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ABSTRACT 

Behaviour involves complex dynamic interactions across many brain regions.         

Detecting whole-brain activity in mice performing sophisticated behavioural tasks         

could facilitate insights into distributed processing underlying behaviour, guide local          

targeting, and help bridge the disparate spatial scales between rodent and human            

studies. Here, we present a comprehensive approach for recording brain-wide activity           

with functional magnetic resonance imaging (fMRI) compatible with a wide range of            

behavioural paradigms and neuroscience questions. We introduce hardware and         

procedural advances to allow multi-sensory, multi-action behavioural paradigms in         

the scanner. We identify signal artifacts arising from task-related body movements           

and propose novel strategies to suppress them. We validate and explore our approach             

in a 4-odour classical conditioning and a visually-guided operant task, illustrating how            

it can be used to extract information insofar intangible to rodent behaviour studies.             

Our work paves the way for future studies combining fMRI and local circuit             

techniques during complex behaviour to tackle multi-scale behavioural neuroscience         

questions.   
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INTRODUCTION  

Adaptive behaviour requires dynamic interactions between millions of neurons         

both within local neural circuits and across many brain regions. By offering            

unprecedented access to neuronal circuits, rodent behavioural studies have provided          

fundamental insight into how local neuronal activity relates to behaviour. However, a            

comprehensive understanding of the neural basis of behaviour will depend not only on             

studying a subset of areas individually (e.g. basal ganglia and motor cortex), but also              

on observing how interactions between these and other areas give rise to behaviour             

(e.g. interplay between motor cortex, basal ganglia, cerebellum and thalamus in motor            

learning and execution).  

A brain-wide view would not only provide important insight into behavioural           

function, but also guide the selection of brain regions to be studied at the level of                

microcircuits. Invasive studies have traditionally selected targets based on previous          

literature, leading to the repeated study of the same areas, while overlooking other             

regions. This would be equivalent to an explorer starting to investigate a new territory              

by following the existing local cues. But what if the explorer could climb to a high                

viewpoint, and get a less detailed but more global view of the landscape? Then based               

on this overview, she could select, in an unbiased way, which places are worth              

probing. Thus, beyond informing systems-level behavioural theories, a whole-brain         

approach would offer an unbiased way to select brain regions to be targeted.  

By contrast, human cognitive studies routinely access global brain activity but           

lack detailed descriptions of local processing. This, along with the fact that rodent and              

human studies typically use different techniques and measure different types of           
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signals, has created a disconnect between the mechanistic findings in rodents and the             

macroscale findings in humans.  

Recent advances in electrophysiology and calcium imaging have extended         

their spatial scale (Lu et al., 2020; Musall et al., 2019; Sofroniew et al., 2016;               

Steinmetz et al., 2019; Wekselblatt et al., 2016). However, they are still far from              

being whole-brain and multi-area simultaneous access is still limited. Furthermore,          

they are not extendable to humans. Functional ultrasound has emerged as a promising             

tool combining wide brain coverage with high spatiotemporal resolution (Deffieux et           

al., 2018; Macé et al., 2018; Rabut et al., 2019), however, acquisitions are still serial               

in awake rodents (Macé et al., 2018; Sieu et al., 2015; Urban et al., 2014) and invasive                 

in humans (Deffieux et al., 2018). Thus, functional magnetic resonance imaging           

(fMRI) remains the gold standard for brain-wide simultaneous imaging, allowing          

activity to be followed non-invasively over time and across species, from mouse to             

human.  

The ability to perform fMRI in awake behaving rodents thus offers both a             

brain-wide perspective to rodent behavioural neuroscience research and a direct          

comparison to the signals measured in similar settings in humans. However, despite            

its enormous potential, rodent behaviour fMRI is still in its infancy (Han et al., 2019;               

Sakurai et al., 2020; Tabuchi et al., 2002) and the available methods are still far from                

being comparable to the sophisticated behavioural paradigms and data analysis used           

in typical non-fMRI rodent and human fMRI studies. 

In creating a general method that will be widely useful to the rodent             

behavioural community and thus work as a bridge to human studies, several            

challenges remain. First, the method must offer the hardware capabilities and           
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flexibility to replicate the kinds of sophisticated tasks that are commonly used in             

non-MRI rodent studies to isolate sensory, cognitive and motor processing. Previous           

fMRI studies in behaving rodents have presented significant hardware developments          

but remain very low-dimensional (1-2 unimodal sensory cues and 1 motor readout,            

(Han et al., 2019; Sakurai et al., 2020; Tabuchi et al., 2002). This has resulted in                

limited ability to interpret the underlying neural activity (e.g. distinguishing sensory           

processing from reward association or motor execution). 

Second, the method must be able to measure neural activity while animals are             

engaged in motor output. This has remained perhaps the biggest challenge as body             

and jaw movements, even without changes in head position, are known to cause large              

artifacts in fMRI signals (Keliris et al., 2007; Tabuchi et al., 2002; Van de Moortele et                

al., 2002). Given that jaw and other movements (e.g. licking) are highly correlated             

with task performance, it is crucial that these are corrected especially to avoid false              

positives. Of the three studies that performed fMRI during active behaviour in            

rodents, two have only addressed artifacts caused by head movements (Han et al.,             

2019; Sakurai et al., 2020). The third (Tabuchi et al., 2002) has used an external               

reference sample, positioned near the head of the animal, to measure and correct             

global changes in brain intensity caused by jaw and tongue movements. However, this             

strategy takes into account only global changes, when it is likely that regional effects              

also occur. Furthermore, it relies on using a big enough external sample positioned             

within the imaging field of view which is difficult in practice, especially when using              

more complex behavioural setups. Therefore, existing methods are neither complete          

nor generalizable in correcting artifactual signals.  
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Third, the method should include the development of behavioural protocols          

and task designs that take into account the slow dynamics of the BOLD signal to               

allow parsing activity related to different behavioural task epochs. This has remained            

unexplored given the short trial design previously used (2s - Han et al., 2019; Sakurai               

et al., 2020). 

Finally, it must be able to exploit sophisticated neuro-behavioural analysis          

commonly found in single area rodent studies (e.g. behavioural decoding) and human            

fMRI studies (e.g. inter-area coupling) to illustrate the breadth of new information            

that can be extracted from this approach.  

Here, we present a comprehensive approach that tackles these challenges          

enabling the use of behaving rodent fMRI in a broad range of behavioural paradigms              

to tackle previously inaccessible systems neuroscience questions. Briefly, we begin by           

describing an MRI-compatible behaviour setup with multiple sensory cues and motor           

readouts, and present protocols to train mice to perform sophisticated reward-guided           

tasks in the scanner. We identify and investigate signal artifacts that correlate with             

body movements and present novel strategies to effectively and automatically          

suppress them. We start by validating our approach and correction strategies by            

showing sensory, motor, and reward correlates of mice performing a 4 odour-guided            

classical conditioning task. Our results are consistent with previous literature on           

classical conditioning, while highlighting a number of additional areas that have either            

remained unexplored or only studied in other contexts. Finally, we demonstrate the            

generality of our approach in an operant conditioning task with higher motor            

complexity and task flexibility. We further illustrate how a combination of analysis            

strategies can be used to extract information that has so far been inaccessible to rodent               
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behavioural studies: brain-wide maps of task-related activity that can be used to guide             

more local investigations, comparisons of task event discriminability across multiple          

cortical and subcortical areas, and information on inter-region functional coupling.   
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RESULTS  

An MRI compatible setup with multiple sensory inputs and behavioural outputs 

The strong magnetic field and the restricted space in the scanner means that             

hardware solutions typically used for rodent head-fixation (i.e. metal head plates) and            

behavioural quantification (i.e. large metallic components) are not compatible with          

MR imaging. MRI compatible behavioural setups exist (Han et al., 2019; Sakurai et             

al., 2020) but have so far been limited to a single readout measurement (one port               

licking) and maximum 2 sensory stimuli. We aimed to develop a setup that, by              

allowing multiple sensory stimuli and behavioural readout measures, enabled higher          

complexity and was thus compatible with a broader range of tasks and neuroscientific             

questions. Combining fibre optics, pressure sensing, and 3D printed plastic parts, we            

developed an MRI compatible setup ( Figure 1 ) that includes a head-fixation system,            

multiple sensory delivery systems for olfactory (up to 8 different odours) and visual             

stimuli (at least 2) and three separate behavioural measures (licking, right lever press,             

left lever press).  
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Figure 1 - MRI-compatible behaviour setup for head-fixed mice 
(A) Schematic of the scanner and coil used for MRI imaging. (B) Schematic of the               
behavioural setup, including a head-fixation system, a water delivery tube, a detector            
for licking behaviour, a detector for right (red) and left (green) forepaw lever presses,              
an odour delivery tube and two optic fibres delivering blue (left) and yellow (right)              
light stimuli. (C) Front view. (D) Upper view showing the mouse position (left) and              
wiring diagram (right) of the hardware involved. All the electronic and metal            
components were positioned at a safe distance from the scanner and connected to the              
setup through long-range connections. Lever pressing was detected using two          
infra-red beam break systems delivered and sensed via long-range optic fibres.           
Licking was detected using a pressure sensor that detected lick tube vibration via an              
air pad positioned under the tube holder. Olfactory stimuli were delivered through a             
custom built olfactometer connected to a manifold in the scanner that quickly routed             
the mixed air stream to the animal’s nose via a teflon tube. Visual stimuli were               
delivered via optic fibres connected to fibre-coupled LED sources. Water was           
delivered using a distant water valve. All systems connected to an Arduino-based            
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board that was controlled by a dedicated computer using Arduino software, Python            
and Bonsai. Dimensions are shown in mm.  
 

Four-odour classical conditioning task in the scanner  

Using this setup ( Figure 2A ), we first trained mice in a classical conditioning             

task ( Figure 2B ), where mice learned to associate different odours (conditioned           

stimuli, CS) with biologically relevant outcomes (unconditioned stimuli, US), such as           

the presence or absence of water rewards. We chose classical conditioning as it is well               

studied and fast to train (J. Y. Cohen et al., 2012, 2015; Matias et al., 2017; Tian &                  

Uchida, 2015). This made it ideally suited for our purpose of optimising and             

validating our training and imaging methods. We used four different odours, two of             

which were paired with water reward (CS+), and two of which were not rewarded              

(CS-) ( Figure 2B ). This was done so that we could later discriminate brain activity              

related to both odour identity and reward association.  

Mice learned the stimulus-outcome association, evidenced by the significantly         

higher licking rates in the delay period after odours that were paired with rewards              

relative to odours that were not (normalized lick rate: CS+: 3.94 ± 2.08, CS-: 0.85 ±                

0.52, mean ± SD, t(4) = 4.14, p < 0.05, N = 5 mice, Figures 2D and 2G). Importantly,                   

licking began before outcome delivery (anticipatory licking) showing that mice          

learned the predictive meaning of each odour (Figure 2D).  
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Figure 2 - Four-odour classical conditioning task and acclimation procedure  
(A) Behavioural setup. (B) Task structure. A trial started with the delivery of one out               
of four possible odours (Conditioned Stimuli, CS), randomly selected. Two of the            
odours (A and B for group 1, N = 3, or C and D for group 2, N = 2, termed CS+) were                       
followed deterministically by a water reward (US) delivered after a fixed delay (trace             
period) of 3s from odour offset. For the other two odours (CS-), reward was not               
delivered, but the trial structure was the same. After the outcome there was a variable               
inter-trial interval (6-9s), after which a new trial began. (C) Training procedure. Mice             
were first trained to voluntarily enter the head-fixation apparatus. Next, mice           
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underwent task training involving repeated CS-US pairings. Once mice learned the           
task (see D), a mixture of scanner sounds were gradually introduced over 5 sessions              
and maintained at maximum loudness for at least another 7 sessions. Mice then             
transitioned to the scanner where they were exposed to the real scanner sounds and its               
vibration before the experiment. (D-F) Averaged lick trace split by odour for a             
representative mouse (HF8) for the session before sound introduction (D), before           
transitioning to the scanner (E) or with functional imaging (F). (G-I) Mean            
anticipatory licking (750 ms window before outcome), averaged across mice (N = 5),             
for the last session of task training (G), sound exposure (H) or scanner exposure (I).               
(J-K) Mean anticipatory lick rate, averaged across mice (N = 5) for CS+ (red) and               
CS- (grey) trials over sessions aligned on sound exposure (J) or aligned on transition              
to the scanner (K). (L-M) Same as J-K but for the consummatory lick rate (100 to 850                 
ms from outcome). Error bars represent SEM across mice. To ensure comparability            
across sessions and across different lick detectors (see Methods), the mean lick rates             
shown in G-M were normalized to the overall lick rate recorded in the entire session.               
*p<0.05, paired t-test. 
 

A major challenge in performing fMRI in a behaving mouse is that the scanner              

is an intrinsically stressful environment. This is due to its restricted space, loud             

(~120dB) and variable noises, and strong vibrations. Besides being a concern for            

animal welfare, excessive stress can impair learning and task performance (de           

Quervain et al., 1998; Diamond et al., 1994; Graham et al., 2010; Hölscher, 1999;              

Kaneto, 1997; Kim et al., 2001) and lead to poor image quality due to head motion                

(Harris et al., 2015; King et al., 2005).  

