museums to public, online hubs, opportunistic 94 

data are a rich resource of natural history information uniquely voluminous and useful for a 95 

range of research questions (Lister & Climate Change Research Group, 2011). They are also 96 

known, however, to contain biases and limitations derived from their unstandardized and 97 

composite origins (Isaac & Pocock, 2015), and to lack metadata that would allow for easy 98 

exclusion of biased records from small projects with specific objectives, such as sampling only 99 

the bees visiting a particular plant. "Inventory" data, on the other hand, are collected in a 100 

systematic manner, often for the explicit purpose of answering broad questions about place-101 

specific biodiversity patterns and community processes. A standardized protocol for conducting 102 

inventories of native bee communities was established in 2003 by a group of melittologists 103 

(LeBuhn et al., 2003), and has been used in many inventories of bees in natural areas (Griswold 104 

et al., 1999; Kuhlman & Burrows, 2017; Meiners, 2016; Messinger, 2006). The expense and 105 

effort required to follow a systematic inventory protocol is higher, but the assumption is that 106 

inventory records have fewer biases, resulting in superior estimates of bee activity, floral 107 

reliability (Wright et al., 2015), and baseline community patterns against which evaluations of 108 
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future change can be measured (Meiners et al., 2019). Despite these core data type differences, 109 

however, both opportunistic and inventory data have been used interchangeably in studies of 110 

native bee phenology without an assessment of their relative suitability for the task. Drawing 111 

mistaken conclusions from data that is flawed, incomplete, or was collected for another purpose 112 

may result in mismanagement of natural resources, misdirected sampling efforts, and missed 113 

opportunities to harness the full power of both opportunistic and inventory datasets.  114 

We use data from six systematic bee inventories and approximately a quarter million 115 

opportunistic museum records collected over twenty years to compare estimates per data type of 116 

three phenology metrics for forty-five abundant native bee species. To assess the possibility of 117 

extrapolating conclusions to additional species, we also examine trends related to five functional 118 

life history traits, which recent research has shown to be predictive of native bee rates of decline 119 

(Bartomeus et al., 2013), vulnerability to insecticides (Brittain & Potts, 2011), response to 120 

anthropogenic disturbance (Williams et al., 2010), and pollinating behavior (Pisanty & 121 

Mandelik, 2015). With this approach, we seek to answer two central questions: 1) can 122 

opportunistic data produce parameter estimates of native bee species phenology that are 123 

statistically equivalent to more expensive inventory data?, and 2) if phenology metrics differ 124 

between data types, are there patterns associated with functional traits that could be useful 125 

indicators of which species are more susceptible to erroneous phenology estimates? In answering 126 

these questions, we seek to improve the utility of natural history collection data, the 127 

determination of native bee trends and conservation practices, and the broad reliability of 128 

phenology results. 129 

 130 
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METHODS 131 

Data, species, and trait selection 132 

Opportunistic and inventory data were sourced from the USDA-ARS National Pollinating 133 

Insects Collection (NPIC) (USDA-ARS, 2016). We defined opportunistic data as specimen 134 

records which were collected irrespective of each other or standard protocols, instead typically 135 

irregularly targeting regions, specific floral resources, or bee taxa of special interest. We defined 136 

inventory data as records arising from standardized efforts to systematically document bee 137 

species richness in specific geographic areas across the local season(s) of bee activity. Six 138 

studies with collections housed at the NPIC fit this definition of inventory data. These were 139 

systematic inventory studies located at: Carlsbad Caverns National Park (Griswold & Ikerd 140 

unpublished data); Clark County, Nevada (Griswold et al., 1999); Grand Staircase-Escalante 141 

National Monument (Carril et al., 2018; Messinger, 2006); Pinnacles National Park (Meiners, 142 

2016; Meiners et al., 2019); and Yosemite National Park (Griswold & Ikerd unpublished data). 143 

All six inventory studies were conducted between 1996 and 2012 following protocols similar to 144 

that outlined in LeBuhn et al. (2003), and shared at dx.doi.org/10.17504/protocols.io.wfhfbj6 145 

from Meiners et al. (2019). 146 

We restricted the temporal and spatial range of our study within reason, while keeping 147 

our dataset large to limit the phenological variability introduced solely by spatiotemporal factors. 148 

