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Abstract  

 

Advances in whole genome sequencing promise to enable the accurate and comprehensive 

structural variant (SV) discovery. Dissecting SVs from whole genome sequencing (WGS) data 

presents a substantial number of challenges and a plethora of SV-detection methods have been 

developed. Currently, there is a paucity of evidence which investigators can use to select 

appropriate SV-detection tools. In this paper, we evaluated the performance of SV-detection 

tools using a comprehensive PCR-confirmed gold standard set of SVs. In contrast to the previous 

benchmarking studies, our gold standard dataset included a complete set of SVs allowing us to 

report both precision and sensitivity rates of SV-detection methods. Our study investigates the 

ability of the methods to detect deletions, thus providing an optimistic estimate of SV detection 

performance, as the SV-detection methods that fail to detect deletions are likely to miss more 

complex SVs. We found that SV-detection tools varied widely in their performance, with several 

methods providing a good balance between sensitivity and precision. Additionally, we have 

determined the SV callers best suited for low and ultra-low pass sequencing data.  

 

Introduction 
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Structural variants (SVs) are genomic regions that contain an altered DNA sequence due to 

deletion, duplication, insertion, or inversion1. SVs are present in approximately 1.5% of the 

human genome1,2, but this small subset of genetic variation has been implicated in the 

pathogenesis of psoriasis3, Crohn’s disease4 and other autoimmune disorders5, autism spectrum 

and other neurodevelopmental disorders6–9, and schizophrenia10–13. Specialized computational 

methods—often referred to as SV callers—are capable of detecting structural variants directly 

from sequencing data. At present, the reliability, sensitivity, and precision of SV callers has not 

been systematically assessed. We benchmarked currently-available WGS-based SV callers in 

order to determine the efficacy of available tools and find methods with a good balance between 

sensitivity and precision. 

 

Substantial differences exist in the number of identified variants in SV catalogs published during 

the past decade. The 1000 Genomes Project SV dataset identified over 68,000 SVs14, a genome-

wide survey of 769 Dutch individuals identified approximately 1.9 million structural variants15, 

and a survey based on profiled whole genomes of 14,891 individuals across diverse global 

populations identified 498,257 SVs16. In addition, discrepancies in the number of SVs reported 

by these methods suggest that SV callers may fail to detect SVs and may report false positives 

(i.e., SVs that do not actually exist). 

 

Lack of comprehensive benchmarking makes it impossible to adequately compare the 

performance of SV callers. In the absence of benchmarking, biomedical studies rely on the 

consensus of several SV callers16,17. In order to compare SV callers given the current lack of a 

comprehensive gold standard dataset, a recent study18 used long read technologies to define a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.045120doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045120


 

4 

ground truth in order to evaluate a large number of currently available tools. However, a 

comprehensive gold standard dataset is still needed; long read technologies are often unable to 

cover the entire genome at sufficient resolution for consistent detection of SVs. In addition, 

current long read technologies are prone to producing high error rates, which confounds efforts 

to detect SVs at single-base pair resolution. In response to the pressing need for a comprehensive 

gold standard dataset, our paper presents a rigorous assessment of sensitivity and precision of 

SV-detection tools when applied to mouse data. 

 

Results 

 

Preparing the gold standard data and WGS data 

 

Over the last decade, a plethora of SV-detection methods have been developed (Table 1 and 

Supplemental Table 1), but the relative performance of these tools is unknown19–25. In order to 

assess the precision and accuracy of currently available SV callers, we simplified the problem 

presented to the detectors by using a set of homozygous deletions present in inbred mouse 

chromosomes. Methods failing to detect deletions are likely unreliable for the more challenging 

task of identifying other SV categories (e.g., insertions, inversions, translocations). We manually 

curated the mouse deletions used in this benchmarking study, and we used targeted PCR 

amplification of the breakpoints and sequencing to resolve the ends of each deletion to the base 

pair26. We only used deletions since we could not confidently determine that other forms of SVs 

could be comprehensively detected with today’s SV callers. 
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The set of deletions we used among seven inbred strains, called with reference to C57BL/6J, is 

illustrated in Figure 1a and listed in Supplemental Table 226. We filtered out deletions shorter 

than 50 bp, as such genomic events that are usually detected by indel callers rather than SV 

callers. In total, we obtained 3,710 deletions with lengths ranging from 50 to 239,572 base pairs 

(Supplemental Figure 1 and Supplemental Table 226). Almost half of the deletions were in the 

range of 100-500 bp. Almost 30% of deletions were larger than 1000 bp (Supplemental Figure 

1). High coverage sequence data was used as an input to the SV callers in the form of aligned 

reads. Reads were mapped to the mouse genome (GRCm38 Mouse Build) using BWA with -a 

option. In total, we obtained 5.2 billion 2x100 bp paired end reads across seven mouse strains. 