Exposing animals to MRI sounds ahead of imaging has been shown to be             

effective at decreasing levels of stress in awake non-behaving rodents (Desai et al.,             

2011; Ferenczi et al., 2016; Harris et al., 2015; King et al., 2005), with longer               

protocols being the most effective (Harris et al., 2015). Existing protocols for awake             

behaving mice have used this approach but for a short period (2-6 days) (Han et al.,                

2019; Sakurai et al., 2020), raising the possibility that, even if lowerer, stress is not               

being minimized. This may be compatible with the performance of simple tasks, but it              

is likely problematic for more complex designs given that stress has been shown to              
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render behaviour insensitive to changes in outcome value and resistant to changes in             

task contingencies (Dias-Ferreira et al., 2009; Graham et al., 2010). 

In an effort to create a method that was both compatible with the sophisticated              

tasks used by the non-MRI rodent community and maximized their comparability, we            

chose a longer (30-40 days) and more gradual procedure ( Figure 2C, see Methods)             

that aimed to minimize stress at every stage of training. This protocol differed from              

previous methods (Han et al., 2019; Sakurai et al., 2020) in four main aspects. First, to                

minimize any restraint-related stress, we trained mice to voluntarily enter the           

head-fixation apparatus (8-10 days). This avoided the stress caused by the           

experimenter restraining and manually positioning the mouse and ensured that mice           

were fully comfortable before entering the next stage of training. Second, mice were             

exposed to MRI sounds recorded from the scanner very gradually (increasing in            

volume over 5 days), only once they were proficient in the task, and before increasing               

task epochs ( Figure 2C ). This ensured that mice were exposed to only small amounts              

of stress each day and during a period where they were maximally engaged in the task                

(at maximum reward rate). Third, we maintained sounds at the highest level over at              

least 7 more days, in a total of at least 12 days of sound exposure, following previous                 

reports that longer periods of exposure are more effective at minimizing stress (Harris             

et al., 2015). Fourth, we habituated mice not only to the scanner sounds, but also the                

vibrations produced in the scanner. Given that these vibrations are hard to replicate in              

a mock setup, we also trained mice in the scanner before starting experiments.  

We expected behaviour to be affected by sounds but normalize over the course             

of continual exposure. Typically, on the first day of sound exposure, mice interrupted             

licking at sound onset and after a few seconds resumed licking (data not shown).              
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Licking rate to rewarded odours increased as sound levels increased, both in the             

anticipatory phase ( Figure 2J , days 1-5) and after outcome delivery ( Figure L, days             

1-5). It took 7-8 days of repeated exposure for licking to recover to baseline levels               

( Figure 2J and 2L) . 

Once sounds were at the highest level, task epochs were gradually increased to             

reach the final configuration (odour presentation for 2s, delay from odour offset to             

outcome (trace) of 3s, and a variable inter-trial interval of 6-9s). This ensured that task               

epochs were as separable as possible and thus were distinguishable in our fMRI             

measurements. Increasing the odour and trace periods led initially to mice consistently            

licking from odour presentation to outcome ( Figures 2E ). Over training, the overall            

rate of anticipatory licking decreased and started progressively later in the trace period             

( Figures 2F and 2I ), consistent with mice learning to anticipate the timing of rewards. 

Anticipatory lick rates were slightly lower in the scanner ( Figures 2K ), but            

this was likely due to improvements in their learning of the task epochs, rather than               

excessive stress, as the lick rate to the outcome remained high ( Figures 2M ).             

Importantly, the difference between CS+ and CS- licking was still reliable           

(normalized lick rate: CS+: 2.4 ± 1.28, CS-: 0.43 ± 0.26, mean ± SD, t(4) = 3.23, p <                   

0.05, N = 5 mice, Figure 2I ).  

 

Lick-related movements are coupled to signal artifacts that can be corrected  

To measure brain-wide activity, we recorded changes in        

blood-oxygenation-level-dependent (BOLD) fMRI signals across the brain.       

Functional images (0.2 x 0.2 x 0.75 mm) were acquired at 1Hz with minimal              

geometrical distortions after optimising the setup, and the surgical and imaging           
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procedures ( Figure 3A ). The head-fixation and training procedures were effective in           

minimising head-motion, as evidenced by the minimal head displacement observed          

across frames (mean framewise displacement across mice: 0.0081 ± 0.0012 mm, mean            

± SD, N = 5 mice, note that these values are < 5% of the voxel size (0.2mm), Figure                   

S1 ). However, previous fMRI studies in rats (Tabuchi et al., 2002), monkeys (Keliris             

et al., 2007) and humans (Van de Moortele et al., 2002) have shown that even with                

minimal changes in head position, detrimental image artifacts can be indirectly           

induced by movement of other body parts. Although previous fMRI studies in            

behaving mice did not investigate or report such effects (Han et al., 2019; Sakurai et               

al., 2020), we expected that similar artifacts would be also found in the mouse.              

Indeed, despite minimal brain movement, we found large amplitude changes in brain            

signals ( Figure 3D ) that were temporally coupled to lick events ( Figure 3B ), which             

require jaw and tongue movements. The near-global nature of this signal changes,            

indicated by the vertical lines in Figure 3D , is evidence that these changes are              

artifactual and not true fluctuations in brain activity. We exploited the fact that our              

field of view included large parts of muscle tissue (including the jaw and the tongue),               

and that our measurement is affected by geometrical changes in those voxels, to             

investigate whether indeed these artifacts could be arising from movements in those            

regions (e.g. muscle contractions and tongue movements). Indeed, video inspection          

revealed large geometrical changes in nearby muscle tissue, which when plotted over            

time ( Figure 3C ) revealed to be tightly coupled to the artifactual signal changes seen              

in the brain ( Figure 3D ). Note the consistency between the vertical lines in Figures              

3C and 3D , and the similarity between the global signal traces (averaged across             

voxels) in Figure 3F . 
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Figure 3 - Lick-related muscle movements are coupled to signal artifacts that can 
be corrected using a muscle-drive regression approach 
(A) Example raw functional images (0.2 x 0.2 x 0.75 mm at 1Hz) showing the brain                
and surrounding muscles. (B) Lick rate during imaging for a representative mouse.            
Shown is a zoom-in on a 250 s period. (C) Voxelwise time course for all “muscle”                
voxels (voxels outside the brain) for the same example period. Images were            
slice-timing and motion corrected, and the time course of each voxel detrended and             
z-scored. Note the vertical lines corresponding to geometrical changes (contractions)          
in the muscle tissue surrounding the skull. (D) Same as (C) but for voxels inside the                
brain. Large amplitude changes in the brain’s signal (vertical stripes) are temporally            
coupled to lick events (B) and muscle changes (C). (E) Same as (D) but after applying                
the artifact correction procedure. We used least absolute shrinkage and selection           
operator (LASSO) regression to predict the signal artifact in the brain from the             
information in the muscles voxels. After standard MRI preprocessing procedures, we           
created two binary masks of brain-only and non-brain voxels. We then computed the             
contribution of each voxel outside the brain at time i, to the intensity of each voxel in                 
the brain at the same time i. To account for the fact that licks may fall in some but not                    
all slices within the same frame, we treated slices independently. We then subtracted             
the artifact prediction from the brain signal to generate artifact corrected images (see             
Methods). (F) Time course comparison for lick events (licks/s), muscle signal           
(averaged over voxels), raw brain signal (averaged over voxels), and corrected brain            
signal (averaged over voxels). Shown are absolute values. Note the similarities           
between the upper 3 traces and the improvement after correction in the bottom trace.              
(G) Averaged time course of brain signal (raw or corrected) aligned on the start of a                
lick bout. The time courses (absolute values) were first averaged over voxels, bouts of              
consecutive licks were identified, time courses were aligned to the beginning of each             
bout, normalized (signal-baseline/baseline) to the mean signal before the bout started           
(-5:-1s from bout start) and finally averaged over bouts. Error bars represented SEM             
over all bouts in the session. (H) Scatter plots relating the brain and muscle mean               
signals for raw (red) and corrected (blue) brain signals. Each dot is a time point over                
the entire imaging session (890 frames).  
 

It is unlikely that these artifacts are specific to our set-up as similar effects              

have been reported in monkeys (Keliris et al., 2007) and in the earlier study imaging               

rats while drinking water (Tabuchi et al., 2002). Behavioural strategies such as            

training animals not to lick during task-relevant periods are possible and have been             

used in the monkey literature (Keliris et al., 2007), however, they are significantly             

harder to achieve in rodents and highly restrict task designs. We thus aimed to tackle               

these artifacts not at the behavioural, but at the analysis level.  
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To do this, we exploited the rich information present in the muscle tissue to              

predict and remove the artifact in the brain. We estimated regression coefficients            

using least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), as           

we had a large number of predictor voxels. LASSO is a regularisation method that, by               

pushing the coefficients of predictors (voxels in our case) that are least predictive to              

zero, effectively performs covariate selection, using only a subset of the regressors in             

the final model.  

We preferred this approach over alternatives such as independent component          

analysis (ICA) as preliminary analyses revealed that there was not a clear separation             

of “lick” events (data not shown). This is likely because licks can manifest in many               

different ways (i.e. a first lick requires opening the mouth whereas a later lick in a                

bout occurs when the tongue is already fully extended) and are thus absorbed into              

several independent components. Because licks are highly correlated with task events           

(e.g. reward and odour), it is therefore hard to dissociate which components are             

related to which events.  

Instead, by using the voxelwise signal over multiple muscles (i.e. modulated           

by muscle contraction), we gained access to the various possible configurations of the             

muscles and thus the various “types” of licking. This approach proved highly effective             

at minimizing these artifacts, evidenced by the: (1) reduced amplitude changes in            

voxelwise brain signal after correction ( Figure 3E ), (2) reduced global brain response            

upon lick-muscle movement (compare the red and blue trace in Figures 3F and 3G,              

see also Figure S2C for cross-animal comparison), and (3) minimal linear correlation            

between muscle and global signal after correction ( Figure 3H, see also Figure S2D             

for cross-animal comparison).  

17 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044941
http://creativecommons.org/licenses/by-nc-nd/4.0/


It is worth noting that changes in head muscle signal were also observed if              

mice were required to lever press in a separate task ( Figure S2B ). These changes              

were also coupled to brain signal artifacts that could be corrected using our             

muscle-driven approach ( Figure S2C and S2E). This demonstrates one additional          

advantage of using the muscle tissue directly as the driver of artifact corrections:             

artifacts arising from any movements that cause contractions of these muscles will be             

corrected for, even if these movements did not lead to event detection (i.e. lick spout               

vibration or lever deflection). 

Given the correlation between the artifacts and task-related movements,         

effective artifact identification and correction methods are crucial steps to achieve           

valid and interpretable results. Our results show that a muscle-based preprocessing           

strategy is effective at correcting these artifacts, without the need for additional            

behavioural training (Keliris et al., 2007) or the loss of large fractions of critical data               

by discarding affected frames. We next turned to the resulting brain activity for             

further validation of its effectiveness. 

 

Distinct spatial patterns for different odours in the olfactory bulb 

We explored the rich activity patterns recorded in the olfactory classical           

conditioning task (Figure 2B) , beginning by looking for previously-described         

responses to validate our method. The main olfactory bulb (OB) receives input from             

the olfactory epithelium via olfactory receptor neurons (ORN). Each ORN expresses a            

single odourant receptor gene and ORNs of the same type converge to the same              

glomeruli in the OB. This means that in the OB, odourant receptors are arrayed into a                

spatial map of glomeruli, such that each odour activates a unique spatial pattern of              

18 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044941
http://creativecommons.org/licenses/by-nc-nd/4.0/


activity (Korsching, 2001; Leon & Johnson, 2003; Mori, 2003; Rubin & Katz, 1999;             

Vassar et al., 1994). We thus first focused on the OB ( Figures 4A and 4B), where we                 

expected to see distinct spatial patterns for different odours.  

We restricted our analysis to within-subject comparisons for two         

methodological reasons. First, given the small size of glomeruli (~0.08 mm) (Royet et             

al., 1988), it was difficult to ensure that the same arrays of glomeruli, sampled in only                

1-2 coronal slices of our whole-brain dataset, were imaged across mice. Second, given             

that we counterbalanced odour-reward contingencies across animals and that reward          

associations are known to also modulate the OB (Doucette et al., 2011; Kay &              

Laurent, 1999) we introduced cross-animal variability not related to the sensory           

representation. We thus looked for reproducible odour maps across trials for each            

subject while allowing for cross-animal variability.  

Indeed, averaging maps of the OB over trials of the same odour revealed             

distinct spatial patterns for different odours ( Figure 4C, see also Figure S3 ). To             

confirm that these patterns were reliable across trials for all subjects, we asked if a               

linear classifier could correctly identify the odour presented based on the trial-by-trial            

activity in the OB. We computed decoding accuracy per odour for each mouse before              

averaging across animals. The classifier performed above chance for all four odours            

( Figure 4D) . To ensure that this was not due to asymmetries in licking behaviour (in               

the two rewarded versus two neutral odours), we then restricted the decoding to             

unrewarded trials only. The performance was still above chance ( Figure 4E ),           

confirming the discriminability of different odours. Figure 4F shows the contribution           

of each voxel to the decoding and the corresponding averaged time courses over             

voxels weighted by these contribution coefficients ( Figure 4G ). As expected for the            
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slow dynamics of BOLD-fMRI signals, responses evolved over several seconds upon           

odour delivery. These results are additional evidence for the effectiveness of our            

correction strategies.  