For both inventory and opportunistic data, we only used specimen records that met all of the 149 

following criteria: 1) identified to a valid species, 2) collected between 1990 and 2015 in the 150 

USA or Canada, and 3) contained complete and reliable georeferencing. Data cleaning to meet 151 

these criteria was conducted in R (R Core Team, 2015). To ensure sufficient sample sizes for 152 

species-level comparisons between data types, we excluded any species with fewer than 180 153 
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occurrences for each data type, retaining only the fifty most abundant species shared between the 154 

two data sets.  155 

Once we finalized our list of fifty species, we conducted literature searches and expert 156 

surveys to assign them into categories of five pre-selected life history traits that literature 157 

searches and expert consensus suggested have relevance to phenological trends: body size, 158 

sociality, floral specialization, nest location, and voltinism (Araújo et al., 2004; Heithaus, 1979; 159 

Osorio-Canadas et al., 2016; Rodriguez-Girones & Bosch, 2012; Williams et al., 2010). We used 160 

a Keyence digital microscope to measure body size as the average inter-tegular distance (between 161 

wing bases) for five female specimens of each species, following the method specified by Cane 162 

(1987). Based on species-specific literature searches, we categorized the sociality of a bee 163 

species as either 1) solitary, or 2) social, which included bee species that can be described as 164 

eusocial, communal, and primitively social, or 3) unknown (our list of fifty did not include any 165 

cleptoparasitic species). We noted whether a species was considered a floral specialist in the 166 

literature by a simple 1) yes, 2) no, or 3) unknown. We noted nest location as a binary trait, with 167 

species categorized as nesting primarily 1) above ground or 2) below ground. Due to a lack of 168 

published information, we classified voltinism based on a survey of expert opinion into the 169 

following classes: 1) univoltine (one generation), 2) multivoltine (>1 generation), 3) social (since 170 

these species replace members throughout the season but not in the same way as multiple 171 

generations of solitary bees in a single season), and 4) unknown. 172 

 173 

Final Dataset Specimen, Species, and Trait Composition 174 

The final dataset contained 104,101 bee occurrence records, of which 71,152 were from 175 

inventory collections and 32,949 were opportunistically collected. From the original fifty 176 
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species, we removed five from the dataset because they are either: 1) commonly managed (Apis 177 

mellifera); 2) have an unusual, socially-parasitic life history (Bombus insularis); or 3) could not 178 

reliably be distinguished in females (Agapostemon angelicus, Agapostemon texanus, 179 

Agapostemon angelicus/texanus), resulting in a final set of 45 species (Table 1). 180 

The final 45 species selected for phenology metric analyses showed a relatively even 181 

spread of traits. Some trait category assignments for certain species were impossible to assign 182 

based on current knowledge and remain labeled as “unknown” in our trait dataset (Table 1). All 183 

assigned trait categories were represented by at least 12 out of 45 total species. 184 

 185 

Calculation of phenology metrics 186 

We identified three measurable metrics of bee phenology that would be useful and 187 

reliable for quantitatively estimating changes in patterns of bee species activity over time: 1) 188 

flight duration, or the number of days in a year the bee species was active; 2) clusters, or the 189 

number of distinct peaks in abundance in a year; and 3) the date of a bee species’ highest annual 190 

peak in abundance (Fig. 1). We defined flight duration as the middle 90% of occurrences, 191 

removing the upper and lower 5% of values to eliminate outliers that may represent unusual 192 

activity in any given year. We determined the number of clusters in a set of occurrences, with a 193 

maximum possible of three clusters, using a gap statistic. We then used kmeans clustering to find 194 

the location along the day-of-year axis of all clusters. The cluster with the highest value on the 195 

density plot was chosen as the date for the greatest abundance of occurrences. We calculated 196 

these three metrics twice for each species, once each for all occurrences from the inventory data 197 

type and once for all the opportunistic data type occurrences. In order to have a single number 198 

for each metric that showed how different they were for the two data types, we calculated a test 199 
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statistic for each of the three metrics. We chose the test statistic as the absolute difference 200 

between the opportunistic and inventory metric, so that each species had three test statistics, one 201 

each for flight duration, number of clusters, and location of greatest abundance. 202 