The average depth of coverage was 50.75x (Supplemental Table 3). Details regarding the gold 

standard and raw data preparation and analysis are presented in the Supplementary Materials. 

 

Choice of SV callers 

 

For this benchmarking study, we selected methods capable of detecting SVs from aligned WGS 

reads. SV detection algorithms typically use information about coverage profile in addition to the 

alignment patterns of abnormal reads. We excluded tools that were designed to detect SVs in 

tumor-normal samples (e.g., Patchwork86, COPS87, rSW-seq88, bic-seq63, seqCBS89) and tools 

designed to detect only small (less than 50 bp in length) SVs (e.g., GATK91, Platypus92, 

Varscan93). Some tools were not suitable for inclusion in our dataset as they were unable to 

process aligned WGS data (e.g., Magnolya27). Other tools were designed solely for long reads 

(e.g., Sniffles28). The complete list of tools excluded from our analysis are provided in 
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Supplemental Table 4. In total, we identified 55 suitable SV methods capable of detecting 

deletions from WGS data (Table 1 and Supplemental Table 1). 

 

Our benchmarking study produced an analysis of the results generated by 12 SV-detection tools 

(Table 1). We were able to internally install and run all tools except Biograph, which was run by 

the developers of the tool. The remaining 43 tools could not be installed and were not included in 

this study. Supplemental Table 4 presents detailed information about the issues that prevented us 

from installing these software tools. Commands to install the tools and details of the installation 

process are provided in the Supplementary Materials.  

 

Comparing the performance of SV callers on mouse WGS data 

 

We compared the performance of 12 SV callers in terms of inferring deletions. The number of 

deletions detected varied from 899 (indelMINER29) to 82,225 (GASV38). 50% of the methods 

reported fewer deletions than are known to be present in the sample (Figure 1b). We allowed 

deviation in the coordinates of the detected deletions and compared deviations to the coordinates 

of the true deletions. Even at relaxed stringency, the best method correctly detected the 

breakpoints of only 20% of known deletions in our curated dataset. 

 

The majority of SV callers typically detect deletions whose coordinates differ from the correct 

positions by up to 100 bp . Figure 1c and 1d show the true positive (TP) and true negative (TN) 

rates for the SV callers at four different resolution values. It is notable that some tools with high 

TP rates also have decreased TN rates. For example, at the 100 bp threshold, the highest TP rate 
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was achieved by CLEVER30 followed by GRIDSS39 and DELLY31 (Figure 1c). However, for the 

same threshold, GRIDSS39 and DELLY31 underperform in the number of correctly detected non-

deletions (TNs) compared to tools like LUMPY94 (Figure 1d-f). The total number of false 

negative (FN) and false positive (FP) calls decreased with increase in threshold (Supplemental 

Figure 2). The FP rate for pindel Popdel93 was more susceptible to changes in the threshold as 

compared to Pindel39, GASV38. In general, the length distribution of detected deletions varied 

across tools and was substantially different from the distribution of true deletions across multiple 

SV detection methods (Figure 2 and Supplemental Table 2). Deletions detected by 

BreakDancer32 were the closest to the true median deletion length, while five out of 12 SV 

callers overestimated deletion lengths (Figure 2). 

 

Increasing the resolution threshold increases the number of deletions detected by the SV callers 

(Figure 1c). Several methods detected all deletions in the sample at 10,000 bp resolution but with 

precision close to zero (Figure 3b). We used the harmonic mean between precision and 

sensitivity (F-score) rates to determine the method with the best balance between sensitivity and 

precision. Several methods (e.g., LUMPY94, BreakDancer32, CLEVER30, BioGraph) offered the 

highest F-score for deletion detection—consistently between 100-10,000 bp resolution across all 

the mouse strains (Supplemental Figure 3). For a resolution of 10 bp, the method with the best 

performance for all the samples was LUMPY94 (Supplemental Figure 3). The method with the 

best precision for a threshold of 100-1,000 bp was PopDel93, but the sensitivity rate of PopDel93 

did not exceed 50% (Figure 3a, Supplemental Figure 4 and 5).  
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While specificity is often used o compare the deletions detected by tools, use specificity to 

provide insights on the tools’ ability to predict diploid regions of the genome. Methods that 

produced a higher F-score tend to also have significantly higher specificity rates with 

Spearman’s correlations greater than 0.75 (Figure 3d and Supplemental Figure 3 and 6) and are 

the most balanced in precision and sensitivity; few methods skewed towards just one of the 

metrics (Figure 3e and Supplemental Figure 7.) Specificity rate was generally lower for the 

majority of the methods when compared with sensitivity rate. Methods with a high precision tend 

to also have significantly higher specificity rates, with Spearman’s correlation greater than 0.8 

(p-value<0.0005) (Supplemental Figure 8). Several tools, such as PopDel93 and LUMPY94, were 

able to balance precision and specificity, with rates exceeding 70% for each metric (Figure 3f). 

