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Abstract 
Pathway analyses are key methods to analyse ‘omics experiments. Nevertheless,          

integrating data from different ‘omics technologies and different species still requires           

considerable bioinformatics knowledge.  

Here we present the novel ReactomeGSA resource for comparative pathway analyses of            

multi-omics datasets. ReactomeGSA can be used through Reactome’s existing web interface           

and the novel ReactomeGSA R Bioconductor package with explicit support for scRNA-seq data.             

Data from different species is automatically mapped to a common pathway space. Public data              

from ExpressionAtlas and Single Cell ExpressionAtlas can be directly integrated in the analysis.             

ReactomeGSA thereby greatly reduces the technical barrier for multi-omics, cross-species,          

comparative pathway analyses. 

We used ReactomeGSA to characterise the role of B cells in anti-tumour immunity. We              

compared B cell rich and poor human cancer samples from five TCGA transcriptomics and two               

CPTAC proteomics studies. There, B cell-rich lung adenocarcinoma samples lack the otherwise            

present activation through NFkappaB. This may be linked to the presence of a specific subset of                

tumour associated IgG+ plasma cells that lack NFkappaB activation in scRNA-seq data from             

human melanoma. This showcases how ReactomeGSA can derive novel biomedical insights by            

integrating large multi-omics datasets. 
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Increasingly available approaches such as transcriptome sequencing (RNA-seq), mass         

spectrometry (MS)-based shotgun proteomics, and microarray studies enable us to characterise           

genome- and proteome-wide expression changes. This leads to the challenge of deriving            

relevant biological insights from lists of hundreds of regulated genes and proteins. 

Pathway analysis techniques have emerged as a solution to this problem. Resources like             

the Gene Ontology (GO)1, the Kyoto Encyclopedia of Genes and Genomes (KEGG)2, the             

Molecular Signatures Database (MSigDB)3, or Reactome 4 organise existing biological         

knowledge into gene sets or pathways. Pathway analysis approaches can use these resources             

to represent long lists of regulated genes and proteins as biologically defined pathways. This              

leads to a more intuitive interpretation of the data and increases the statistical power. While               

single genes or proteins may only show small, non-significant changes, synchronous changes            

within a pathway may reveal a biologically important effect. Thereby, pathway analysis has             

become an essential resource for ‘omics data analyses. 

The increasing availability of public ‘omics datasets has made it common practise to include              

these into analyses. This data integration is commonly complicated as datasets were created in              

different species or using different ‘omics approaches. Pathway analysis approaches offer a            

solution to this problem since data can be mapped to the more general and comparable               

pathway space. 

Existing web-based pathway analysis resources, such as PANTHER5, the Database for           

Annotation, visualisation and Integrated Discovery (DAVID)6 or Reactome’s pathway analysis7          

all provide over-representation analyses. This type of pathway analysis only tests whether a list              

of genes is overrepresented in a specific pathway. These approaches have the advantage that              

the user input is simple, but ignore any underlying quantitative information at the cost of reduced                

statistical power. Moreover, users have to manually separate up- and down-regulated genes            

and process them in separate analyses. Thereby, any result is only a partial representation of               

the underlying biological changes. 

The recently developed iLINCS resource extends the concept of single-resource pathway           

analysis to a powerful multi-omics and multi-resource analysis8. It tests whether a list of gene /                

protein identifiers correlates with a large set of pre-computed signatures. These signatures are             

often the result of differential expression analyses. Therefore, similar to the aforementioned            

resources, iLINCS ignores any underlying quantitative information in the final comparison.           

Additionally, the comparison with public data is limited to pre-defined experimental designs and             
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comparisons whose results are stored as pre-computed signatures. Therefore, a large portion of             

the data remains unused. 

Here, we present the novel Reactome gene set analysis system “ReactomeGSA”.           

ReactomeGSA supports the comparative pathway analysis of multiple independent datasets.          