 

Figure 4 - Odor identification in a classical conditioning task 
(A) Allen brain atlas showing the olfactory bulb (OB). (B) fMRI coronal slice             
showing the OB (surrounded by the eyes, the tongue, and other head muscles). (C)              
Averaged maps of BOLD-fMRI signal for each odours for an individual mouse (#7).             
Voxelwise time courses were aligned on odour onset, pooled over trials of the same              
type, and averaged over a 10s window to account for the slow dynamics of BOLD.               
Colors indicate z-scores. (D) Decoding accuracy for odour identity considering the 4            
odours. F1-score is a measure of accuracy, defined as: 2 * (precision *             
recall)/(precision + recall). Decoding was done for individual animals using          
multinomial logistic regression (a generalised linear classifier) in the same time           
window as (C), cross validating with stratified 5-fold. Unsmoothed images were used.            
Random accuracy is 0.25. (E) Decoding for unrewarded odours only, using the same             
approach. Random accuracy is 0.5 in this case. (F) Maps of regression coefficient for              
the same animal shown in (C), darker colours indicate voxels that contributed most to              
the decoding. (G) Time course of olfactory bulb activation weighted by the            
regression coefficients to reflect voxels most relevant for each odour’s discrimination.           
One animal was excluded from this and any further analysis as he showed poor task               
performance during testing.  
 
 

Motor and reward correlates in the odour-guided classical conditioning task 

To take full advantage of this classical conditioning task, we next explored            

how brain-wide odour responses depended on their reward contingencies. Based on           
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the literature we expected the olfactory bulb and the olfactory (piriform) cortex to             

show reward related signals (Calu et al., 2007; Doucette et al., 2011; Kay & Laurent,               

1999; Roesch et al., 2006). Beyond the olfactory system, we expected that reward and              

neutral odours would be followed by differential activity in both reward-related areas,            

associated with the different reward contingencies, and motor-related regions         

involved in licking behaviour.  

To do this, we ran a voxel-wise general linear model (GLM) with CS+, CS-,              

US+, US- as covariates (Friston et al., 2007). We then contrasted rewarded and             

unrewarded conditions. The resulting statistical maps are shown in Figures 5A and            

5B . In the odour (CS) period, we found voxels within the olfactory bulb and the               

primary (piriform) cortex ( Figure 5A ). In the outcome (US) period, we found            

multiple cortical and subcortical areas ( Figure 5B ). As expected, we found           

engagement of multiple reward-related areas such as the amygdala (AMG) and the            

anterior cingulate area (ACA), known to encode value (Cardinal et al., 2002; Janak &              

Tye, 2015; Kolling et al., 2016), as well as multiple hypothalamic areas (lateral             

hypothalamic area, LHA; medial/median preoptic area, MPO, and medial preoptic          

nucleus, MPN; paraventricular hypothalamic nucleus, PVH). In particular, the         

medial/median preoptic area has been implicated in thirst regulation and drinking           

behaviour (Abbott et al., 2016; Ji et al., 2005; McKinley et al., 1994).  
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Figure 5 - Motor and reward correlates in the classical conditioning task 
(A) T-statistical maps (N = 4 mice) for the contrast between the CS+ and CS-               
regressors. Thresholded at p<0.05 and corrected for multiple comparisons with          
Family-Wise Error (FWE) correction. Hot colors correspond to areas more active in            
the CS+ condition than in the CS-.  Cold colors correspond to areas less active in the                
CS+ condition than in the CS-. Data pooling 4 mice. One animal was excluded on the                
basis of poor task performance (little licking behaviour) during testing. (B) Same as             
(A) but for the US+ and US- regressors. (B) Averaged time-course in            
regions-of-interest (ROIs) identified in the GLM analysis, aligned on trial start (odour            
onset). After standard preprocessing (slice timing, motion correction, detrending) and          
artifact correction, images were z-scored voxel-by-voxel. For each ROI, z-scored time           
courses were averaged over voxels, aligned on odour onset, baseline subtracted           
(average of -2:-1 s prior to odour onset), averaged over trials for either rewarded trials               
(solid line) or unrewarded trials (dotted line) and, finally, averaged across mice. Error            
bars represent SEM across mice. (C) Overlay of the time courses shown in (B) for               
rewarded trials only. Note the difference in onset and peak response across areas. CS:              
Conditioned stimulus. US: Unconditioned stimulus. Ctrl: control region. For         
abbreviations of brain regions see Table S1. 
 

Consistent with our predictions, we also found multiple motor-related regions          

( Figure 5B ) including the midbrain reticular nucleus (MRN), primary and secondary           

motor cortices (MOp, MOs), thalamus (THA), and somatosensory cortex (SSp).          

Given our spatial resolution and the spatial blurring inherent to haemodynamic           

measures, we cannot distinguish substantia nigra reticulata (motor-related) from its          

reward-related neighbours (ventral tegmental areas and substantia nigra pars         

22 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044941
http://creativecommons.org/licenses/by-nc-nd/4.0/


compacta). We thus termed them conservatively as SN. Additional areas identified in            

our analysis included the taenia tecta (TT), which receives sensory input from the             

olfactory bulb and top-down input from prefrontal cortex (Hoover & Vertes, 2011;            

Igarashi et al., 2012), the retrosplenial cortex (RSP), implicated in learning and            

memory (Vann et al., 2009), the diagonal band nucleus (NDB), part of the basal              

forebrain and source of cholinergic projections (Mesulam et al., 1983), mammillary           

nucleus (LM), implicated in memory (Vann & Aggleton, 2004), periaqueductal gray           

(PAG), implicated in autonomic regulation and the expression of both aversive and            

appetitive responses (Motta et al., 2017; Tryon & Mizumori, 2018) , posterior parietal             

cortex (PPC), implicated, among other functions, in the planning and control of            

movement (Andersen & Cui, 2009; Y. E. Cohen & Andersen, 2002).  

To further investigate the activity of these areas we plotted and compared their             

time courses aligned on odour onset ( Figure 5C and 5D). As expected, we saw              

activation of olfactory areas such as piriform rising before outcome delivery and,            

preceding activation of motor lick-related areas such as primary somatosensory cortex           

( Figures 5D , top panel). Most areas peaked after reward delivery ( Figure 5D ).            

However, given the delayed nature of the BOLD response in relation to its underlying              

neural activity, this is expected even in the case of areas that were activated prior to                

the outcome. Nonetheless, in some cases, including MOp and THA, changes appeared            

even before the US presentation ( Figure 5D ), consistent with the expression of            

anticipatory licking. Interestingly, responses in the HYP also started before reward           

delivery and prior to other areas such as the AMG ( Figure 5D , bottom), suggesting              

that it may be involved in the anticipation, in addition to the consumption of water               

reward. Consistent with this hypothesis, a recent study found that optogenetic           
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activation of neurons in the medial, also known as median, preoptic nucleus of the              

hypothalamus promotes operant lever pressing for water rewards at rates that scale            

with stimulation frequency (Allen et al., 2017). As a control region, we looked at the               

auditory cortex (AUD). By contrast to the other areas, AUD showed little modulation             

( Figure 5C, last panel). 

Taken together, these results offer strong validation for our method,          

highlighting a number of areas that have been traditionally studied in isolation and             

individually implicated in the sensory, reward and motor processes required for this            

task.  

 

A self-paced operant conditioning task  

We next aimed to increase complexity and degrees of freedom to the            

behavioural task by adding a preparatory action (lever pressing) that was           

distinguishable from the action needed for reward consumption (licking). Contrary to           

licking, which is reflexive, lever is learnt and voluntary, and thus offers a separate and               

more controlled readout for the study of cognitive phenomena such as           

decision-making. Our motivation was therefore: first, to make our approach          

compatible with a broad range of decision-making tasks that can separate, at the             

behavioural and neural level, preparatory behaviour or choice from reward          

consumption. Second, by having multiple behavioural outputs, including a right and           

left lever pressing, we aimed to make our approach compatible with the use of more               

complex, quantitative paradigms such as 2-alternative forced-choice tasks, where         

behaviour can be carefully modeled. Finally, we aimed to explore the neural            

correlates of learned, self-paced preparatory actions. To do this, we chose a self-paced             
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task and imaged over a learning period so that the variability in the behaviour, both               

between individual presses and between presses and licking, was maximised and thus            

helped parse their neural correlates. 

Using the same setup and training procedure described in Figures 1 and 2, we              

trained mice to press one of two levers in the scanner to obtain delayed rewards. In                

this task, pressing a lever (either left or right) with the forepaw, in the appropriate               

period, resulted in the delivery of a water reward available upon licking after a delay               

( Figure 6A ). During the early stages of training, every single press (left or right) was               

reinforced with a water reward. This produces reliable pressing but meant that mice             

would become satiated quickly and that licks were tightly coupled with presses. To             

slow down the behaviour and start decoupling presses from rewards, and thus licking,             

we inserted a cued waiting period (2-4s, increased over sessions) during which presses             

were not rewarded. The first press after the waiting period elapsed was termed valid              

press and was rewarded after a delay (0.5 - 2s, increased over sessions). A blue light                

provided immediate positive feedback after a valid press and stayed on until reward             

delivery, serving also as a bridging cue. Reward delivery was followed by a short              

inter-trial interval (ITI, 0.5s) (Figure 6A). 
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Figure 6 - Brain-wide task correlates in a self-paced operant conditioning task 
(A) Schematic of the lever press setup (left) and operant conditioning task structure             
(centre). A trial started with a yellow cue in the right visual field signaling the waiting                
period (2-4s, increased over sessions). Presses during this period were neither           
rewarded nor punished. The first press (either right or left) after the waiting period              
had elapsed, was defined as a valid press and was rewarded after a delay (0.5-1.5s,               
increased across sessions). A blue light to the left of the animal provided immediate              
positive feedback after a valid press and stayed on until reward delivery. Reward             
delivery was followed by a short inter-trial interval (0.5s). Differences in outcome            
between the two press types (valid and invalid) (right). (B) Spatiotemporal maps over             
two coronal slices aligned on right lever pressing for a single animal (mouse #1).              
Event selection was further constrained to exclude right presses preceded or           
superseded by left presses in a window of [-10:10]s. After standard preprocessing            
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(slice timing, motion correction, detrending) and artifact correction, images were          
z-scored voxel-by-voxel, aligned on right press events, baseline subtracted (average          
map in -2:-1s from press), and averaged over events. Colors indicate normalized            
z-score signal. (C) ROI time courses aligned on right lever presses, averaged over             
mice (N = 2). Error bars represent SEM across animals. (D) Comparison of primary              
somatosensory time courses in the upper-limb and mouth regions, aligned on either            
right lever press (left panel) or lick bout start (right panel). (E) T-statistical maps for               
the right and lick regressors pooling both animals. Thresholded at p<0.05, minimum            
cluster size (k) = 12, and corrected for multiple comparisons (FWE). For            
abbreviations, see Table S1.  
 

The two mice that we trained and tested pressed several times over a session              

(121 ± 58 presses, 40 ±16 rewarded, mean ± SEM, from a total of N = 14 sessions                  

from 2 mice), with a preference for right lever press (77 ± 14% across sessions).               

Consistent with our aim of maximising the variability in the behaviour, the interval             

between subsequent presses was highly variable, as indexed by the difference between            

the 90th and 10th percentiles of the inter-press intervals (IPI) (Delta IPI [0.1 - 0.9] median                

= 60s, range = 17 - 196s). 

 

Motor and somatosensory correlates of right lever presses 

We began by looking for press-related brain activity, which we expected to            

engage striatal, motor, and somatosensory regions, areas implicated in the planning,           

execution, and sensory feedback of movements (Kawai et al., 2015; Krakauer et al.,             

2019; Li et al., 2015; Luft & Buitrago, 2005). We focused on right presses as they                

accounted for the majority of lever presses. Figure 6B shows the spatiotemporal maps             

of fMRI-BOLD signals averaged across right presses and aligned on press detection            

for an individual animal. As predicted, we detected activation in MOp, MOs, dorsal             

striatum (dST) and the upper limb region of the somatosensory cortex (SSp(UL)). The             

activity started in the ACA and MOs, followed by activation of dST, MOp and the               
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SSp(UL), contralateral to the press. Activity in the ipsilateral SSp(UL) appeared only            

later. These results were consistent across the two mice tested, as shown in the              

averaged time courses over these areas ( Figure 6C ). The asymmetry between           

hemispheres will be further explored in a later multivariate analysis where the            

contribution of left and licks can be better accounted for.  

 

Separating preparatory and consummatory activity 

Next, we aimed to parse the neural correlates of preparatory (lever pressing)            

from consummatory (licking) behaviour. We started by focusing on the          

somatosensory cortex where we know that distinct body parts are represented in            

spatially distinct areas (Coq & Xerri, 1998). Licking behaviour should engage           

preferentially the mouth area, whereas lever pressing should engage the upper limb            

area. Indeed, aligning activity of these regions on lever press reveals BOLD-fMRI            

signal increases in the upper limb region at the time of press, followed by activity in                

the mouth region (SSp(M)), consistent with the subsequent consumption of the water            

reward ( Figure 6D , left). Accordingly, aligning activity in the same areas to the start              

of a lick bout shows mouth area activity coupled to licking (Figure 6D, right).  

To explore lever-press and lick-related activity across the brain, we ran a            

voxelwise GLM analysis. Using GLMs allowed us to exploit trial-by-trial variability           

in the behaviour, by including right lever presses, left lever presses and licks as              

covariates. Given the low number of left presses and the fact that mice often              

performed them simultaneously with right ones, we treated the left as a nuisance             

regressor. The resulting statistical maps are shown in Figure 6E . Consistent with our             

previous analysis, we found that right lever presses preferentially engaged the upper            
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region of the somatosensory cortex, while licking correlates best with the mouth            

region. Furthermore, we found that although both lever press and licking engage            

motor and somatosensory area, lever press engages preferentially the contralateral          

hemisphere, whereas licking is more bilateral, as also seen in the classical            

conditioning task. The contralateral bias for right press is clearer in this analysis             

relative to the averages ( Figure 6B ) as the contributions of brain activity related to              

licking and left-presses can be better parsed from activity related to right-lever            

pressing.  