LUMPY94 and CLEVER30 were the only methods able to successfully balance precision and 

sensitivity, with rates above 50% for each metric (Figure 3e and Supplemental Figure 7). 

CLEVER30 was able to achieve the highest sensitivity rate at the majority of thresholds (Figure 

3a and Supplemental Figure 5). The most precise method we observed was PopDel93, with rates 

exceeding 80% for thresholds 1000 bp onwards, but the sensitivity of this method was two times 

lower than the majority of other tools. 

 

We examined whether the SV callers included in this study maintained similar SV detection 

accuracy across the different mouse strains. We compared results from each tool when applied to 

the sample with the highest and lowest rates of sensitivity and specificity. Among the tools with 

a sensitivity rate above 10%, LUMPY94 maintained the most consistent sensitivity rate across 

samples, with the highest rate of 60% when applied to both C3H_HeJ and CBA_J strains. The 

lowest sensitivity rate achieved by LUMPY94 was 58% for A_J and DBA_2J strains. Several 
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tools, such as PopDel93, LUMPY94, and DELLY31, maintained a consistent specificity across 

mouse strains (Figure 3d and Supplemental Figure 6).  

 

We have also compared CPU time and the maximum amount of RAM used by each of the tools. 

Across all of the tools, GASV38 required the highest amount of computational resources. 

PopDel93 has the lowest computational resources required to run the analysis.  MiStrVar40 

required the longest amount of time to perform the analysis. Breakdancer32 was the fastest tool. 

We have also compared the computational resources and speed of SV callers based on datasets 

with full coverage and those with ultra-low coverage (Supplemental Figure 9). 

 

Performance of SV-detection tools on low and ultra-low coverage data 

 

We assessed the performance of SV callers at different coverage depths generated by down-

sampling the original WGS data. The simulated coverage ranged from 32x to 0.1x, and ten 

subsamples were generated for each coverage range. For each method, the number of correctly 

detected deletions generally decreased as the coverage depth decreased (Supplemental Figure 

10). Some of the methods were able to call deletions from ultra low coverage (<=0.5x) data. 

While tools like PopDel93 reached a precision of 75%, the overall sensitivity, specificity, and F-

score values were less than 8% for all tools. None of the methods were able to detect deletions 

from 0.1x coverage. 

 

As suggested by other studies89, most tools reached a maximum precision and specificity at an 

intermediate coverage (Figure 4b-c). Both the sensitivity rate and the F-score improved as the 
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coverage increased (Figure 4a,d). Overall, DELLY31 showed the highest F-score for coverage 

below 4x (Figure 4d). For coverage between 8 and 32x, LUMPY94 showed the best performance. 

LUMPY94 was the only tool to attain precision above 90% for coverages 1x to 4x. However, a 

decreased sensitivity in coverages below 4x led to a decreased F-score when compared to 

DELLY31. Precision in results from DELLY31 for ultra-low coverage data was above 90% when 

the threshold was set at 1000 bp, but changing the threshold had no effect on LUMPY94 

(Supplemental Figure 11). Sensitivity rates were the most stable across the 7 different strains 

(Supplemental Figure 5). Specificity showed the highest variability among strains compared to 

other measures (Supplemental Figure 6). Precision shows the second highest variability across 

the strains, with the most stable results provided by Pindel39 and indelMINER29 (Supplemental 

Figure 4).  

 

Length of deletions impacts the performance of the SV callers 

 

We separately assessed the effect of deletion length on the accuracy of detection for four 

categories of deletions (Figure 5). The performance of the SV callers was significantly affected 

by deletion length. For example, for deletions shorter than 100 bp, precision, specificity, and F-

score values were typically below 40% regardless of the tool (Figure 5b,c,d and Supplemental 

Figures 12, 14, 15), while sensitivity values were above 50% for several tools (Figure 5a) 

(Supplemental Figure 13). For deletions longer than 100 bp, the best performing tool in terms of 

sensitivity and precision significantly varied depending on the deletion length (Figure 5a,b). 