Datasets are submitted to a single pathway analysis and represented side-by-side on the             

pathway level. It uses gene set analysis methods that take the quantitative information into              

consideration and thereby performs the differential expression analysis directly on the pathway            

level. Data from different species is automatically mapped to a common pathway space through              

Reactome’s internal mapping system. All supported gene set analysis methods are optimised            

for different types of ‘omics approaches including single cell RNA-sequencing (scRNA-seq)           

data. Public datasets can be directly integrated from ExpressionAtlas and Single Cell            

ExpressionAtlas9. We used ReactomeGSA to show that B cell receptor signalling is surprisingly             

down-regulated in B cell-rich lung adenocarcinoma in contrast to four other human cancers. We              

could further link this to IgG+ plasma cells in scRNA-seq data. ReactomeGSA thereby provides              

easy access to multi-omics, cross-species, comparative pathway analysis to reveal key           

biological mechanisms by integrating large ‘omics datasets.  

Results 
ReactomeGSA can be accessed through Reactome’s web interface        

(https://www.reactome.org/PathwayBrowser/#TOOL=AT) or through the novel ReactomeGSA R       

Bioconductor package (https://doi.org/doi:10.18129/B9.bioc.ReactomeGSA, Figure 1). Both      

access the public application programming interface (API) to perform the pathway analysis. The             

analysis system is a Kubernetes application based on the microservice paradigm that            

automatically scales to current demand (see Methods for details). This infrastructure enables us             

to offer computationally expensive pathway analysis methods through an open interface.           

ReactomeGSA currently supports three methods: PADOG10, Camera through the limma R           

package 11, and the single-sample gene set enrichment analysis (ssGSEA)12 through the GSVA13            

R package (see Methods for details). The API and its complete specification is publicly available               

at https://gsa.reactome.org . Thereby, ReactomeGSA can easily be integrated into any other           

software infrastructure. 
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Figure 1 | Schema of the ReactomeGSA system. All requests are sent to a public web-based                

API through the ReactomeGSA Bioconductor R package or Reactome’s web-based          

PathwayBrowser. The system is a Kubernetes application based on the microservices           

architecture. All requests are distributed through an internal message queue using RabbitMQ.            

Worker nodes are responsible for the complete pathway analysis, including identifier mapping            

and the creation of the visualisation data in Reactome’s pathway browser. Data nodes are              

responsible to load data from external resources such as ExpressionAtlas. Finally, report nodes             

create PDF and Microsoft Excel files as a static report of the analysis results. All data is stored                  

in a central Redis instance. All nodes are Docker containers that are orchestrated by              

Kubernetes and automatically scaled based on current demand. Thereby, the application can            

dynamically adapt to changing usage levels. 

 
ReactomeGSA is fully integrated in Reactome’s existing web-based pathway browser          

application (Figure 2). After choosing the new “Analyse gene expression” tab and the desired              

analysis method, the user can add any number of datasets to the analysis request. Public               

datasets are directly loaded from Expression Atlas and the Single Cell Expression Atlas9.             

Results can be sent as emails including static PDF and Microsoft Excel reports. Finally, the               

complete gene set analysis result is visualised in Reactome’s interactive pathway browser. The             

pathway browser enables users to view Reactome’s complete pathways from a tree-based,            

hierarchical overview, down to the single gene- and protein-level reactions. The results of             
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different datasets can be switched at the click of a button or automatically changed every few                

seconds like a slideshow across all results. Thereby, differences between the analysed datasets             

are immediately visible and can subsequently be interactively investigated down to the single             

gene or protein level. 

  

 

Figure 2 | ReactomeGSA is fully integrated into the web-based Reactome pathway browser             

(https://reactome.org ). Users can either upload their own datasets or import public data from             

ExpressionAtlas. The gene set analysis is performed through the ReactomeGSA API. Results            

are visualised in Reactome’s interactive pathway browser and send as static reports in PDF and               

Microsoft Excel format via email. 