In order to determine if these test statistics indicated that there was a substantial 203 

difference between phenology patterns for data types, we compared these observed test statistics 204 

to a set of simulated test statistics that came from shuffling the data. We randomly shuffled the 205 

data type labels for all occurrences of each species, retaining the same relative number of 206 

opportunistic and inventory labels for each species. We then recalculated the three phenology 207 

metrics for the two data types and the test statistic, so that each species had three simulated test 208 

statistics. Finally, we repeated this process 1000 times, so that each species had a distribution of 209 

simulated test statistics. 210 

To determine if the observed test statistics were statistically significantly different than 211 

the distribution of simulated test statistics, which would indicate that data type mattered for that 212 

phenological pattern, we calculated a p-value based on the number of simulated test statistics that 213 

were greater than the observed one. We used an alpha cut-off of 0.05, and each species had one 214 

p-value for each of the three phenology metrics. Given the multitude of pairwise comparisons, 215 

we also include a more stringent alpha cut-off of 0.001, which is the lowest value that can be 216 

achieved given the number of permutations. 217 

 218 

Modeling influence of functional traits 219 

After assigning a category value to each bee species for each of the five selected 220 

functional traits, as described above, we used generalized linear models to assess the influence of 221 

functional traits on significant differences between data types from permutation tests for each of 222 
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the three identified bee phenology metrics (Fig. 1). This evaluation of the influence of functional 223 

traits on data type significance was only conducted for species with complete trait category 224 

information (Table 1). Species with “unknowns” were removed, and voltinism levels “social” 225 

and “multi” were ultimately combined so that all categorical traits were binary variables. All data 226 

manipulation, plotting, and statistical tests were conducted in the R statistical package (R Core 227 

Team, 2015). 228 

 229 

RESULTS 230 

Phenology Metrics by Data Type 231 

With three phenology metrics for each of 45 species, we compared a total of 135 pairs of 232 

phenology variable calculations based on data type. We found significantly different values 233 

depending on which data type was used (inventory or opportunistic) in 87 out of 135 cases, 234 

which represents 64% of the possible total, much higher than the 5% expected under a null 235 

hypothesis and assuming a 5% alpha. The date of highest peak in abundance was the metric with 236 

the greatest number of value discrepancies due to data type: the date of the seasonal peak was 237 

significantly different depending on which dataset was used for 40 out of 45 species (89%, Fig. 238 

3). Flight duration, or the number of days a species was active, differed based on data type for 34 239 

out of 45 species (76%, Fig. 3). And the number of clusters, or distinct peaks in abundance, was 240 

different between data types for 15 out of 45 species (33%, Fig. 3). It should be noted, however, 241 

that the number of clusters was the least reliable of the three phenology metrics, due to 242 

limitations of the gap statistic used to calculate it, sensitivity to variable collection efforts over 243 

time in the opportunistic data, and the narrow range of options between just one and three for 244 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044750doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044750
http://creativecommons.org/licenses/by/4.0/


Submitted Article 
 

 12 

number of clusters detected. We considered other options for calculating number of clusters but 245 

found the gap statistic to be the most defensible, if still flawed. 246 

All 45 species had at least one metric that was significantly different depending on data 247 

type (Table 2). Ten out of 45 species had significantly different results for all three phenology 248 

metrics depending on the type of data used to evaluate them. Occurrence curves for each species 249 

and data type illustrate the comparison between inventory and opportunistic data types of the 250 

three phenology metrics (Fig. 4). The species Ceratina nanula, for example, differed in flight 251 

duration between data types, seen as the width of the x-axis between dotted lines, but had 252 

statistically similar results for the date of the highest peak and the number of clusters in 253 

abundance (Fig. 4, top left).  Lasioglossum sisymbrii had the same number of clusters in both 254 

inventory and opportunistic datasets, but different values for both flight duration and date of the 255 

highest peak, shown by the solid vertical line on the plot (Fig. 4, top right). Two species of 256 

Osmia had different results for the number of clusters reported by the gap statistic (Fig. 4, middle 257 

row), as well as either a different flight duration or different date of highest peak depending on 258 

data type. As mentioned above, ten species differed in all three metrics between data types, as 259 

illustrated by Lasioglossum hudsoniellum and Anthophora urbana (Fig. 4, bottom row). Because 260 

significance of the difference between data type was based on 1000 different permutations of the 261 

occurrence records, not all figures showing species-level results match the reported conclusions. 262 