In addition to these areas, we found task-related activity in several additional            

cortical and subcortical regions ( Figure 6E ). Among the areas best correlated with            

right lever press were retrosplenial cortex (RSP), insular cortex (AI), several midbrain            

motor nuclei (NLL, PRN), pallidum (PAL), olfactory tubercle (OT) and lateral           

hypothalamus (LHA). Licking engaged preferentially areas such as midbrain reticular          

nucleus (MRN), substantia nigra (SN), hippocampus (HIP), amygdala (AMG),         

piriform cortex (PIR), nucleus accumbens (ACB), parts of the thalamus (THA) and            

more medial aspects of the hypothalamus (MPN and MPO). Some of these areas, such              

as motor thalamus and hypothalamic areas overlap with the areas identified in the             

classical conditioning task, consistent with the use of comparable water reinforcement           

and the expression of licking. The AMG was also detected in both tasks. The              

basolateral AMG, in addition to playing a role in Pavlovian stimulus-outcome           

associations, has also been shown to use this information to modulate instrumental            

actions (Cardinal et al., 2002). 

Finally, given the use of light cues in the task, we also expected to see the                

engagement of visual areas such as visual cortex (VIS) and superior colliculus (SC).             
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Valid presses are immediately followed by a blue light (feedback signal) that is             

positioned on the left side of the visual field ( Figure 6A ). We thus expected them to                

correlate with contralateral (right) visual cortex activity. Licking, by contrast,          

occurred both during the reward period (cued by the left blue light) and during the               

initial part of the subsequent waiting period (cued by the right yellow light). We thus               

expected licking to engage visual areas bilaterally. Indeed, Figure 6E confirms these            

predictions. 

 

Using decoding approaches to further investigate task-related activity 

To further investigate what information may be available in these areas, we            

took advantage of decoding strategies. We exploited the fact that we had a large              

dataset per mouse in this task, to use support-vector machine algorithms (Suykens &             

Vandewalle, 1999). We started by comparing valid (“correct” press, first press after            

the waiting period had elapsed) and invalid presses (presses during the waiting period)             

( Figure 7A ). They should be comparable in terms of kinematics for pressing.            

Importantly, they differ in their reward contingencies: whereas a valid press is always             

followed by a delayed reward, invalid presses are never rewarded. In addition, they             

will also differ in visual stimuli: whereas invalid presses are correlated with the             

constant yellow light of the waiting period, presented in the right visual field, valid              

presses are immediately followed by the transient blue light, presented to the left of              

the visual field.  

Multivoxel decoding analysis during the outcome period (1:5s after press)          

revealed that among the top areas to discriminate the two conditions were            

mediodorsal thalamus (MDTHA), secondary motor cortex (MOs), hippocampus        
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(HIP), primary motor cortex (MOp) and nucleus accumbens (ACB) ( Figure 7B ). The            

MDTHA is a higher-order thalamic nucleus that receives inputs from medial           

prefrontal cortex, limbic structures and basal ganglia (Marton et al., 2018). Its            

function is not well understood but mounting evidence suggests a role for MDTHA in              

associative learning (Bradfield et al., 2013; Chakraborty et al., 2016; Izquierdo &            

Murray, 2010; Mair et al., 2015; Mitchell, 2015; Mitchell & Chakraborty, 2013;            

Ostlund & Balleine, 2008). 

 

Figure 7 - Decoding task-relevant activity from multiple areas 
(A) Schematic of valid and invalid presses. Whereas valid presses are always            
followed by a delayed reward. Invalid presses are never rewarded. (B)           
Region-by-region accuracy in the decoding of valid versus invalid press during the            
outcome period (1:5s after press). F1-score is a measure of accuracy, defined as: 2 *               
(precision * recall)/(precision + recall). Decoding was done for individual mice           
pooling data from all sessions (N = 7) using Support Vector Machine algorithms,             
cross-validating with stratified 5-fold. Unsmoothed images were used. Areas were          
first ranked according to their accuracy. Among the 15 most and least predictive, we              
asked which are common across mice. Shown are the 5 most (least) predictive areas              
that were present in the top (bottom) 15 for both mice (see Methods for more details).                
Mouse #1 is in dark shades, Mouse #2 in light shades. Random accuracy is 0.5. (C)                
Schematic of short-latency and long-latency presses. The self-paced nature of the task            
meant that valid presses occurred after variable delays. We split latencies into a lower              
and upper percentile, defining trials with latencies below the 50th percentile as short             

31 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044941
http://creativecommons.org/licenses/by-nc-nd/4.0/


and those above as long. (D) Region-by-region accuracy in the decoding of short vs.              
long latency presses in a period around the time of press (-3:3s relative to press). 
 

MOs is involved in action planning and initiation (Erlich et al., 2011; Guo, Li,              

et al., 2014). It has also been shown to convey value signals before and after a choice                 

has been made (Sul et al., 2011). Its involvement in our task is likely to reflect both                 

the planning/initiation of consummatory actions (i.e. licking to collect reward) and the            

outcome difference between valid and invalid presses. Consistent with a role in action             

planning and initiation, primary motor cortex (MOp) is also among the most            

predictive areas. In line with a role in value coding, the ACB, known to be involved in                 

reward processing (Cardinal et al., 2002), was also among the most predictive areas.  

The HIP has been implicated in learning and memory (Eichenbaum et al.,            

1999; Good, 2002; McNaughton & Morris, 1987; Morris & Frey, 1997). In the             

context of reward processing, it has been shown to receive input from reward-related             

areas to enhance encoding of rewarding events (Adcock et al., 2006; Lisman & Grace,              

2005; Murty & Adcock, 2014; Shohamy & Adcock, 2010; Wittmann et al., 2005).             

Reward-related differences in memory encoding could underlie the hippocampal         

contribution to discriminating the reward and no-reward conditions in our task.  

By varying in outcome, valid and invalid presses will also vary in the extent to               

which they engage licking. We next compared conditions that were matched not only             

for press output but also for licking: short- and long-latency valid presses ( Figure             

7C). The self-paced nature of our task meant that mice could press at any point after                

the waiting period had elapsed. We defined this interval (time from the end of the               

waiting period to the first press) as the “latency to press”. We then split presses into                

short-latency (<50th percentile of all latencies) and long-latency (>50th percentile).          
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Because the first press after the waiting period (whether short or long-latency) was             

always rewarded, these conditions are comparable in both press and lick-related           

movements, but they should differ in terms of the decision, motivation and            

preparation involved in making an early, as opposed to a delayed, action. Again, since              

short-latency presses happen temporally closer to the end of the waiting period, these             

conditions also differ in visual stimuli. 

Among the areas best at decoding short- from long-latency presses were           

subiculum (SUB), primary visual cortex (VISp), nucleus accumbens (ACB), piriform          

cortex (PIR), and primary motor cortex (MOp) (Figure 7D).  

In our task, short- and long-latency presses may imply different motivational           

states that modulate the latency to act. Consistent with this hypothesis, both the SUB              

and ACB have been implicated in motivated reward-seeking behaviour (Cardinal et           

al., 2002; Vorel, 2001). In particular, stimulation of SUB has been shown to be              

effective in eliciting reinstatement of cocaine-reward seeking when delivered before          

lever pressing, suggesting that it has predictive or incentive properties that facilitate            

action initiation (Vorel, 2001). The ACB works at the interface between reward and             

motor systems by allowing motivational stimuli to enhance ongoing instrumental          

responding (Pavlovian-instrumental transfer, PIT) (Cardinal et al., 2002). Although         

PIT is commonly measured in terms of response vigor, it seems possible that it would               

also be expressed in terms of the latency to press. Interestingly, stimulation of SUB              

induces long-lasting dopamine (DA) release in ACB (Blaha et al., 1997; Brudzynski            

& Gibson, 1997; Legault et al., 2000; Legault & Wise, 1999), and locomotion towards              

a goal alters synchronous firing of neurons recorded simultaneously in SUB and ACB             

(Martin, 2001).  
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Note that given that short-latency presses are temporally closer to the reward            

in the preceding trial compared with long-latency presses, we cannot rule out that             

some of the activity of the previous reward contributes to this decoding. This could              

underlie at least partly the ACB and MOp also identified in the decoding of the               

outcome. However, given the differential involvement of other areas, it is also            

possible that they play both, potentially related, roles.  

PIR is the largest of the olfactory cortical areas and has been shown to be               

involved in processing olfactory information (Haberly, 2001), both in terms of its            

sensory and associative features (Calu et al., 2007; Roesch et al., 2006). No study to               

our knowledge has investigated piriform in the context of non-olfactory tasks. Our            

findings raise the interesting possibility that it may also play a role in non-olfactory              

associative processes. Further studies are however needed to verify this preliminary           

conclusion. 

Together these findings illustrate how whole-brain fMRI data, combined with          

advanced analysis techniques, can be used to aid unbiased investigation of the            

brain-wide circuits mediating behaviour. By providing simultaneous information        

across multiple brain regions active during behaviour, this information can be used to             

form hypotheses that can then be used using complementary invasive circuit           

techniques.  

 

Using brain-wide correlational analysis to investigate relationship between areas 

Behaviour depends not only on intra-area local processing but critically on the            

interaction and coordination of information processing across multiple areas. We          

exploited the ability of fMRI to provide information about multiple areas           
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simultaneously recording across the whole-brain to explore functional coupling         

between them. We define functional coupling as the overall correlation between voxel            

or ROI time series. This will include, besides functional connectivity, any coherence            

in task-driven responses. We first focused on the ACB, a well-studied subcortical            

region, known to work at the interface between reward and motor systems by             

allowing motivational stimuli to shape instrumental responding (Cardinal et al., 2002).           

We explored functional coupling by computing the correlation between the mean time            

course of the selected (seed) area (ACB) with every other voxel in the brain. Figure               

8A shows the resulting maps for the two mice tested. We found functional coupling              

with regions including the amygdala, midbrain structures, motor and reward related           

structures (MRN, SN/VTA), hypothalamus, as well as motor and somatosensory          

regions, a pattern broadly consistent with the known function of ACB. Interestingly,            

we also identified the hippocampus, which we previously identified as predictive of            

the outcome, along with ACB. 

We next aimed to explore the functional coupling of some of the areas             

identified in previous analyses. We thus quantified the pairwise correlation among all            

voxels ( Figure S4 ) or across ROIs ( Figure 8B ). To better visualise this information,             

we plotted it as an interactive chord diagram where the size of the connections              

between areas reflects the strength of their correlation. We first looked at the             

retrosplenial cortex (RSP) ( Figure 8C ), which we identified in the GLM analysis,            

most strongly correlated with the right press predictor, suggesting it may be more             

involved in the appetitive behaviour rather than reward consumption. RSP is at the             

intersection of areas that encode visual information, motor feedback, higher-order          

decision-making, and the hippocampal formation (Kononenko & Witter, 2012;         
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Miyashita & Rockland, 2007; Sugar et al., 2011; van Groen & Wyss, 1992). Previous              

studies have implicated it in spatial navigation guided by visual or self-motion cues             

(Elduayen & Save, 2014), as well as learning and memory (Vann et al., 2009).              

Interestingly, within the context of its role in spatial navigation, it has been suggested              

that RSP may specifically contribute to cognitive processing by integrating visual, and            

potentially motivational, cues with information generated by self-motion (Cooper &          

Mizumori, 2001). This raises the interesting possibility that although not in the            

context of space, RSP may be involved in our operant task in using visual cues, and                

potentially their reward association, to guide, and learn from, instrumental actions. 

Consistent with its relationship to the visual and hippocampal systems, among           

the higher correlations are visual cortex (VISp), hippocampus (HIP), and entorhinal           

cortex (ENT). Additional areas include motor cortex (MOp), and both dorsomedial           

(dmST) and dorsolateral striatum (dlST), consistent with its involvement at the time            

of pressing. Perhaps surprisingly, supplemental somatosensory cortex (SSs) was also          

among its higher correlations. 
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Figure 8 - Functional coupling between multiple brain areas 
(A) Seed analysis. Voxelwise correlation with seed region (nucleus accumbens,          
ACB). Columns are different coronal slices from posterior (left) to anterior (right).            
Rows are different mice. Colours are positive and negative Pearson correlation           
coefficients, thresholded at +- 0.2. (B) Pairwise Pearson correlation coefficients          
between various regions-of-interest (ROIs). Coefficients were calculated per session         
and averaged across sessions (N = 7). (C) Chord diagram showing correlations with             
retrosplenial cortex (RSP) thresholded at 0.4. The thickness of the line indicates            
strength of correlation. Positive correlations of the left. Negative correlations on the            
right. (D) Chord diagram showing correlations with hippocampus (HIP) thresholded          
at 0.4. Positive correlations of the left. Negative correlations on the right. The            
interactive version of these chord diagrams is available at         
https://madalena_fonseca.gitlab.io/coupling_visualisation/. 
 

The role of SSs in behaviour is poorly understood but there is some evidence              

for its involvement in processing higher-order features of somatosensory stimuli          

including attention (Burton, 1999; Chapman & Meftah, 2005; Fujiwara et al., 2002;            

Meftah et al., 2002; Mima et al., 1998), learning (Debowska et al., 2011; Manzoni et               

al., 1979; Quallo et al., 2009), and sensorimotor integration (Huttunen et al., 1996).             