 

The ReactomeGSA R package has been included in Bioconductor since version 3.10            

(Figure 3). Similar to the web interface, multiple datasets can be added to a              

ReactomeAnalysisRequest object. Expression values and metadata can directly be loaded from           

Bioconductor ExpressionSet, limma EList11 and edgeR14 DGEList objects. Thereby, the          
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ReactomeGSA package can easily be integrated into existing R-based workflows. The analysis            

results are returned as a ReactomeAnalysisResult object. This object contains the pathway            

analysis results across all analysed datasets, as well as the gene- or protein-level results of the                

differential expression analysis. It can directly open the interactive visualisation in Reactome’s            

web-based pathway browser (see above) and create plots to visualise the comparative pathway             

analysis results. Thereby, the multi-dataset results generated by ReactomeGSA can be natively            

processed in R. 

 

Figure 3 | The ReactomeGSA Bioconductor R package can directly process data from the most               

commonly used data structures for ‘omics analyses. The pathway analysis is performed through             

the ReactomeGSA analysis system and made available through a native R object. Convenient             

plotting functions give a quick overview of how well two datasets correlate on the pathway level.                

Volcano plots further highlight the magnitude of the observed changes in individual datasets.             

Additionally, pathway analysis of scRNA-seq data is simplified through the single           

“analyse_sc_clusters” function. 
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The ReactomeGSA R package has dedicated features to simplify pathway analyses of            

scRNA-seq data (Figure 3). The “analyse_sc_clusters” function can directly process Seurat15           

and Bioconductor’s SingleCellExperiment objects16. It automatically retrieves the average gene          

expression per cell cluster and performs an ssGSEA analysis on the cluster-level expression             

values. This results in one pathway-level expression value per cell cluster. Thereby, cell clusters              

can quickly be interpreted based on specific biological functions. 

ReactomeGSA Reveals a Lack of B Cell Activation in B Cell-rich 

Lung Adenocarcinoma 

We were among the first to show that B cells play a crucial role in anti-tumour immunity in                  

human melanoma 17. In vitro, B cells differentiate towards a tumor-induced, plasmablast-like           

(TIPB) phenotype in the presence of melanoma cells. The corresponding molecular TIPB            

signature predicts overall survival in the The Cancer Genome Atlas (TCGA) melanoma cohort.             

Whether this effect is specific to melanoma or whether it is a general part of the anti-tumour                 

immune response is currently unknown. 

We analysed the difference between TIPB-high vs. TIPB-low samples in the TCGA cohorts             

for melanoma 18, lung adenocarcinoma 19, lung squamous cell carcinoma 20, ovarian cancer21, and           

breast cancer22. Melanoma and ovarian cancer patients with high levels of TIPB showed             

significantly longer overall survival (likelihood ratio test p < 0.01 for both, hazard ratio 0.56               

melanoma, 0.69 ovarian cancer, Figure 4A). There was no significant difference in overall             

survival for lung adenocarcinoma, lung squamous cell, and breast cancer patients (likelihood            

ratio test p = 0.04, p = 0.2 and p = 0.9 respectively). Therefore, the effect of TIPB on anti-tumour                    

immunity and patient survival differs across these types of cancers. 
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Figure 4 | Comparison of TIPB-high vs. -low samples from TCGA studies on melanoma (TCGA               

Mel), ovarian cancer (TCGA Ovarian), lung adenocarcinoma study (TCGA Lung), lung           

squamous cell carcinoma (TCGA Lung SCC), and breast cancer (TCGA Breast). A) Overall              

survival of patients with high (blue line) or low (red line) expression of the TIPB signature (split                 

by the median expression in the dataset). B) Average gene fold-changes per pathway. Only              

pathways significantly regulated (FDR < 0.1) in the TCGA melanoma and the TCGA lung              

adenocarcinoma cohort with a different direction of regulation in these two cohorts are shown.              

Shades of yellow represent a down-regulation, shades of blue an up regulation. 

 

We subsequently assessed pathway-level differences between patients with high- and          

low-levels of TIPB in the five cohorts. The comparative pathway analysis was performed using              

our ReactomeGSA R package and the PADOG gene set enrichment analysis. 383 pathways             

were significantly regulated in at least one of the datasets (FDR < 0.1, Supplementary Data 1 ).                