 263 

Relationship of Functional Traits to Data Type Significance 264 

For the group of forty species without any unknown trait values, body size was a 265 

significant (p = 0.047) predictor of whether flight duration would differ between data types, with 266 

larger bees being more likely to have different results for seasonal activity length depending on 267 
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which dataset was used (Table 3). Generalized linear model results also found body size to be a 268 

marginally significant (p = 0.055) predictor of whether the number of clusters would differ 269 

between data types, with larger bees more likely to return different number of clusters depending 270 

on whether opportunistic or inventory records were used to calculate them. Floral specialization 271 

was also a marginally significant (p = 0.051) predictor of difference between data type in flight 272 

duration, with species designated as floral specialists more likely to return different values for 273 

number of days they were active over a season depending on data type (Table 3). The likelihood 274 

for date of the highest peak to differ between opportunistic and inventory data was not 275 

significantly related to any of the five functional traits. 276 

 277 

DISCUSSION 278 

We found widespread and significant differences in estimates of phenology metrics 279 

depending on the type of data used to calculate them. Out of 45 tested native bee species 280 

spanning a range of life history traits, one hundred percent had a significantly different value for 281 

at least one key phenology metric depending only on the type of data used to calculate it. This 282 

result should raise concerns about the influence of data source on our understanding of patterns 283 

and changes in phenology, not only for pollinators but potentially for other taxa studied using 284 

compiled museum records. With the high natural variability of many small organisms already 285 

obscuring measurable signals of behavior, adding noise to phenology models by using messy or 286 

inappropriate data may confound phenological estimations to the point that they become 287 

uninformative. If biases are consistent and directional, phenology studies that do not take into 288 

account the influence of data may even report patterns opposite the truth. 289 
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Our study reveals an urgent need to ensure that the data used for evaluating changes in 290 

phenology, not only of native bees but likely of many other organisms as well, are of sufficient 291 

quality to produce reliable results. Comparing metrics over time that are not compatible – for 292 

example, checking for changes in the date of peak species activity by comparing recent inventory 293 

records to older opportunistic records from historical study sites – may add noise instead of 294 

clarity to collective efforts to detect real changes in phenology, or may create false impressions 295 

of a pattern. Critical interaction mismatches between any organisms reliant on each other could 296 

be obscured. Such misleading results may also hinder scientific progress and conservation 297 

efforts, erode public trust in science, and dilute the gravity of warnings about pollinator declines 298 

and other environmental changes. 299 

The implications of our study may be relevant in many systems but are certainly of 300 

consequence as applied to native bees. Since plant reproductive success depends on the timing of 301 

local pollinator activity, recently found to be shifting with climate change (Aldridge et al., 2011; 302 

Burkle et al., 2013; Robbirt et al., 2014; Schenk et al., 2018), phenology research on biodiverse 303 

networks of coexisting native bee species and their hosts is highly complex but vitally important. 304 

Even with the best data, results from one study may provide limited insight for patterns in 305 

another area, species, or time. Primack et al. (2009), for example, conducted phenology studies 306 

for twelve taxa using long-term, spatially-expansive, and systematically-collected data, and still 307 

found results to be highly variable and hard to interpret due to species-level variability. With the 308 

explosion of technology, museum data-basing efforts, and the open science movement, the 309 

availability of data to ask important questions about bee species phenology is entering a new 310 

frontier. It is, therefore, necessary to also update our understanding of data and methodological 311 

limitations before extrapolating findings across regions or species, potentially muddying 312 
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conclusions about the high-profile issues of bee decline and worldwide loss of pollination 313 

services (Biesmeijer et al., 2006; Burkle et al., 2013; Goulson et al., 2015). 314 