CLEVER30 provided a sensitivity of above 60% for deletions less than 500 bp, however 

DELLY31 provided the highest sensitivity for deletions longer than 500 bp (Figure 5a and 
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Supplemental Figures 17, 21, 25) . LUMPY94 delivered the best precision for deletion lengths 

from 50-500 bp, and CLEVER30 performed well for longer deletion lengths (Figure 5b and 

Supplemental Figure 14, 18, 22, 26). indelMINER29 provided the high precision rate of detection 

of deletions in the range of 100 bp-500 bp and when longer than 1000 bp, but the precision of 

detecting deletion in the 500 bp-1000 bp range was lower than that of other tools (Figure 5b). In 

general, LUMPY94 was the only method able to deliver an F-score above 30% across all 

categories (Figure 5d and Supplemental Figure 15, 19, 23, 27). Specificity was low for all the 

tools across all the categories, except for deletions with lengths higher than 1,000bp (Figure 5c 

and Supplemental Figure 12, 16, 20, 24). 

 

Discussion 

 

In this paper, we performed a systematic benchmarking of algorithms to identify structural 

variants (SVs) from whole-genome sequencing data. In contrast to methods which are used to 

identify single nucleotide polymorphisms and have coalesced around a small number of 

approaches, there is currently no consensus on the best way to detect SVs in mammalian 

genomes. Indeed, we were able to find 56 different methods, each claiming relatively high 

specificity and sensitivity rates in the original publication. Upon applying the tools to our curated 

datasets, many did not perform as reported in the original publication. This discrepancy may be 

because molecular data were not used in the analyses performed for the original publication. 

Instead, authors often solely derive conclusions from simulated data that may fail to capture the 

full complexity of real sequencing data33. 
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In comparison to previous benchmarking efforts based on simulated data 19,21,25,34,35, we obtained 

and employed a set of molecularly defined deletions for which breakpoints are known at base 

pair resolution. Other benchmarking studies have employed long-read-based gold standard 

datasets with approximate coordinates of deletions18. Long read technologies are often unable to 

cover the entire genome at sufficient resolution for precise SV characterization. In addition, 

long-read technologies carry a high error rate that limits their ability to detect SVs at single-base 

pair resolution. Our benchmarking method, using a gold standard set of molecular-defined 

deletions, overcomes the limitations of simulated data and incomplete characterization. Thus, our 

benchmarking study represents a robust assessment of the performance of currently-available SV 

detection methods when applied to a representative data set. 

 

When installing the majority of SV callers, we noticed significant difficulties due to inadequate 

software implementation and technical factors36. Deprecated dependencies and segmentation 

faults were the most common reasons preventing successful tool installation37. The majority of 

the tools have a consensus on the output format to be used (Table S6) , but the requirements for 

the format varied among tools. Lack of documentation about format requirements may further 

limit the use of SV callers. 

 

We identified a series of factors that determined the performance of SV-caller methods. The 

most important factors were the size of deletions and the coverage of WGS data. For example, 

BreakDancer32 only detected deletions larger than 100 bp. Some tools achieved excellent 

sensitivity, with the caveat that their precision was close to zero. For example, Pindel32 achieved 

the highest sensitivity rate among all the tools, with a precision rate of less than 0.1%. Other 
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tools (e.g., PopDel93) employ a more conservative SV detection approach, resulting in higher 

precision at the cost of decreased sensitivity for smaller deletion events. Few tools were able to 

maintain a good balance between precision and sensitivity. For example, CLEVER30, LUMPY94, 

BreakDancer32, and BioGraph maintained both precision and sensitivity rates above 40%. In 

addition to differences in the accuracy of SV detection, we observed significant differences in 

run times and required computational resources (Supplemental Figure 9).  

 

We envision that future SV-caller methods should enable detection of deletions with precise 

coordinates. The inability of current methods to precisely detect breakpoints was coupled with 

the issue of 61.5% tools underestimating the true size of SVs. A limitation of our benchmarking 

study is that our gold standard used inbred homozygous mouse genomes, which potentially poses 

as an easier target for assessment when compared to heterozygous human genomes. 

Additionally, the human genomes, for which most SV callers were designed, contain a higher 

number of repetitive regions than does the mouse, posing an additional challenge which is not 

reflected in mouse-based gold standard datasets.  