No studies to our knowledge have looked at SSs in the context of an operant task.                

Consistent with a role in attention and learning, SSs could be involved in our task in                

learning from tactile sensory and reward feedback to guide appropriate forelimb lever            

press movements. 

To verify the robustness of our functional coupling analysis to spatial           

smearing of the BOLD signal, we compared the functional coupling of RSP to that of               

an adjacent area, the hippocampus (HIP) ( Figure 8D ), which we identified in the             

decoding analysis as discriminating reward outcome. Given their different potential          

involvements in the task, we expected to see differences in functional coupling. As             

expected from being correlated with each other, HIP shared correlation with RSP.            

These included VISp, posterior parietal cortex (PPC), dlST, and some midbrain motor            
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and reward-related nuclei (RN, SN/VTA, MRN). However, while RSP showed a high            

correlation with MOp, SSs, and ENT, HIP showed a high correlation with primary,             

rather than supplemental, somatosensory cortex (SSp), lateral and posterior         

hypothalamic areas (LHA, PH), and ventromedial thalamus (VMTHA), consistent         

with the finding from the decoding analysis discriminating behaviour at the time of             

outcome delivery.  

By using brain-wide correlation analysis, we exploited functional coupling         

between regions to further investigate the role that different regions may play in our              

task. We compared retrosplenial cortex and hippocampus, two areas that we had            

previously identified. Although in our case, the use of two different behavioural            

actions (lever and press) already allowed us at the GLM level to somewhat narrow              

their contributions, functional coupling provides a way to access this information           

potentially independent of behavioural labels or expression. For instance, one can           

imagine performing this analysis comparing behaviourally relevant conditions (e.g.         

before and after learning, or during different delay periods) that may not lead to              

differences in expressed behaviour but may reflect covert differences in cognitive           

processes. We explored one variant of this analysis, but there are several possible             

extensions, including how functional coupling changes over time (e.g. over learning)           

and how it relates to functional connectivity (e.g. by removing task-related           

activation), potentially providing a new layer of information.  
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DISCUSSION 

Access to a brainwide map of simultaneously recorded brain activity during           

mouse behaviour would inform system-levels theories of how dynamic distributed          

processing relates to behaviour and offer an unbiased way to select brain regions to be               

studied at the local level. We present a number of hardware, procedural, and analysis              

advances to enable the use of mouse behaving fMRI to tackle a broad range of               

behavioural neuroscience questions. First, we make MRI compatible behavioural         

setups compatible with the use of multiple sensory stimuli and behavioural readout            

measures, key to dissociate sensory, cognitive, and motor processing. Second, we           

identify and correct important signal artifacts from task-related body movements not           

addressed by previous studies. Third, we validate our approach in a 4-odour guided             

classical conditioning task by showing engagement of a number of regions previously            

implicated in classical conditioning as well as others that have been less studied.             

Finally, we extend our approach to a more general, operant task, with increased motor              

complexity and design flexibility. We further illustrate how a combination of analysis            

tools can be exploited to identify and investigate task-related activity across multiple            

cortical and subcortical areas and to explore brain-wide inter-region functional          

coupling.  

The study of neural activity patterns during complex behaviour in rodents is            

essential to understand the mechanisms underlying animal behaviour and cognition.          

However, exactly to what extent findings in rodents relate to those in humans is far               

from clear. This comparison has been hampered by the fact that rodent and human              

studies use typically different techniques, measure different types of signal, and study            

the brain at drastically different spatial and time scales. Behaving rodent fMRI offers             
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the possibility of measuring the same signals in comparable behavioural tasks. This            

data can then be used not only to find similarities but to quantify the differences               

between species; for instance, studying functional homology across multiple areas          

simultaneously.  

Another advantage of behaving rodent MRI is the relative ease of access to an              

overview of brain areas engaged in a task. For technical reasons, rodent studies             

typically focus on one or a few areas, which are decided based on previous studies.               

New studies tend to, on one hand, perpetuate the conditions under which an area was               

initially studied (e.g. within olfactory processing) and, on the other hand, overlook the             

importance of additional areas that have never been never probed. Our regression,            

decoding and functional coupling analyses reveal a range of task-related areas from            

early sensory to higher-order cognitive regions, highlighting the distributed nature of           

behaviourally-relevant information processing, echoing recent findings with       

electrophysiology (Steinmetz et al., 2019). Some of these areas were expected from            

the literature (e.g. body map in somatosensory cortex, primary visual areas in            

response to visual stimuli), but several others have either been largely unexplored or             

studied exclusively in a restricted set of conditions, consider for instance piriform            

cortex, which to our knowledge has never been studied in a non-olfactory task. Thus,              

behaving rodent fMRI offers an efficient and unbiased method to gain a global             

perspective over the brain areas engaged in a task (GLM analysis), their potential role              

(decoding analysis), and cross-region coupling (functional coupling analysis). This         

information can then be used to guide decisions about which regions to target, and to               

inform theories about how networks of areas work together to orchestrate behaviour.  
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There are a number of techniques available to investigate functional circuitry,           

each with its unique advantages and disadvantages. We chose functional magnetic           

resonance imaging for two main reasons: (1) because it allows observation of            

simultaneously recorded whole-brain activity during task performance and (2)         

because of its comparability with human brain studies where fMRI is most commonly             

used. Electrophysiology and calcium imaging offer high spatiotemporal resolution but          

are still far from achieving whole-brain simultaneous coverage (Lu et al., 2020;            

Sofroniew et al., 2016; Steinmetz et al., 2019). Histological marking techniques such            

as c-fos (Guenthner et al., 2013) allow whole-brain coverage at high spatial            

resolutions but are restricted to a single time point. Functional ultrasound (fUS) has             

recently emerged as a powerful combination of brain-wide coverage and high           

spatiotemporal resolution. However, acquisitions in awake rodents are still serial with           

different 2D slices being recorded at least 20 minutes apart (Macé et al., 2018) .              

Importantly, none of these approaches can achieve whole-brain recordings in humans.           

By contrast, fMRI allows whole-brain simultaneous imaging across species from          

mouse to humans.  

The relatively low temporal resolution of fMRI acquisitions is a limiting           

factor, however this can be partly mitigated by careful task design. The non-invasive             

nature of MRI means that there is virtually no upper limit on the number of sessions                

that can be acquired. Thus, one can start with low temporal resolution to gain a               

whole-brain overview, and upon observation, trade off spatial coverage for increased           

temporal resolution (e.g. by choosing a single slice in any orientation that can traverse              

several areas of interest) to reach temporal resolutions on the order of tens of              

milliseconds. Ultimately, one is limited by the sluggish nature of the haemodynamic            
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process, in the order of seconds. However, BOLD onsets, measured using ultrafast            

BOLD sequences, are known to preserve the temporal order of neural events            

(Silva2002, Yu2012). Furthermore, with appropriate modeling of the haemodynamic         

response function, it will eventually be possible to estimate neural activity from            

BOLD and vice versa, as currently done for calcium imaging (Pachitariu et al., 2018;              

Theis et al., 2016; Vogelstein et al., 2010). Accurately modeling the haemodynamic            

response function is no easy task, but the use of tools available in rodents to record                

and manipulate with cell-specificity to investigate the principles of neurovascular          

coupling promise great and fast progress. Multiscale comparisons within the same           

animals have already been achieved in awake non-behaving rodents (Desjardins et al.,            

2019) . By using a long-term cranial window that is MRI compatible, Desjardins et al.              

achieved optical access for microscopic imaging and optogenetic stimulation in the           

same animals that underwent BOLD fMRI. This approach will be instrumental in            

bridging BOLD fMRI signals to the underlying activity of neuronal circuits.           

Extending this approach to awake behaving conditions, such as the ones we present in              

the current study, will further allow comparison of these signals not only in response              

to sensory stimuli but in the context of complex cognitive behaviours translatable to             

humans. 

We identified signal artifacts coupled to the contraction of muscles          

surrounding the skull during behaviour. To have a more accurate estimation of artifact             

timing, relative to the impoverished binary measure of infra-red beam break used for             

event detection, we included all the muscle surrounding the skull in our field of view               

during imaging. Given that muscle contractions induce field inhomogeneity and thus           

signal fluctuations, we were able to measure a proxy of muscle geometric changes.             
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We then used the rich information contained in these muscle voxels to estimate both              

global and regional artifactual changes in brain fMRI signal. Given that BOLD signal             

related to neural activity is slow (in the order of seconds), we expect that removing               

brain signal correlated with the relatively fast muscle change, will preserve most of             

the true neural-driven signal. We focused on preprocessing strategies. It is possible            

that effective interventions earlier than preprocessing, such as data reconstruction or           

data acquisition, can be found. We used balanced steady steady free precession            

(bSSFP) due to its high spatiotemporal resolution and robustness to image distortions            

(Miller, 2012; Park et al., 2011; Zhou et al., 2012). In pilot studies, we tried two other                 

acquisition strategies: Echo-planar imaging (EPI), which is more sensitive to BOLD           

at the cost of being more prone to artifacts, and Half-Fourier Acquisition Single-shot             

Turbo Spin Echo imaging (HASTE), less sensitive to BOLD but more robust to             

artifacts. In all, we saw artifactual amplitude changes coupled to licking. In EPI, they              

also led to mislocalization of the signal and thus apparent head motion. Importantly,             

realignment strategies were not sufficient to correct them. At the acquisition stage, it             

will be interesting to try more recent pulse sequences such as xSPEN (Zhang et al.,               

2017) shown to be extremely robust to field heterogeneities. Another possibility,           

assuming that the lick-induced changes reflect only fluctuations in the static magnetic            

field, would be to use dynamic shimming so that field changes are frequently             

compensated for.  

The study of neural activity underlying rodent behaviour using fMRI is in its             

early days, but showing fast progress. Only three studies, to our knowledge, have             

performed fMRI imaging while simultaneously measuring behaviour (Han et al.,          

2019; Sakurai et al., 2020; Tabuchi et al., 2002). Tabuchi et al. measured fMRI              
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responses on a section of the rat brain during drinking behaviour. However, they did              

not measure behaviour in the scanner, imaged only a coronal slice, and at             

minutes-scale temporal resolution, limiting the relevance of the approach to the study            

of brain-wide activity during task performance. More recently, Han et al. used fMRI             

to record brain-wide activity while mice performed a 2-odour olfactory go/no task            

(Han et al., 2019), while Sakurai et al. measured brain-wide activity during            

cued-water drinking. While these studies represented a significant advancement in the           

field, they have limitations that need to be tackled if this approach is to fulfil its                

potential as a valuable complementary tool for rodent behavioural neuroscience          

studies and a key technique in translational neuroscience. First, Han et al. and Sakurai              

et al. only record licking behaviour and deliver maximum 1 unimodal stimuli, offering             

limited ability to isolate sensory, cognitive, and motor processing. Instead, our setup            

allows for the use of multiple, multi-modal stimuli and three different behavioural            

readouts. Second, by employing designs with long task epochs (trial length ~15s vs.             

2s in previous studies), we were able to separate different task-related activity (e.g.             

correlates of preparatory and consummatory behaviour). Third, while Han et al.           

identify regions by averaging, and Sakurai et al. by using a univariate GLM, we              

establish the feasibility of a range of additional analysis strategies exploiting           

multi-voxel patterns and trial-by-trial variability, including multivoxel decoding and         

brain-wide correlational analysis. We thus sought to illustrate the breadth of           

information that can be obtained with this approach to tackle neuroscience questions            

in future studies. Finally, while Han et al. and Sakurai et al. only correct for potential                

artifacts arising from changes in head position, we dedicate substantial efforts to            

identify, characterise and correct artifacts arising from task-related jaw and body           

45 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.044941doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.044941
http://creativecommons.org/licenses/by-nc-nd/4.0/


movements, which if left uncorrected can lead to false positives. It is possible that              

Han et al.'s and Sakurai et al.’s tasks and/or analyses are not sensitive enough to be                

affected by and pick up the artifact or that by focusing on activity that is different                

across groups (Sakurai et al., 2020), these artifacts were subtracted. Independently of            

the reason, it is paramount that these artifacts are thoroughly addressed, especially as             

we move from validation to exploration of richer and more complex tasks. A             

comprehensive method that will be widely applicable must therefore offer strategies           

to tackle not only artifacts arising from head motion but also other body movements.              

Our method exploits the rich information in muscle voxels to estimate and remove             

both regional and global artifactual changes in brain signal induced by head muscle             

contractions. This represents an important step forward in ensuring valid and           

interpretable results in future studies, without requiring additional behavioural         

training or limiting task designs.  