Despite the overall increased availability of data, records are still very limited for many 315 

taxa, and that is where common parameters like functional traits can be useful. Until further 316 

technological advances in bee species identification and specimen processing make it feasible to 317 

obtain sufficient data to evaluate phenological trends for a majority of cryptic or rare native bee 318 

species, efforts to identify unifying variables that correspond to data type reliability or 319 

phenological variability will be relevant. Our result that the importance of having high-quality 320 

data increases with increasing body size and increasing floral specialization for native bees, for 321 

instance, can help guide studies of smaller groups of species when deciding how to allocate data 322 

collection resources. Larger bees can emerge earlier in the season than smaller-bodied bees, due 323 

to their greater ability to generate and maintain elevated body temperatures under cold conditions 324 

(Osorio-Canadas et al., 2016). Being active earlier in spring may make spring-flying larger bees 325 

more variable in the interannual timing of their activity as the date of snowmelt and first bloom 326 

also vary. Likewise, being tied to a particular floral group as a foraging specialist bee species 327 

may require greater flexibility in emergence time and a stronger reliance on specific 328 

environmental cues to time emergence that may make specialist phenology more difficult to 329 

evaluate. Opportunistic data yielded inconsistent values for flight duration for larger-bodied and 330 

specialist bees in our study. Knowing, as a result, that inventory data is more appropriate for 331 

these species allows for cleaner interpretation of their behavior. Likewise, it is useful to know 332 

from this result that opportunistic data may be more appropriate for estimating phenology 333 

metrics for smaller species and floral generalists, at least where many records are available. In 334 
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these ways, our functional trait model illustrates how exploring limitations of data types can have 335 

both biological and statistical value. 336 

Our study does not seek to undermine the great importance or value of natural history or 337 

museum collections, but rather to explore and illuminate best practices for data use in the study 338 

of phenology. The appropriate source of data may depend entirely on the nature or scale of the 339 

question being asked, or the level of specificity desired. Systematic inventories of native bee 340 

fauna provide ideal data for understanding bee ecology, but are hugely expensive and time-341 

consuming, and should not take the place of opportunistic data for every research endeavor. In 342 

some cases, such as when gauging phenological changes across decades, it may not be possible 343 

to rely on inventory data, but the limitations of the data available must still be understood, 344 

because the best available data may fail to provide the correct answers, regardless of the methods 345 

employed. There is much to be gained from appropriate use of opportunistic data to estimate 346 

metrics of species phenology, and much to be lost from ignoring it. The influence of data type on 347 

phenology estimation is likely important for many other taxa with spotty records and high 348 

inherent variability. Incorporating measures of data bias and associated relevance of functional 349 

traits to guide interpretation of results may benefit the study of phenology and ecology in a 350 

myriad of ways.  351 

While we improve our use of data, we must also continue expanding our knowledge base. 352 

Natural history collections across the world are struggling to attain the financial, institutional, 353 

and cultural support required to develop, curate, document, and digitize museum collections. 354 

Improving the flow of high-quality data records from diverse areas and time periods is an 355 

important step in alleviating data bias and improving our understanding of phenology. 356 

Expanding and further standardizing inventory efforts will also be important. The majority of 357 
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broad-scale bee phenology studies have taken place in montane or agricultural landscapes, or on 358 

social, cavity-nesting bees, leaving other environments and guilds poorly understood (Bosch & 359 

Kemp, 2002; CaraDonna et al., 2014; Hanley et al., 2015; Klein et al., 2007; Ogilvie & 360 

Thomson, 2015; Winfree et al., 2011). Since we know that the extrapolation of conclusions about 361 

phenology patterns across space, species, and data type is flawed (Davis et al., 2010; Primack et 362 

al., 2009), we should not continue to use studies from limited habitats and species to represent 363 

trends across much broader areas or groups. In conclusion, more data is always better, inventory 364 

data is often (but not always) better, and functional traits can help guide assessments of data 365 

needs. Only when we acknowledge the limitations of the data in hand can we begin to fill in the 366 

gaps. 367 
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TABLES 548 

Table 1. Species (N=45) selected for analysis based on number of records (N >180 for each data 549 

type) and spread of representative traits (N = 5). Sources of trait information are included in SI. 550 

ID Bee Genus and species Sociality 
category 

Body Size 
(mm) 