64 of these pathways showed a differential regulation in one of the datasets compared to               

melanoma. We previously showed in vitro that NF-kappaB activation was significantly           

up-regulated in B cells after stimulation with melanoma conditioned medium17. Lung           

adenocarcinoma samples were the only ones that showed a significant down-regulation of the             
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“Activation of NF-kappaB in B cells” pathway (FDR = 0.08). Even though these samples have a                

higher number of TIPB, overall B cell activation is reduced.  

We, therefore, assessed how the lung adenocarcinoma cohort differs from the melanoma            

cohort. In total, 18 pathways were significantly regulated in both the melanoma and the lung               

adenocarcinoma cohort (Figure 4B). Next to the down regulation of NF-kappaB related genes,             

there was an overall down-regulation of B cell receptor signalling, but also p53 related DNA               

damage response, cell cycle and apoptosis related pathways. This shows that lung            

adenocarcinoma samples with a high number of tumor induced plasmablast-like B cells have a              

distinct different signalling state compared to melanoma. 

Pathways related to B cell receptor signalling and apoptosis correlate with the survival             

benefit observed through higher numbers of TIPB. The melanoma and ovarian cancer cohort             

both showed the strongest survival benefit which was linked to the strongest up-regulation of              

apoptosis related pathways but also B cell receptor signalling. These results highlight that             

ReactomeGSA’s comparative pathway analysis can quickly reveal clinically relevant conserved          

signalling events. 

Cancer-relevant Pathways Differ in Proteomics and 

Transcriptomics Data 

In our recent characterisation of melanoma associated B cells, key phenotypic changes in B              

cells were primarily observed on the protein but not the transcriptome level. We therefore              

performed a comparative pathway analysis of the two TCGA cohorts where matched            

whole-proteome profiling from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) are           

available. 

99 samples of the breast cancer CPTAC study23 and 62 samples of the CPTAC ovarian               

study24 could be directly mapped to samples from the respective TCGA study. As our TIPB               

signature was only validated for transcriptomics data, sample grouping into TIPB-high and -low             

samples was transferred from the TCGA data. The pathway analysis was performed using our              

ReactomeGSA R package and PADOG. 113 and 96 pathways were significantly regulated            

(FDR < 0.05, Supplementary Data 2 ) in the proteomics and transcriptomics data from the breast               

and ovarian cancer study respectively. Out of these, 13 showed a different direction of              

regulation in the breast study, and one in the ovarian cancer study. In breast cancer, these                

included VEGF signalling, EGFR signalling, and IGF1R signalling related pathways (all           
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up-regulated in transcriptomics and down-regulated in proteomics). In ovarian cancer, FGFR           

signalling was significantly up-regulated in the transcriptomics but down-regulated in proteomics           

data. All of these pathways are linked to proliferation and are relevant pathways to tumour               

biology. B cell receptor signalling associated pathways were significantly up-regulated in all            

datasets. This highlights how ReactomeGSA can quickly reveal biologically relevant differences           

and similarities between ‘omics datasets. 

IgG+ Plasma cells Show Reduced NFϰB Activation 

Specific subtypes of B cells seem to be primarily responsible for the B cell triggered               

anti-tumour response 17,25–27. We therefore assessed whether the observed difference in NFϰB           

activation is B cell subtype specific. 

 

 

Figure 5 |  Analysis of B cell subtypes from the dataset by Jerby-Arnon et al.28 A) UMAP plot of 

the identified B cell clusters. Cell type annotations are based on canonical B cell markers29. B) 
ReactomeGSA gene set variation based pathway-level expression in the identified B cell 

clusters of the Jerby-Arnon et al. dataset. Expression values were z-score normalised by 

pathway. C) Expression of IgG estimated through FCGRT abundance in the B cell clusters  
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The extracted B cells from the scRNA-seq dataset by Jerby-Arnon et al.28 formed 13 distinct               

clusters using Seurat (see Methods for details). Based on canonical B cell markers29 we              

classified these clusters as double negative B cells, seven types of memory-like B cells,              

memory-switched resting and -activated B cells, naive B cells, plasma cells, and            

plasmablast-like B cells (Figure 5A). Consistent with their transitional phenotype between B cells             

and plasma cells, plasmablast-like B cells were the only to express SDC1 (CD138) and low               

levels of MS4A1 (CD20). This classification already highlights issues in classifying B cell             

subtypes as we had to classify seven clusters as memory B cells even though they showed                

marked differences in overall gene expression. 