One of the main challenges in performing awake behaving fMRI is to            

minimise stress. Besides the possible stress arising from head fixation, MRI           

acquisitions lead to loud, variable noises and strong vibrations which can be sources             

of stress. Stress can not only lead to poor image quality due to head motion (King et                 

al., 2005; Harris et al., 2015) but also impair learning and task performance (de              

Quervain et al., 1998; Diamond et al., 1994; Graham et al., 2010; Hölscher, 1999;              

Kaneto, 1997; Kim et al., 2001), being thus particularly crucial to minimise in awake              

behaving settings. Gradually exposing animals to MRI sounds has been shown to be             

effective at decreasing stress (Desai et al., 2001; Harris et al., 2015; Ferenczi et al.,               

2016; King et al., 2005). We combine this and additional steps to acclimate mice to               

the various potential stressors. Our procedure differs from previous behaving rodent           
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fMRI methods (Tabuchi et al., 2002; Han et al., 2019; Sakurai et al., 2020) in several                

ways. First, it is longer and more gradual, aiming to minimize stress at all stages of                

training. Second, by training mice to voluntarily enter head-fixation, it avoids possible            

stress from manually fixation. Third, sounds are introduced only once animals are            

motivated and engaged in the task, and thus are less likely perturbed by them. Fourth,               

sound exposure is very gradual and lasts for at least 12 days as this was previously                

shown to be most effective (Harris et al., 2015). Finally, to habituate mice to              

vibrations, we also train them in the scanner. Despite our best efforts, it is possible               

that some residual stress remains. It will be important in future studies to complement              

these stress minimising procedures with external measures of stress (e.g. cortisol) as it             

has been done for sound exposure (Harris et al., 2015, King et al., 2015) and, when                

possible, directly compare MRI and non-MRI results in a specific region of interest. 

The behavioural tasks we used were meant as a first step and were so far               

relatively unconstrained in terms of the cognitive processes engaged. It will be            

interesting, in future work, to extend this approach to richer and more constrained             

behavioural settings, where similar analyses can be used in conditions that only differ             

in a single quantifiable computational variable, to probe the underlying information           

representation in the neural systems. We extend the behavioural repertoire relative to            

previous awake behaving fMRI studies to include lever pressing in addition to licking             

as behavioural readouts. By requiring a movement different from reward consumption           

and separated in time from reward delivery, lever pressing offers a clear distinction             

both at the behavioural and neural level between the choice report and the reward              

consumption, facilitating the dissection of decision-making mechanisms.       

Furthermore, and contrary to licking, lever pressing is learnt, voluntary, and not            
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reflexive, thus offering a more controlled and relevant readout for the study of choice              

behaviour. Importantly, the distinction between right and left lever press, although not            

exploited in our task, make our system compatible with more complex and controlled             

decision-making tasks, including two-alternative forced-choice, where psychometric       

models can be used to quantitatively relate stimulus features with behavioural choices.  

In future olfactory studies, it will be important to complement the current            

approach with measurements of sniffing. Sniffing is known to be affected by olfactory             

stimuli (Laing, 1983; Sobel, 2000; Warren et al., 1994). For example in rats, the              

frequency and depth of sniffing depend on odour concentration (Youngentob et al.,            

1987). Furthermore, sniffing is known to be modulated by task variables such as             

reward expectations (Kepecs et al., 2007). This is important as fMRI signals will             

depend on blood oxygenation and thus respiration. Although the effect of changes in             

respiration would be expected to be global and not explain regional differences, it will              

be important in future studies to measure it simultaneously with fMRI data            

acquisition.  

We strived to show how much can be obtained by having a rodent performing              

a task during fMRI. What we did not take advantage of was that, unlike in humans, in                 

rodents we can acquire a high number of sessions and more easily access multiple              

subjects to improve signal to noise ratios when pursuing neuroscientific questions.           

This, in addition, offers the possibility of acquiring multiple data to use data-driven             

approaches to estimate HRFs more accurately. This was beyond the scope of our             

proof-of-principle study, but it will be a clear point of strength for future studies.  

In conclusion, we describe protocols to train mice to perform reward-guided           

tasks in the scanner during whole-brain imaging with fMRI. We establish effective            
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strategies to correct inevitable artifacts arising from body movements and offer strong            

validation of these methods by mapping sensory, motor, and reward correlates in line             

with previous literature. We extend our approach to an operant task that separates             

consummatory and preparatory behaviour and offers higher design flexibility. Besides          

mapping task-related activity across the brain, we show how decoding analysis can be             

used to compare task-related activity across multiple areas, and how brain-wide           

correlational analysis can be employed to explore task-related inter-region coupling.  

Our work illustrates how whole-brain fMRI data, combined with advanced          

analysis techniques, can be used to aid unbiased investigation of the brain-wide            

circuits mediating behaviour, paving the way to a whole-brain approach in rodent            

behavioural neuroscience. Combined with invasive manipulation techniques (i.e.        

optogenetics), it will enable tackling questions so far intractable even in rodents. How             

do cell-specific manipulations (e.g. optogenetic manipulations of neuromodulatory        

systems) influence brain-wide network activity in behaving mice? How do these           

global effects drive and are affected by behaviour? Finally, since fMRI is one of the               

cardinal techniques in human systems neuroscience, this approach offers a bridge           

from rodent to human neuro-behavioural studies, allowing direct investigation of          

similarities as well as differences between species. 
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METHODS 

Animal subjects 

Seven male adult C57BL/6 mice were used in this study. All procedures were carried              

out in accordance with the European Union Directive 86/609/EEC and approved by            

Direção Geral de Veterinária of Portugal. Animals (20-25 g) were group-housed prior            

to surgery and individually housed post-surgery. They were kept under a normal 12             

hour light/dark cycle and tested at light phase. Mice had free access to food. Water               

availability was restricted to the behavioral sessions. Extra water was provided if            

needed to ensure that mice maintain no less than 75% of their original weight. Mice               

performed 1 session per day, 6 or 7 days a week. Five mice were used in the classical                  

conditioning task. Two mice were used in the operant task. 

 

Stereotaxic surgery for head plate implantation 

Animals were anaesthetised with isoflurane (4\% induction and 0.5-1% for          

maintenance) and placed in a stereotaxic frame (David Kopf Instruments, Tujunga,           

CA). Lidocaine (2%) was injected subcutaneously before incising the scalp. The skull            

was covered with a layer of Super Bond C&B (Morita, Kyoto, Japan) to help stabilize               

the implant: 3 plastic nuts (M2, PKN2, Solid Spot, Santa Clara, CA, USA). The              

implant was cemented to the skull using dental acrylic (Pi-Ku-Plast HP 36, Bredent,             

Senden, Germany). Mice were monitored until recovery from the surgery and returned            

to their home cage where they were housed individually. Gentamicin (48760,           

Sigma-Aldrich, St. Louis, MO, USA) was topically applied around the implant. Water            

deprivation and behavioral training started at least one weeks after surgery. 
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MRI compatible behavioural setup 

Progress in whole-brain imaging in behaving rodents has been hampered by           

the hardware constraints of MRI scanners. The strong magnetic field and the restricted             

space in the scanner means that the solutions typically used for rodent fication (e.g.              

metal head plates) and behaviour quantification (.e.g large metallic components) are           

problematic. To overcome these obstacles, we combined fibre optics, pressure          

sensing, and 3D printed plastic parts into an MRI compatible setup that delivers             

multiple sensory cues (i.e. olfactory and visual), water rewards and records multiple            

behavioural measures (licking, right lever press, left lever press). 

Head-fixation was achieved by combining a plastic (PEEK) nuts (M2, PKN2,           

Solid Spot, Santa Clara, CA, USA), chronically implanted on the mouse's skull, a             

custom-made 3D printed fixation platform (designed and printed in-house) secured to           

the MRI bed and three plastic screws (M2, PEEK/PH M2-4, Solid Spot, Santa Clara,              

CA, USA) that secured that connected the implanted nuts and the platform. 

Lever pressing was detected using two infra-red beam break systems delivered           

and sensed via long-range optic fibres. Each beam-break system was composed of two             

custom designed fibers ("U-fibre-light-detector", Doric lenses, Quebec, Canada), a         

custom IR emitter and control unit ("Custom Control/Detection Electronics for          

U-Bracket", Doric lenses, Quebec, Canada), and an amplified photodiode for          

detection (APD_FC, Doric lenses, Quebec, Canada). In the mock setup we used            

infra-red emitters (SEP8736-003, Honeywell, Bracknell, UK) and phototransistors        

(480-1958-ND, Honeywell, Bracknell, UK). 

Licking was detected using a pressure sensor that detected lick tube           

(EW-06407-41, Cole-Parmer, Vernon Hills, IL, USA) vibration via an air pad           
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(Respiration pillow sensor, SA Instruments Inc., USA), positioned under the tube           

holder, and connected to a monitoring system (Model 1030 Monitoring Gating           

System, SA Instruments, USA). The tube holder was 3D-printed in house (Hardware            

Platform, Champalimaud Research, Portugal). In the mock setup, we used a non-MRI            

compatible infra-red beam break detector (GP1A57HRJ00F, Sharp, Uxbridge, UK).  

Odours (amyl acetate, 1-hexanol, ethyl butyrate, eugenol, diluted in mineral          

oil in a 1:10 ratio) were delivered using a custom-built olfactometer. Diluted liquid             

odours and a blank control odour (pure mineral oil) were loaded onto disposable             

syringe filters (20 μl, Whatman) that were then inserted into a PEEK manifold. The              

flow of air through each of the filters was controlled independently using a three-way              

solenoid valve (360K031, NResearch, NJ, USA). At any given moment, only one of             

the valves was open, passing either odourised or blank air streams at a flow rate of                

100 ml/min through the filter and into the manifold. This stream was mixed within the               

manifold with a second, "carrier" stream of clear air (flowing at 900ml/min; both             

streams controlled independently with flow meters, regularly calibrated using a mass           

flow meter (Model GFM17A-VAL6-*O, Aalborg) from which it was delivered          

through Teflon tubes (EW-06407-41, Cole-Parmer, Vernon Hills, IL, USA) to the           

animal's nose. Photoionization detector measurements showed that odour was sensed          

in less than 250 ms delay from valve opening. 

Visual stimuli were delivered via optic fibres connected to fibre-coupled LED           

sources. Visual stimuli (blue or yellow light) were delivered via long-range optical            

fibres (200 μm, 0.22 NA, Doric lenses, Quebec, Canada) connected to fibre-coupled            

LED (470nm, CLED, Doric lenses, Quebec, Canada), which was in turn, connected to             

a LED driver (LEDD1B, Thorlabs, Newton, NJ). The tip of the fibre delivering             
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yellow light was positioned close to the mouse's right eye, the tip of the fibre               

delivering blue light was positioned close to the mouse's left eye.  

Water was delivered using a distant water valve (LHDA1231215H, The Lee           

company, Westbrook, CT, USA). All systems connected to an Arduino-based board           

that was controlled by a dedicated computer using Arduino software, Python and            

Bonsai. 

All the electronic and metal components were positioned at a safe distance            

from the scanner and connected to the setup through long-range connections.  

This system was designed for use with a cryogenic surface array coil at 9.4T,              

but is in principle compatible with other coils. In pilot studies, we used a similar               

system for non-cryogenic array surface coil using a previous version of the            

head-fixation system and a beam-break lick detection (Costum U-bracket, Doric          

lenses, Quebec, Canada) using an IR led source and long-range optical fibre. 

 

Classical conditioning task 

Each trial started with the presentation of one of four odors for 2 s, randomly               

selected. Following a 3 s fixed delay (trace period), the corresponding outcome was             

available. For two odours the outcome was a water reward (~4 microliters) and for the               

other two it was nothing, counterbalanced across mice. Outcome delivery was           

followed by a variable inter-trial interval (6:9s, drawn from an uniform distribution).            

Mice were first trained only with the rewarded odours with an odor period of 1s, trace                

delay of 0s and ITI period of 2-3s. Neutral odours were introduced once mice showed               

anticipatory licking (licking during the trace period). The odour period, trace period            
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and ITIs were increased gradually during training until the final values: 2s odour             

presentation, 3s trace and 6-9 ITI.  

 

Operant conditioning task 

A trial started with a yellow cue signaling the waiting period (2-4s, increased             

over sessions) during which presses were not rewarded. The first press (either right or              

left) after the waiting period elapsed, was defined as a “valid press'' and was rewarded               

after a delay (0.5 - 1.5s, increased across sessions). A blue light provided immediate              

positive feedback after a valid press and stayed on until reward delivery, serving also              

as a bridging cue. Reward delivery was followed by a short intertrial interval (0.5s).              

During the initial stages of training every single press (left or right) was reinforced              

with a water reward. This produced reliable pressing but meant that mice would             

become satiated very quickly and that licks were tightly coupled with presses. To             

slow down the behavior and start decoupling presses from reward, and thus licking,             

we inserted the cued waiting period (0.5-4s) during which presses were not rewarded             

(effectively an inter-trial interval). The delay to the reward was also increased over             

sessions. To promote variability between individual presses and between presses and           

licking, we avoided overtraining and even within experimental days, we increased the            

length of all task delays over sessions. 

 

Training procedure 

A major challenge for doing simultaneous fMRI and mouse behaviour is to            

train mice to be comfortable enough in the scanner to perform successfully behavioral             

tasks during imaging and without disrupting image quality with head motion. To            
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achieve this, we used a mock setup replicating the one in the scanner and developed a                

sequential training procedure that exposed mice gradually to the various components           

(i.e. noise, vibrations) that would be present in the functional imaging sessions.  

After surgery for head holder implantation and recovery (1 week), water           

deprivation began. Following 2-3 days of handling in the homecage (Guo, Hires, et             

al., 2014), mice were trained to voluntarily enter the head-fixation apparatus. The            

motivation for this choice is two-fold: firstly, to minimise any fixation-related stress,            

and secondly, to avoid the use of anaesthetics, which are known to dampen fMRI              

signals and take tens of minutes (20-30 mins) to wash out even after a brief initial use. 

In the first day, mice were allowed to freely explore the mock setup without              

the head-fixation screws. At the beginning of the session, the water spout was easily              

accessible without requiring mice to insert the head all the way through the platform.              