Floral 
specialist 

Voltinism 
category 

Nesting 
category 

1 Agapostemon melliventris unknown 1.61 N unknown below 
2 Andrena prunorum solitary 2.30 N multi below 
3 Anthidium utahense solitary 2.14 N uni below 
4 Anthophora petrophila solitary 2.03 N multi below 
5 Anthophora urbana solitary 2.88 N multi below 
6 Ashmeadiella gillettei solitary 1.19 N multi above 
7 Bombus bifarius social 4.24 N social below 
8 Bombus huntii social 4.79 N social below 
9 Bombus melanopygus social 3.60 N social below 

10 Bombus sylvicola social 3.39 N social below 
11 Bombus vosnesenskii social 4.22 N social below 
12 Calliopsis fracta solitary 1.40 Y uni below 
13 Calliopsis puellae solitary 1.81 Y uni below 
14 Calliopsis subalpina solitary 1.78 Y uni below 
15 Ceratina nanula unknown 1.16 N uni above 
16 Colletes louisae solitary 2.20 N multi below 
17 Dianthidium pudicum solitary 2.06 Y uni above 
18 Dianthidium ulkei solitary 2.17 Y uni above 
19 Halictus farinosus social 2.33 N social below 
20 Halictus ligatus social 1.73 N social below 
21 Halictus rubicundus social 2.20 N social below 
22 Halictus tripartitus social 1.21 N social below 
23 Hoplitis albifrons solitary 2.38 N uni above 
24 Hoplitis fulgida solitary 1.81 N uni above 
25 Lasioglossum hudsoniellum social 0.84 N social below 
26 Lasioglossum hyalinum social 1.15 N social below 
27 Lasioglossum incompletum social 0.90 N social below 
28 Lasioglossum sisymbrii solitary 1.84 N multi below 
29 Melissodes paroselae solitary 2.40 N multi below 
30 Melissodes tristis solitary 2.62 N multi below 
31 Osmia atrocyanea solitary 2.60 unknown uni above 
32 Osmia brevis solitary 2.28 Y uni below 
33 Osmia coloradensis solitary 2.23 Y uni above 
34 Osmia cyanella solitary 2.24 unknown uni above 
35 Osmia lignaria solitary 2.72 N uni above 
36 Osmia montana solitary 2.60 Y uni above 
37 Osmia nemoris solitary 2.08 N uni above 
38 Osmia paradisica solitary 2.33 unknown uni below 
39 Osmia trevoris solitary 1.98 N uni below 
40 Perdita albonotata solitary 1.14 Y multi below 
41 Perdita aridella solitary 0.85 Y unknown below 
42 Perdita callicerata solitary 1.02 Y multi below 
43 Perdita calloleuca solitary 0.76 Y uni below 
44 Perdita larreae solitary 0.67 Y multi below 
45 Perdita punctosignata solitary 0.84 Y uni below 
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Table 2. Incidences where each metric returned significantly different results between two data 551 

types for each of 45 species (* indicates p<0.05 and ** indicates p<0.001). 552 

 553 
 554 

 555 
 556 
 557 
  558 

ID Bee Genus and species Number 
of clusters 

Flight 
duration 

Date highest 
peak 

# metrics 
differing 

1 Agapostemon melliventris  ** * 2 
2 Andrena prunorum  ** ** 2 
3 Anthidium utahense  ** ** 1 
4 Anthophora petrophila   * 1 
5 Anthophora urbana ** ** ** 3 
6 Ashmeadiella gillettei  ** ** 2 
7 Bombus bifarius  ** ** 2 
8 Bombus huntii   * 1 
9 Bombus melanopygus   ** 1 