We used ReactomeGSA R package’s analyse_sc_clusters function to quantify pathways in           

these B cell clusters. There was a considerable heterogeneity between the memory B cell              

clusters, as well as plasmablast and plasma cells in terms of B cell receptor signalling (Figure                

5B). In the latter, this matches the previously described lack of functional B cell receptors in IgG                 

positive plasma cells30. Consistently, plasma cells but not plasmablast-like B cells expressed            

high levels of IgG as determined through Fc fragment of IgG receptor and transporter (FCGRT)               

expression (Figure 5C). Plasma cells and plasmablast-like B cells further differed in NTRK             

signalling which regulates cell survival, proliferation and motility31. Our original TIPB signature is             

too coarse to perfectly differentiate between plasma cells and plasmablast-like B cells.            

Therefore, the lack of B cell receptor signalling in lung adenocarcinoma samples points towards              

the high abundance of IgG+ plasma cells. These were shown to be negative prognostic factors               

in lung adenocarcinoma 32 which may explain the reduced survival benefit of TIPB there. 

Discussion 
ReactomeGSA greatly decreases the technical challenge to perform pathway analyses of           

unrelated datasets irrespective of ‘omics technology and investigated species. The iLINCS           

resource 8 is comparable in terms of the integration of different ‘omics data types and public               

datasets. In contrast to iLINCS, ReactomeGSA does not rely on pre-computed signatures for             

public datasets. This limits the number of public datasets that can be integrated into a single                

analysis. At the same time, it gives the researcher complete freedom in terms of experimental               

design and data analysis strategy to use. Our analysis of TCGA datasets based on a custom                

signature, for example, would not be supported by iLINCS. Additionally, ReactomeGSA directly            

supports quantitative ‘omics data as input. Thereby, we can use gene set analysis approaches              
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with increased statistical power compared to simple overrepresentation analysis33. Moreover,          

the support for sample-level quantitative data enables us to integrate gene set variation             

analyses which we found especially helpful in the analysis of scRNA-seq data. We, thus, believe               

that the ReactomeGSA system is a considerable step forward in giving researchers easy access              

to compex, more sophisticated pathway analysis methods. 

A key decision in multi-omics pathway analyses is how to integrate different types of ‘omics               

data. Methods such as the Gene Set Omic Analysis (GSOA)34 or the PAthway Recognition              

Algorithm using Data Integration on Genomic Models (PARADIGM)35,36 merge different ‘omics           

measurements into a single result. Thereby, only data from the same or highly similar samples               

can be integrated. Moreover, differences between the different ‘omics measurements disappear.           

As highlighted in our example data and previous studies, such differences are to be              

expected 17,23. We deliberately developed a system that can highlight such differences that            

researchers can interactively investigate with the Reactome pathway browser. ReactomeGSA          

therefore provides a novel multi-omics pathway analysis infrastructure that is tailored to expert             

bioinformaticians and non-experts alike. 

Online Methods 
The ReactomeGSA analysis system is accessible through a web-based application          

programming interface (API). We provide two end-points to this API: an integration into             

Reactome’s web-based pathway browser application and the ReactomeGSA R Bioconductor          

package. 

The backend is a Kubernetes application (https://kubernetes.io/) currently consisting of six           

deployments. Each deployment represents one Docker container (Docker Inc,         

https://www.docker.com). All data is stored in a Redis instance (https://redis.io/). The different            

components are linked through a message system provided by RabbitMQ (Pivotal,           

https://www.rabbitmq.com/). All components of the ReactomeGSA backend are developed in          

Python. The actual gene set analysis is performed using R Bioconductor37 packages through the              

rpy2 (https://rpy2.github.io/) Python interface to the R language in the worker node (Figure 1).  