After some successful approaches, the spout was gradually moved further away, until            

reaching its final position. 

The following day, one long screw was attached to the most anterior head nut              

so that the licking spout was only accessible if the screw entered the platform’s slit.               

Mice were allowed to freely remove themselves from the fixation platform and            

re-enter. Each entry was reinforced with a water reward. Maintaining the head in the              

platform led to additional rewards (up to 10 rewards, 1/second). Typically mice            

started by doing very short entries and progressively stayed longer. The procedure            

was repeated for another day with a shorter screw, making slit-entries more difficult,             

and the number of rewards per entry were increased to a maximum of 20, to further                

reinforcing staying in the platform. In the final stage, mice entered the holder and the               

head screw was tightened for increasingly longer periods. If at any point mice exhibit              
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stress signs such as struggling or vocalisations, mice are immediately released and the             

session was terminated. This phase lasted 8-10s days. 

Next, mice underwent task specific training (8 days for the classical           

conditioning task, at least 2 weeks for the lever press task) and, once proficient, were               

exposed gradually to increasingly loud MRI sounds recorded from the scanner. The            

volume of the sound was increased gradually from session to session, in at least 5               

steps. Mice were exposed to the maximum loudness for at least 7 more days. We               

monitored continuously the animal being especially attentive to any struggling          

movements, vocalisations or interruptions of licking. Typically, in the first 1-2 days of             

sound exposure, mice interrupt licking at sound onset and after a few seconds resume              

it. 

After undergoing sound acclimation, mice were taken to the MRI room, where            

they were first trained outside the scanner to allow habituation to the new             

environment and then inside the bore (2 days) with the real scanner sounds and              

vibrations. Each experimental session started with a few ``dummy trials'' to keep mice             

engaged as the setup was inserted into the scanner bore and the imaging adjustments              

were performed. After adjustments, functional images were acquired. Reference         

anatomical images were acquired at the end of the session. The entire procedure lasted              

30-40 days for the classical conditioning task, longer for the lever press task. 

 

Magnetic resonance imaging 

Small animal scanner and radiofrequency coil 

All MRI experiments performed on a 9.4 T Bruker BioSpec MRI scanner            

(Bruker, Karlsruhe, Germany) equipped with an AVANCE III HD console including a            
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gradient unit capable of producing pulsed field gradients of up to 660 mT/m             

isotropically with a 120 us rise time. A 86 mm quadrature resonator was used for               

transmission, and a 4-element cryoprobe (Bruker, Fallanden, Switzerland) was used          

for reception. The software running on this scanner was ParaVision 6.0.1. 

 

Subject preparation 

On the day of the experiment, the mouse was taken from the home cage on the                

palm of the hand of the experiment. The plastic screws attached to the chronically              

implanted nuts were carefully loosened. The mouse was then placed in the MRI             

behavioural bed, in the scanner room, and allowed to freely explore the setup. A few               

drops of water were placed forming a path to the head-fixation platform and the water               

spout. Once the mouse entered the head-fixation platform through the slit, the            

experimenter tightened the screws, and the task "dummy trials" began. Finally, the            

bed was inserted into the scanner and the imaging adjustments began. After            

adjustments, functional images were acquired. Reference anatomical images were         

acquired at the end of the session, when mice were satiated. 

 

Scanner synchronised behavioural monitoring 

An arduino MEGA260 connected to the LED source and the laser, and            

receiving triggering from the MRI scanner, was used to generate pulses of LED light              

or laser light, respectively. 

 

MRI data acquisition 

Adjustments 
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The head-fixation platform ensured reproducible, optimal positioning in the         

scanner. Once the animal was positioned in the scanner, localizer images were            

acquired to assess the quality of the position. A B0 field map was obtained from phase                

images acquired using a 3D-dual-gradient-echo pulse sequence. The correction of B0           

field inhomogeneities was automatically performed using a MAPSHIM routine in a           

cuboid volume comprising ~525 mm3 located in the brain and centered on the middle              

slice of the fMRI acquisitions. 

 

Anatomical scans 

In the lever press classical conditioning task, anatomical images were acquired           

using a T2-weighted Turbo Rapid Acquisition with Relaxation Enhancement (RARE)          

sequence (TEeff/TE/TR = 32/16/4500 ms, RARE factor = 6, Number of averages = 1,              

FOV 15 x 18 mm2, Matrix size = 100 x 120, in-plane resolution = 0.15 mm2, slice                 

thickness = 0.8 mm, Number of slices = 10). No anatomical images were acquired in               

the classical conditioning task. 

 

Functional scans 

Functional scans were acquired using a fast-imaging with steady-state         

precession (FISP), also known as balanced steady-state free precession (bSSFP)          

sequence. FISP was chosen due to its high spatiotemporal resolution and robustness            

against image distortions (Miller, 2012; Park et al., 2011; Zhou et al., 2012). In the               

classical conditioning task we used the following parameters: TR/TE = 2.3/1.6 ms, 1             

shot, Flip angle 30º, FOV 15 x 13, Matrix size 76 x 66, in-plane resolution 0.2 x 0.2                  

mm2, number of slices = 9 coronal slices with a 0.15 mm gap, slice thickness 0.75                
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mm. In the lever press operant conditioning task, we used similar parameters adjusted             

for differences in resolutions: TR/TE = 2.8/1.4 ms, 1 shot, Flip angle 30º, FOV 15 X                

18, Matrix size 50 x 60, in-plane resolution 0.3 x 0.3mm2, number of slices = 10                

coronal slices with a 0.2 mm gap, slice thickness 0.8 mm. 

 

Behavioural data analysis  

Linear temporal drift 

We observed a time drift between the Arduino and the MRI clocks. The time              

drift appears evident when considering the time course of the voxels belonging to the              

part of the volume occupied by muscles, with respect to the time series of events               

detected by the Arduino board (e.g. presses, licks). 

To avoid overfitting and hence bias the subsequent analyses, we assumed the            

drift to be linear in time. A straightforward algorithm to re-synchronise the signals is              

the following:  

1.  by multiplying the indices of  by .identify the onsets of the 

bouts of muscle activity  and detected events , respectively. Let 

 and   be the collections of detected onsets. 

2. Find the one-to-one function  such that the distance 

 is minimal for every . 

3. Regress  ( ) by considering the point cloud 

. 

4. Warp  by multiplying the indices of  by . 
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We use this strategy to support the validity of the linearity assumption, as shown              

in Figure S5 . However peak detection can suffer from the noisy nature of our signals,               

requiring heavy, arbitrary preprocessing. For this reason, we chose such that it             

maximises the correlation at time 0 between the mean in time of the absolute value of                

the muscle activity and . To do this, we consider 100000 evenly spaced             

values for in the closed interval . Thus, if maximises the             

correlation, no drift is detected and the optimal warped event time series would             

correspond to the original one. Figure S6 shows the output of the drift-correction             

algorithm. The correlation-maximisation procedure is detailed in the caption. 

 

Conversion from time to frames 

Behavioural parameters are downsampled to match the frame rate of          

acquisition of the scanner. This is done by associating to the i-th component of the               

vector the number of occurrences of the behaviour in the timespan necessary to             

acquire the frame. Clearly, behaviours occurring at a maximal rate equal or inferior to              

the one of slice acquisition will be associated to boolean vectors. Finally, the             

downsampled behavioural vectors are divided into task and nuisance regressors. 

 

Classical conditioning task 

Anticipatory licking was defined as any licking that occurred after mid-odour           

presentation until just before outcome presentation. Average lick rate traces were           

computed by smoothing the lick counts using convolution with a Gaussian filter of 50              

ms standard deviation. Mean lick rates were computed by taking the number of licks              

within a defined window (750:0 s for anticipatory licking and 100:850 ms for             
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consummatory licking, all times relative to outcome delivery), divided by the duration            

of that window. To correct for differences in overall lick rate between scanner and              

non-scanner sessions due to the use of different detectors (beam break electrical            

detector in the mock setup and motion sensor in the scanner), the mean anticipatory or               

consummatory lick rates were divided by the total lick rate in the session (total              

number of licks divided by the session duration). Mean lick rates were either             

computed per odour or pooling odour with the same reward contingency, as indicated             

in the text. 

 

Operant conditioning task 

Valid presses were defined as the first presses after the waiting period. Invalid             

presses were defined as any press during the waiting period. Latency to press was              

defined as the time between the end of the waiting time and the first press.               

Short-latency presses were defined as valid presses with latencies below the 50th            

percentile of all press latencies for that animal. Long-latency presses were defined as             

longer than the 50th percentile. 

 

MRI data analysis  

We processed the data following standard fMRI data processing. We tackled           

the correction of artifacts, arising from changes in muscle configuration, using a            

custom strategy. Our main approach to the correction of these artifacts was            

task-agnostic and based on LASSO regression, as described below. In the remainder            

of this section, we describe each of the processes involved in the analysis pipeline of               

both images and behavioural data. The algorithm flow is described in Figure S7. 
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Standard preprocessing 

Functional images were preprocessed using custom-written scripts in        

MATLAB and Python, and scripts from SPM12 (Wellcome Trust Centre for           

Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm/).  

First, functional and anatomical images were converted from Bruker format to           

NIFTI format. Images were then corrected for slice-timing differences using sinc           

interpolation with the SPM12 toolbox. This is to correct for the fact that different 2D               

slices composing a 3D volume are acquired at slightly different timings. Next, images             

were realigned using rigid-body transformation to correct for motion-related changes          

in brain position. For population analysis, images were co-registered to the subject's            

own T2 anatomical image and normalized to a common space (one of the animals).              

Finally, to correct for scanner low-frequency drift and for absolute signal differences            

arising from coil placement (signal decays with distance to the coil), the mean and              

linear trend terms were removed from each voxel's time series using voxel-wise linear             

regression. 

 

Lick artifact correction 

We found signal artifacts coupled to lick events and changes in muscle tissue.             

We aimed to use the information contained in the voxels in the muscle to predict the                

artifact in the brain, as muscle changes correlated better with artifact than the event              

detection vector. This is because muscle contractions can start before and extend            

slightly after an event detection, measured as a beam break or spout movement (e.g.              

opening of the mouth before the tongue protrusion that touches the spout). We chose              
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least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), as we           

had a large number of predictor (muscle) voxels. LASSO is a regularisation method             

that by pushing to zero the coefficients of voxels that are least predictive, performs              

covariate selection, using only a subset of voxels in the final model. Figure S9 shows               

the contribution of each muscle voxel to the predicted intensity of the brain’s voxels              

for two example sessions. Note the small number of contributing voxels. In the             

following sections we describe the basic definitions needed to introduce LASSO           

regression, then we provide details concerning the use of LASSO regression in our             

artifact removal algorithm. 

LASSO regression: Let  be a dataset consisting of 

 observation and expected value pairs. For every 

, we have that  and . LASSO 

regression minimises the objective function: 

 

When minimising , we fit a linear model of  on , and regularise the 

regression coefficients by using their  norm. The strength of the regularisation is 

proportional to the parameter . Let , the  norm of  is 

defined as: 

 

 regularisation favours coefficients to be zero as shown in Figure S8. This 

feature, when compared to other kinds of regularisations, makes LASSO an ideal 

strategy for feature selection. 
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It is also possible to generalise this technique to multidimensional expected 

values, i.e. when  with . In this case the loss function can be rewritten 

as: 

 

where ,  is in this case the Frobenius norm for 

matrices and  is computed as the sum of the 1-norm of each row. 

LASSO regression for artifact correction: Muscle contractions occurring 

during behaviour introduced artifacts in the recording. Our main approach to the 

correction of these types of artifact was task-agnostic and based on LASSO 

regression. After the standard MRI preprocessing procedures (slice-timing correction, 

motion correction and drift removal), we use the following steps. First, we manually 

generate for each slice  the masks  and  associated to muscle and brain 

voxels respectively. Each  is chosen conservatively, in order not to include any 

voxel entirely or partially belonging to the brain area. Let  and  be the 

masked images obtained by applying the muscle and brain mask to the slice  at frame 

. All the masked images are standardised (centred and divided by their standard 

deviation). Then, the collection of  is used as a set of observations, and  as 

target values in the computation of the multivariate LASSO regression . 

Essentially, we compute at each frame  how each voxel in  contributes in 

explaining the activity recorded in . The activity explained by  is then 

subtracted from . In symbols, a corrected image is computed as 
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. Finally, we denormalise the corrected images by adding the 

mean of  along the entire session.  

 

General linear model 

To reduce thermal noise and compensate for imperfections in co-registration,          

images where smoothed in space using a gaussian kernel with a full-width half             

maximum (FWHM) of twice the voxel size (0.3 mm for classical conditioning task             

and 0.6 mm for the operant task) before GLM fitting (Friston et al., 2007). For the                

statistical t-maps, GLMs were fitted either per subjects or pooling various subjects.            