 

Data availability 

VCF file with true deletions from gold standard, and the output VCF’s produced by the tools, the 

gold standard VCF’s, the analysis scripts, and figures are available at https://github.com/Mangul-

Lab-USC/benchmarking-sv-callers-paper/ 
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Code availability  

Source code to compare SV detection methods and to produce the figures contained within this 

text is open source, free to use under the MIT license, and available at 

https://github.com/Mangul-Lab-USC/benchmarking-sv-callers-paper/ 
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No 

 

Custom 

 

Pindel39 
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(2015,

0.2.5b
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ges/pindel/ 

Yes 

 

Custom 

 

RDXplore

r95 

3.2 RD 2009 http://RDXplorer.sourceforge.net/ No 
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CLEVER3
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2.4 RP 2012 https://bitbucket.org/tobiasmarschal

l/CLEVER-toolkit/wiki/Home 

Yes 
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DELLY3
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0.8.
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RP+S
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2012 https://github.com/DELLYtools/D

ELLY 

Yes Custom 
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RD 
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PopDel93 
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RP 2019 https://github.com/kehrlab/PopDel Yes 

 

VCF 

BioGraph
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5.0.
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N/A 2020 http://www.spiralgenetics.com/biog

raph-engine 
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Table 1. Overview of SV-detection methods included in this study. Surveyed SV-detection 

methods sorted by their year of publication from 2009 to 2018 are listed along with their 

underlying algorithm: Read-depth (RC), Read-Pair Algorithms (RP), Split-Read Approaches 

(SR), Discordant Pairs (DP), or a combination of algorithms. We documented the version of the 

software tool used in the study (‘Version’), the year the software tool was published (‘Published 

year’), the webpage where each SV-detection method is hosted (‘Tool’s webpage’), and whether 

or not the Bioconda package of the software was available (‘Bioconda version’). Asterisk (*) 

denotes that the method was proprietary. 
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Figure 1. Comparison of inferred deletions across SV callers on mouse data. (a) Length 

distribution of molecularly-confirmed deletions from chromosome 19 across seven strains of 

mice. (b) Number of molecularly-confirmed deletions (‘true deletions’ black color) and number 

of deletions detected by SV callers. (c) Barplot depicting the total number of true positive calls 

across all error thresholds for each SV caller. (d) Barplot depicting the total number of true 
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negative calls across all error thresholds for each SV caller. (e) Scatter plot depicting number of 

correctly detected deletions (true positives - ‘TP’) by number of incorrectly detected deletions 

(false positives - ‘FP’) at the 100 bp threshold. Deletion is considered to be correctly predicted if 

the distance of right and left coordinates are within the given threshold from the coordinates of 

true deletion. (f) Scatter plot depicting number of correctly detected non-deletions (true negatives 

- ‘TN’) by number of incorrectly detected deletions (false positives - ‘FP’) at the 100 bp 

threshold. An SV caller was considered to detect a given non-deletion if no deletions were 
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reported in a given region. 
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Figure 2. Length distribution of deletions detected by each SV caller. True deletions 

indicated in black. Tools were sorted in increasing order based on their median deletion length. 

The vertical dashed line corresponds to the median value of true deletions 
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Figure 3. Comparing the performance of SV callers based on whole genome (WGS) data 

across seven inbred mouse strains. A deletion is considered to be correctly predicted if the 

distance of right and left coordinates are within the threshold τ from the coordinates of a true 

deletion. (a) Sensitivity of SV callers at different thresholds. (b) Precision of SV callers at 

different thresholds. (c) Specificity of SV callers at different thresholds. (d) F-score of SV callers 
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at different thresholds. (e) Scatter plot depicting the Precision (x-axis) and Sensitivity (y-axis) for 

100 bp threshold. (f) Scatter plot depicting the Precision(x-axis) and Specificity (y-axis) 100 bp 

threshold. Results for other thresholds are presented in Supplemental Figure 6. 
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Figure 4. Performance of SV-detection tools on low and ultra-low coverage data. (a) Heatmap 

depicting the sensitivity based on 100 bp threshold across various levels of coverage. (b) 

Heatmap depicting the precision based on 100 bp threshold across various levels of coverage. (c) 

Heatmap depicting the specificity based on 100 bp threshold across various levels of coverage. 

(d) Heatmap depicting the F-score based on 100 bp threshold across various levels of coverage. 
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Figure 5. Comparing the performance of SV callers across various deletions lengths. (a) 

Sensitivity of SV callers at 100 bp thresholds across deletion length categories. (b) Precision of 

SV callers at 100 bp thresholds across deletion length categories. (c) Specificity of SV callers at 

100 bp thresholds across deletion length categories. (d) F-score of SV callers at 100 bp 

thresholds across deletion length categories. 
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