10 Bombus sylvicola **  ** 2 
11 Bombus vosnesenskii  ** ** 2 
12 Calliopsis fracta ** **  2 
13 Calliopsis puellae   * 1 
14 Calliopsis subalpina  ** * 2 
15 Ceratina nanula  **  1 
16 Colletes louisae  ** ** 2 
17 Dianthidium pudicum * ** * 3 
18 Dianthidium ulkei  ** ** 2 
19 Halictus farinosus  ** ** 2 
20 Halictus ligatus  ** ** 2 
21 Halictus rubicundus   * 1 
22 Halictus tripartitus ** ** ** 3 
23 Hoplitis albifrons  ** ** 2 
24 Hoplitis fulgida  * ** 2 
25 Lasioglossum hudsoniellum ** ** ** 3 
26 Lasioglossum hyalinum * ** ** 3 
27 Lasioglossum incompletum ** * ** 3 
28 Lasioglossum sisymbrii  ** * 2 
29 Melissodes paroselae  ** ** 2 
30 Melissodes tristis  *  1 
31 Osmia atrocyanea ** ** ** 3 
32 Osmia brevis   ** 1 
33 Osmia coloradensis  ** ** 2 
34 Osmia cyanella   ** 1 
35 Osmia lignaria  * ** 2 
36 Osmia montana   ** 1 
37 Osmia nemoris  ** ** 2 
38 Osmia paradisica **  ** 2 
39 Osmia trevoris * **  2 
40 Perdita albonotata * * * 3 
41 Perdita aridella ** ** ** 3 
42 Perdita callicerata   ** 1 
43 Perdita calloleuca  * ** 2 
44 Perdita larreae  **  1 
45 Perdita punctosignata * ** ** 3 

Totals 15 34 40 87 
Percent of possible 33 76 89 64 
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Table 3. Results of generalized linear models evaluating significance of species (N=40, those 559 

without any unknown traits) functional traits on the difference between data types in calculating 560 

values of three phenology metrics. 561 

 562 

A. NUMBER OF CLUSTERS 

Trait (ref. level) Estimate Std. Error z value Pr (>|z|) 

(Intercept) -0.99 1.92 -0.52 0.60 

Sociality(solitary) 1.72 1.19 1.44 0.15 

Body Size 1.00 0.52 1.92 0.055* 

Specialist(yes) 0.01 1.14 0.01 0.99 

Voltinism(uni) -0.87 1.13 -0.77 0.44 

Nesting(below) -1.03 1.29 -0.80 0.43 

B. FLIGHT DURATION 

Trait (ref. level) Estimate Std. Error z value Pr (>|z|) 

(Intercept) -5.27 2.71 -1.95 0.05* 

Sociality(solitary) -0.71 1.42 -0.50 0.62 

Body Size 1.15 0.58 1.99 0.047** 

Specialist(yes) 3.10 1.59 1.95 0.051* 

Voltinism(uni) -0.92 1.40 -0.65 0.51 

Nesting(below) 1.29 1.48 0.88 0.38 

C. DATE OF HIGHEST PEAK 

Trait (ref. level) Estimate Std. Error z value Pr (>|z|) 

(Intercept) -38.05 7482.10 -0.005 0.99 

Sociality(solitary) 19.43 4790.19 0.004 0.99 

Body Size -0.96 1.47 -0.66 0.51 

Specialist(yes) -1.15 1.98 -0.58 0.56 

Voltinism(uni) 0.48 1.25 0.39 0.70 

Nesting(below) 19.38 5747.70 0.003 0.99 

  563 
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FIGURE LEGENDS 564 

Fig. 1. Visualization of three phenology metrics calculated for each of 45 species and two data 565 

types. Number of occurrences each day of the year are plotted as orange points, which are also 566 

represented as a density plot by the orange smoothed histogram. Vertical black dotted lines 567 

indicate the beginning and end of flight duration, the number shows the number of clusters in 568 

occurrences, and the location of the maximum peak in occurrences is represented by a vertical 569 

solid black line. In subsequent graphs, a gray line indicates secondary peaks in abundance. 570 

 571 

Fig. 2. Distribution of 45 species across categories and values of five functional traits. 572 

 573 

Fig. 3. Number of species, out of 45, for which values of each of three phenology metrics 574 

differed significantly (alpha =0.05) based on the data type used to calculate them. 575 

 576 

Fig. 4. Examples of permutation tests results comparing phenology metrics of bee species 577 

(N=45) occurrence distributions between two data types. In each cell panel, inventory data is 578 

plotted on the left and opportunistic for the same species is plotted data on the right. Column and 579 

row names indicate phenology metrics that were found to be significantly different between data 580 

types for the species plotted in those cells. In the top left, only flight duration was different 581 

between data types, while in the top right both flight duration and date of the highest peak were 582 

different, and all three metrics were different for both species in the bottom row. Occurrence 583 

curves showing results for all 45 species are in Supporting Information. 584 
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FIGURES 585 

 586 

Figure 1  587 
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 588 

Figure 2  589 
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 590 

Figure 3  591 
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