Given that our N was small we used only fixed-effects analysis. We convolve             

behavioural events (CS+,CS-,US+,US- in the classical conditioning task; or right, left           

and licks in the lever press operant task) with the canonical haemodynamic response             

function (Glover, 1999) (a difference of two gammas). This is likely suboptimal for             

rodent analysis, however there is still little data on event-related fMRI in rodents to              

adequately estimate the HRF. For this reason, we conservatively used the canonical            

HRF, well characterised in humans. Future studies using data-driven approaches to           

estimate HRF will be important to increase the sensitivity of these analyses. To reduce              

false-positive activation generated by residual motion, we included the 6 motion           

correction parameters (x,y,z coordinates and pitch, raw, yaw rotations) generated in           

the realignment preprocessing step. In addition, we extracted the intensity time course            

of representative voxels in the ventricles (cerebrospinal fluid, CSF), thought to reflect            

physiological and non-physiological noise (e.g. vascular pulsation, respiration). The         

first 10 volumes were skipped because the steady-state in the FISP was only reached              

approximately at volume 5. For all GLM analysis, the appropriate SPM contrasts were             
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built in order to obtain maps for each task-related response. In the classical condition,              

we contrasted trial types (e.g. rewarded versus neutral trials) [1 -1], in the operant              

task, we contrasted with the baseline [1 0]. The resulting statistical t-maps were             

corrected for multiple comparison using family-wise error rate (FWE) corrections for           

p < 0.05 and a minimum cluster size of 8 voxels (Friston et al., 2007).  

 

Event-locked averaged maps 

We aligned images to the specific event class (e.g. odour A, right lever press),              

baseline subtracted them with the mean image in the interval -2:-1s relative to event              

onset and averaged over events to generate an averaged map over time (Figure 6B), or               

averaged over timepoints (0:10s from odour onset) to generate an overall response            

map (Figure 4C). The main advantage of this approach is that it does not need               

convolution with an haemodynamic response function (HRF), thus allowing for an           

unbiased —albeit clearly less expressive— analysis. For the lever press maps aligned            

on right press for mouse #1, the event selection was further constrained to exclude any               

right presses that were either preceded or superseded by a left press in a window of                

-10 to 10 frames. 

 

ROI analyses 

A C57BLJ mouse atlas from the Allen Brain Atlas (ABA) was manually            

spatially warped to match the mouse reference images. ROIs were defined manually            

according to the atlas for the ROI averaged time courses and automatically generated             

for the decoding and functional connectivity analysis.  
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For the averaged time course analysis, we extracted voxels from the selected            

ROI (already detrended during preprocessing). Time courses were averaged over          

voxels, aligned on the specific event, baseline corrected (-2:-1s from event onset) and             

averaged over instances of that event class. In the lever press averaged time course,              

averaging over the two mice tested, the additional exclusion of right events based on              

left presses was not used as this decreased significantly the number of trials in mouse               

#2. 

 

Decoding 

We decoded both task-specific and behavioural events by using standard          

machine learning techniques and cross validating with stratified 5-fold. For odour           

identity decoding we used Multinomial Logistic Regression, as we had a small dataset             

per animal (1 session per animal, 10-20 instances per odour per animal). For the lever               

operant task, we used Support Vector Machine algorithms, since we had a larger             

dataset per animal (7 sessions). For all decoding analysis non-smoothed images were            

used. F1-score is defined as 2 * (precision * recall)/(precision + recall).  

In the classical conditioning task, decoding was performed in the olfactory           

bulb for each animal, each odour and for each time point in a window from 0 to 10                  

frames from odour onset. To account for possible differences in response timing, we             

took the maximum F1-score across those delays. Those values were then averaged            

across mice. In the operant task we performed decoding for multiple ROIs for each              

animal, pooling data from all sessions. We took the maximum within the window             

used for each type of decoding (1:5 after press for valid vs. invalid press decoding and                

-3:3 for the decoding of short- vs. long-latency presses). We ranked regions according             
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to their F1-score for each animal. We took the top (bottom) 15 regions with highest               

(lowest) F1-score for each animal. Among those sets, we found the regions that were              

common across both animals. For example, if region X ranked 2nd for one animal and               

5th for other, it was selected. If region Y ranked 12th for one animal and 20th for                 

another it was not included. We then plotted the 5 highest and 5 lowest from this                

common pool with an individual bar per animal for each of them. In the following               

sections we describe the definition of the classification algorithms we used, provide            

their geometrical intuition, and detail their parameterisation. 

Decoding preprocessing: The training dataset is generated from drift and          

artifact corrected images and events, obtained via the procedures described in           

previous sections. First, images associated with events to be decoded are selected,            

allowing for a time shift to account for the slow nature of the BOLD response. Let                

be the images, event     

pairs collected for each considered event, and . We consider          

the balanced dataset .    

Finally, we generate the 5-folds used for cross validation. 

Stratified K-fold cross-validation: We split in train and test set by            

partitioning it in sets of equal cardinality. Classifiers are           

trained on all the possible collections obtained         

by removing the th subset of and validated on . Statistics on these               

training and validation procedures are used to assess the robustness of the decoding. 
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Multinomial Logistic Regression: We provide a geometrical intuition on         

logistic regression and the basic definition of multinomial logistic regression. We           

refer the reader to (Böhning, 1992) for more details. 

Logistic regression: Let us consider a binary classification problem, i.e. a set            

of labelled samples , where .       

The logistic function (sigmoid) is defined as , where         

, where are features associated to each sample, so that           

for every . Geometrically, the      

algorithm works by adding a new dimension for the dependent variable and fits a              

logistic function to so to separate samples for . See           

Figure S10B . Given a new sample , it can be classified simply by evaluating              

and assigning the sample to class if and to class              

otherwise. 

Multinomial logistic regression: We utilised multinomial logistic regression        

for decoding images associated to more than two events. The multi-class equivalent of             

the logistic function is the softmax function 

 

The softmax function outputs a probability distribution, thus the predicted events can            

be chosen by simply considering . 

Support Vector Machine: In a binary classification task, Support Vector          

Machines (SVMs) find the maximum margin hyperplane that separates the samples           
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belonging to the two classes (Suykens & Vandewalle, 1999). See Figure S10C for an              

intuition. Let be the labelled dataset described in the previous section, the margin              

hyperplane can be found via minimisation of the function  

 

where is the hinge loss function, where         

is the dot product between the weights and the sample's features. 

The kernel trick (Boser et al., 1992) generalises the SVMs framework to nonlinear             

classification. This strategy consists in substituting dot products in with a nonlinear             

kernel. We used a homogeneous polynomial kernel of degree , and kernel            

coefficient , where is the      

number of features and  is the standard deviation. 

 

Functional coupling analysis 

Non-smoothed images were used for these analyses. For seed-based         

correlations, we computed for each session the Pearson correlation between a time            

series of an averaged seed ROI and each brain voxel. For voxel or ROI-wise              

correlations, we computed the Pearson correlation coefficient between the time series           

of a voxel with every other voxel, or between the average time course within an ROI                

with the averaged time course of every other ROI. We then averaged the resulting              

coefficients over sessions (N = 7). If each variable has N scalar observations, then the               

Pearson correlation coefficient is defined as: 
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where and are the mean and standard deviation of A, respectively, and               

and  are the mean and standard deviation of B.  

The chord diagrams shown in Figure 8C-D are available in a web-based            

interactive form at https://madalena_fonseca.gitlab.io/coupling_visualisation/. 
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Figure S1 – Related to Figure 3 - Framewise brain displacement 
Boxplots with framewise displacement for all imaging frames (600-900 frames) for           
each mouse prior to any artifact correction. Boxplots show minimum (lower black            
line), first quartile (lower blue line), median (red line), third quartile (upper blue line),              
maximum (upper black line) and outliers (red cross). Frame-wide displacement was           
computed using 3 translations and 3 rotations (assuming a mouse brain radius of             
5mm) parameters using SPM’s realignment function. We masked the muscle voxels           
leaving only brain-voxels in the input images to avoid muscle movement affecting the             
realignment. It is likely that these are still overestimations of brain movement as             
realignment strategies are intensity-based and thus can be influenced by the amplitude            
changes caused by lick artifacts. 
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Figure S2 - Related to Figure 3 - Artifact correction in the classical conditioning 
(CC) and operant conditioning (OC) task.  
(A) Lick and muscle bout definition. Shown are four traces over time (for 50 s of the                 
example session shown in Figure 3) for lick rate, muscle global signal, brain global              
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signal before artifact corrections (raw) and brain global signal after correction           
(corrected). Grey boxes illustrate in the lick and muscle trace what is defined as a bout                
(consecutive lick events or muscle movements). Muscle global signal is an average            
over all voxels outside the brain but within our field of view (as shown in Figure 3),                 
including tongue, jaw muscles and temporal muscles. For information on the artifact            
(LASSO) regression see Methods. (B) Averaged muscle global signal (signal          
averaged across voxel and across bouts, in black), aligned on either the start of a lick                
bout (left, lick rate averaged trace shown above in green) or lever press (right, lever               
press averaged trace shown above in brown). Note that both licks and presses cause              
similar changes in muscle global signal. Shown is one representative session. (C)            
Averaged global signal in the brain aligned on the beginning of a muscle bout for               
individual mice (the 4 mice considered for task-related fMRI analysis in the CC task              
and 2 mice in the OC task) in a single session. Where multiple session data were                
available, one example session was selected. In red is the signal before correction             
(raw), in blue is signal after correction (corrected). Muscle changes correlate with            
artifacts in brain signal (red, raw) that can be corrected (blue, corrected). (D) Scatter              
plots for the same individual mice relating brain and muscle signal before artifact             
correction (red, raw) and after correction (blue, corrected) for a single session.            
Artifact correction diminishes the correlation between brain and muscle signal.  
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Figure S3 – Related to Figure 4 - Odour maps in the olfactory bulb 
Averaged maps over the two coronal slices images in the olfactory bulb. (Top row)              
Maps for the example animal shown in the main figure (odours C and D were               
rewarded). (Middle row) Maps for another individual mice with the reverse           
odour-reward contingencies (odours A and B were rewarded). (Bottom row) Average           
over the 4 mice considered in main Figure 4 . Although averaging across mice showed              
some commonalities, we observed substantial inter-subject variability. This variability         
is likely explained by a combination of biological and methodological factors.           
Biologically, some variability is expected due to inter-subject differences in glomeruli           
and vascular position (ref). Methodologically, we likely introduced substantial         
variability with (1) differences in slice positioning when imaging different mice and            
(2) the fact that we counterbalanced reward contingencies across animals, which also            
modulate the OB (Kay et al., 1999, Doucette et al., 2011). We thus restricted our               
analyses to within-subject comparisons.   
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Figure S4 – Related to Figure 8 - Voxel-wise functional coupling.  
Pairwise Pearson correlation coefficients voxel-by-voxel for mouse #1 (left) and          
mouse #2 (right) in the lever press operant conditioning task. Coefficients were            
calculated per session (N = 7 sessions), per animal and then averaged across sessions.  
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Figure S5 - Linear temporal drift correction 1 
(A) When compared to detected behavioural events (blue time series), the mean of the              
absolute value of the muscle activity in time (orange) reveals a temporal drift of the               
Arduino clock with respect to the MR one. (B) The delay between the two clocks               
accumulates in time. (C) The delay accumulation in time can be modelled linearly.  
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Figure S6 - Linear temporal drift correction 2 
(A) The average of the absolute value of the muscle activity in time (blue time series)                
is highly correlated with the event detection performed via an Arduino board. The             
time series of events detected by the Arduino board is depicted as the orange time               
series. The temporal drift between the two clocks is corrected by maximising the             
correlation between the two signals and consequently linearly warping the event time            
series (green). (B) as (A). (C) The loss function between the muscle time series               
and the candidate warped event time series is computed as           

, where is the operator outputting the        
correlation at time 0 between the two time series. The value realising the              
minimum of in the interval is the warping coefficient applied to             
correct the temporal drift.  
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Figure S7 - Analysis pipeline: processing of raw images and behavioural data.  
(A) Image preprocessing. Slice timing and motion correction are performed using           
SPM. Signal is linearly detrended in time and centered with custom Matlab scripts.             
(B) Task-agnostic artifact correction. Masks associated to brain and muscles            
respectively are manually generated for each slice . Thereafter, images are spatially            
normalised (2D standardisation). A multivariate LASSO regression is used         
independently on each slice , to compute the contribution of each voxel belonging             
to to the voxels in . Images are then de-normalised and smoothed spatially              
with a Gaussian filter. (C) Task-related behaviours and epochs are first mapped to the              
volume acquisition frame rate as boolean vectors or histograms (event occurrences per            
frame). These vectors are then used as regressor and nuisance regressor in the general              
linear model used to compute the statistical maps in (D). For every slice, the intensity               
time course of the brightest pixels corresponding to the ventricles are also used as              
nuisance regressors. 
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Figure S8 - L1 regularisation for voxel selection 
(A) Different norms induce balls with different shapes. We consider the and              
and norms and show the geometries they induce for coefficients in (left) and             
(right), respectively. In symbols we have:  
 

 
 

 
 
It is important to notice how the ball corresponding to the -norm corresponds to a               
cube whose corners lie exactly on the axes. In (B), the red ellipses represent the               
contours of the least square error function (loss term in eq. 1). The green and blue                
shapes correspond to different balls in norms 1 and 2 respectively, as modulated by              
the parameter  of the regularisation term in eq. 1. 
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Figure S9 - LASSO artifact correction: contribution of each voxel to the 
predicted intensity of the brain’s voxels.  
(Top) 5 coronal sections (Middle, bottom) Single voxel LASSO coefficients in the            
corresponding sections for two example sessions in the lever operant conditioning           
task (mouse #1). Note that these reflect voxels that were most uniquely predictive, not              
necessarily all the voxels where muscle movement occurred. This is because LASSO            
pushes to zero voxels that are redundant or least predictive.   
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Figure S10 - Decoding protocols and algorithms  
(A) Decoding preprocessing flow diagram. (B) Logistic regression. (C) Maximal          
margin hyperplane for separating samples belonging to two classes, as computed by a             
support vector machine.  
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Table S1 - Brain regions mentioned in the text 
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