A key advantage of this setup is that the complete ReactomeGSA application can be              

described in one so-called YAML file - a Kubernetes configuration file. Since all Docker              

containers are freely available on Docker Hub (https://hub.docker.com) the ReactomeGSA          

system can be deployed using the single “kubectl apply -f reactome_gsa.yaml” command. We             
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created a single YAML-formatted configuration file to quickly adapt ReactomeGSA to different            

use cases (ie. the number of resources available to the different nodes). Detailed information on               

how to adapt ReactomeGSA can be found on the GitHub repository           

(https://github.com/reactome/ReactomeGSA). Thereby, users can set up their own version of          

the ReactomeGSA system within minutes and deploy it locally or in the cloud. 

Multi-omics Gene Set Analysis 

At the time of writing, ReactomeGSA supports three different analysis methods: Camera            

through the limma 11 package, PADOG 10, and the single-sample gene set enrichment analysis              

(ssGSEA)12 through the GSVA 13 package. All pathway analyses are performed by the worker              

node in the ReactomeGSA system (Figure 1). 

Reactome annotation focuses on human pathways. Thus, as a first step in the analysis, the               

submitted identifiers are mapped to human UniProt38 identifiers using Reactome’s identifier           

mapping system. A key issue in mapping identifiers between different identifier systems and             

across species is to resolve one-to-many mappings. In these cases, the ReactomeGSA system             

keeps an internal record of these mappings. When mapping the observed genes / proteins to               

pathways, genes that map to multiple UniProt identifiers which all belong to the same pathway               

are only added once to this pathway. Thereby, one-to-many mappings are resolved at the              

pathway-level and inaccuracies normally introduced through identifier conversions are greatly          

reduced. 

In order to increase the coverage of Reactome pathways, pathways can be extended             

through medium and high confidence interactions derived from IntAct39. This function           

considerably extends Reactome’s coverage. 

At the time of writing, the ReactomeGSA system supports five types of quantitative ‘omics              

data: Microarray intensities, transcriptomics raw and normalised read counts, and proteomics           

spectral counts and intensity-based quantitative data. Internally, these different types of data are             

processed using two different methods: statistics for discrete quantitative data (in case of raw              

transcriptomics read counts and spectral counting based quantitative proteomics data) and           

statistics for continuous data. For Camera and PADOG, discrete values are normalised using             

edgeR’s14 calcNormFactors function. Then, the data is transformed using limma’s voom           

function 40. Continuous data is directly processed using limma 11 and normalised using limma’s            

normalizeBetweenArrays function. The pathway analysis is subsequently performed using         
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limma’s camera function or PADOG as implemented in the respective Bioconductor R            

package 33. For the ssGSEA method 12 the analysis is performed using the GSVA Bioconductor R              

package 13. Discrete data is processed using a poisson kernel and continuous data using a              

gaussian kernel. Thereby, multiple types of ‘omics data can be supported. 

scRNA-seq Pathway Analysis 

The analysis of scRNA-seq data is supported through the ReactomeGSA R package’s            

“analyse_sc_clusters” function, as well as through the direct import of data from the Single Cell               

Expression Atlas9. In both cases, we calculate the mean expression of genes within a cluster.               

For the R package, this is done through either Seurat’s15 AverageExpression function, or             

through scater’s41 “aggregateAccrossCells” function depending on the input object. Single cell           

data retrieved from the Single Cell Expression Atlas is processed using custom python code              

(see https://github.com/reactome/gsa-backend for details). This approach to create pseudo-bulk         

RNA-seq data resembles previously described methods to calculate differentially expressed          

genes16. Thereby, all pathway analysis methods supported by the ReactomeGSA analysis           

system are accessible to scRNA-seq data as well. 

TCGA B Cell Analysis 

The TCGA transcriptomics data for melanoma (TCGA-SKCM)18, lung adenocarcinoma         

(TCGA-LUAD)19, lung squamous cell carcinoma (TCGA-LUSC)20, ovarian cancer (TCGA-OV)21,         

and breast cancer (TCGA-BRCA)22 were retrieved using the TCGAbiolinks R Bioconductor           

package 42. For all datasets apart from melanoma, only primary tumour samples were retained.             

Genes that were expressed in less than 30% of the samples with at least 10 reads were                 

removed.  

The abundance of plasmablast-like B cells (TIPB) was quantified using the single-sample            

Gene Set Enrichment Analysis (ssGSEA) method 12 as implemented in the GSVA R            

Bioconductor package 13. Plasmablast-like B cells were described as CD38, CD27, and PAX5 17.            

Samples were classified as TIPB-high and -low split by the median expression of the TIPB               

signature in all samples of the cohort. Overall survival was assessed using the R survival               

package. 
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The comparative pathway analysis was performed using the ReactomeGSA R Bioconductor           

package. In all studies, plasmablast “high” and “low” samples were compared with each other              

using PADOG10. 

The complete R code of this analysis, including the detailed versions of all R packages used                

is available in the respective Jupyter notebook (see Data availability). 

CPTAC Data Analysis 

Data processed through the common data analysis pipeline (CDA) was downloaded from            

the CPTAC data portal (breast cancer at https://cptac-data-portal.georgetown.edu/cptac/s/S015 ,        

ovarian cancer at https://cptac-data-portal.georgetown.edu/cptac/s/S020 ). For breast cancer23,       

we used the proteome-level iTRAQ summary, for ovarian cancer24 the PNNL-based protein-level            

iTRAQ summary. Samples were matched to the respective TCGA samples through the short             

barcode using the first 11 characters. Only unambiguous matches were retained. Plasmablast            

abundance based groupings were transferred from the respective TCGA dataset. The data was             

analysed using the ReactomeGSA R package and PADOG.  

Example scRNA-seq Analysis 

Raw read counts of the scRNA-seq dataset by Jerby-Arnon et al.28 were retrieved from the               

Gene Expression Omnibus (GEO, identifier GSE115978). The data was processed using Seurat            

version 3.1 15 following the new scTransform normalisation strategy regressing out the patient            

and cohort properties. In order to identify the B cells from the total number of cells we used the                   

first 35 components of the principal component analysis for the subsequent steps. The             

neighbour graph and clustering was performed using the default parameters. B cell clusters             

were identified based on a high expression of CD20 (MS4A1), CD79A, CD19, and CD138              

(SDC1).  

B cells were extracted from the dataset and re-processed, starting with the normalisation             

step. Here, the top 11 components of the principal component analysis were used for the               

respective analysis steps. B cell clusters were subsequently classified following the strategy by             

Sanz et al.29. Plasmablast-like B cells and plasma cells were differentiated based on a low               

expression of MS4A1 (CD20) in plasmablast-like B cells. Finally, the ssGSEA analysis was             

performed using the ReactomeGSA R packages’ analyse_sc_clusters function. 
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The complete workflow including the detailed versions of all used R packages can be found               

in the respective Jupyter notebook (see Data availability). 

Data Availability 
The complete source code of the ReactomeGSA backend, the web-based pathway browser,            

and the ReactomeGSA Bioconductor R package are available under a permissive open source             

license on GitHub (https://github.com/reactome ). All docker images of the ReactomeGSA          

analysis system are publically available on Docker Hub (https://hub.docker.com). Central links to            

all components of the ReactomeGSA system can be found at          

https://reactome.github.io/ReactomeGSA. The source code of the backend (ie. the Kubernetes          

application) can be found at https://github.com/reactome/gsa-backend . The source code of the           

R package is available at https://github,com/reactome/ReactomeGSA. Additionally, a detailed         

documentation on how to set up the ReactomeGSA analysis system on a local Kubernetes              

instance can be found on https://reactome.github.io/ReactomeGSA.  

The detailed API specification of the ReactomeGSA system is available on           

https://gsa.reactome.org . Therefore, the complete analysis capabilities can easily be integrated          

into any other existing software platform. 

The code to analyse the example datasets presented in this manuscript can be found as               

Jupyter notebooks on https://github.com/Reactome/ReactomeGSA-tutorials.  
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