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Consequential events in cancer progression are typically rare and occur in the unobserved past. Detailed cell 

phylogenies can capture the history and chronology of such transient events – including metastasis. Here, we 

applied our Cas9-based lineage tracer to study metastatic progression in a lung cancer xenograft mouse model, 

revealing the underlying rates, routes, and patterns of metastasis. We report deeply resolved phylogenies for tens 

of thousands of metastatically disseminated cancer cells. We observe surprisingly diverse metastatic phenotypes, 5 

ranging from metastasis-incompetent to highly aggressive populations, and these differences are associated with 

characteristic changes in transcriptional state, including differential expression of metastasis-related genes like 

IFI27 and ID3. We further show that metastases transit via tissue routes that are diverse, complex, and 

multidirectional, and identify examples of reseeding, seeding cascades, and parallel seeding topologies. More 

broadly, we demonstrate the power of next-generation lineage tracers to record cancer evolution at high resolution 10 

and vast scale. 

Main Text: 

Cancer progression is governed by evolutionary principles (reviewed in (1)), which leave clear 

phylogenetic signatures upon every step of this process (2, 3), from early acquisition of oncogenic mutations (i.e., 

the relationships between normal and malignantly transformed cells (4)), to metastatic colonization of distant 15 

tissues (i.e., the relationship between the primary tumor and metastases (5)), and finally adaptation to therapeutic 

challenges (i.e., the relationship between sensitive and resistant clones (6)). Metastasis is a particularly important 

step in cancer progression to study because it is chiefly responsible for disease relapse and mortality (7). Yet 

because metastatic events are intrinsically rare, transient, and stochastic (8, 9), they are challenging to monitor in 

real time. Analogous to the cell fate maps that have played an essential role in deepening our understanding of 20 

organismal development and cell type differentiation (10, 11), accurately reconstructed phylogenetic trees of 

tumors and metastases can reveal key features of this process, such as the clonality, timing, frequency, origins, 

and destinations of metastatic seeding (12). 

Lineage tracing techniques allow one to map the genealogy of related cells, providing a critical tool for 

exploring the phylogenetic principles of biological processes like cancer progression and metastasis. Classical 25 
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lineage tracing strategies can infer tumor ancestry from the pattern of shared sequence variations across tumor 

subpopulations (e.g., naturally occurring mutations, like single-nucleotide polymorphisms or copy-number 

variations) (13, 14). These “retrospective” tracing approaches are particularly valuable for studying the subclonal 

dynamics of cancer in patient-derived samples, such as elucidating which mutations contribute to metastasis and 

when they occur (15–18). However, these conclusions can be confounded by incomplete or impure bulk tumor 5 

sampling (19), sequencing artifacts (20), varying levels of intratumor heterogeneity, and non-neutral mutations 

(1, 5); some of these technical limitations can be mitigated using single-cell resolution measurements or whole-

genome sequencing. 

The recent development of Cas9-enabled lineage tracing techniques with single-cell RNA readouts (21–

24) provides the potential to explore cancer progression at vastly larger scale and finer resolution than was 10 

previously possible. These methods most commonly rely on similar technical principles (reviewed in (25, 26)). 

Briefly, Cas9 targets and cuts a defined genomic locus (i.e., “scratch pad” or “Target Site”), resulting in a stable 

insertion/deletion (indel) allele that is inherited over subsequent generations; as the cells divide, they accrue more 

Cas9-induced indels at additional sites that further distinguish successive clades of cells (Fig. 1A, Fig. S1). At 

the end of the lineage tracing experiment, the indel alleles are collected from each individual cell by sequencing 15 

and paired with single-cell expression profiles of the cell state (21, 22). Then, as in retrospective tracing 

approaches, various computational approaches (27–32) can reconstruct a phylogenetic tree that best models 

subclonal cellular relationships (e.g., by maximum-parsimony) from the observed alleles. Thus far, Cas9-enabled 

tracing has been successfully applied to study important aspects of metazoan biology, like the cellular progenitor 

landscape in early mammalian embryogenesis (22, 33) and neural development in zebrafish (21). Additionally, 20 

resources now exist for studying other phylogenetic processes in mouse (22, 33), and analytical tools are available 

for computationally reconstructing and benchmarking trees from large lineage tracing datasets (32, 34).  

Here we apply lineage tracing to explore metastatic dynamics in an orthotopic xenograft model of lung 

cancer in mice (35). Specifically, we have modified our previously described “molecular recorder” for lineage 

tracing (22), now enabling the capture of highly detailed, single-cell-resolution phylogenies across tens of 25 
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thousands of cells with continuous tracing in vivo over several months. Additionally, we have expanded on our 

analytical toolkit, Cassiopeia (32), with algorithms for inference of unobserved events from a phylogeny, which 

we applied here to resolve metastatic transitions between tissues. These and other advances allowed us to study 

the rate, transcriptional signatures, and routes of metastatic dissemination at unprecedented scale and resolution.  

Tracing metastasis in a mouse xenograft model 5 

 We chose to study metastasis using a human KRAS-mutant lung adenocarcinoma line (A549 cells) in a 

mouse lung orthotopic xenograft model because this system is characterized by aggressive metastases (35). 

Orthotopic xenografting experiments such as this are useful for modeling cancer progression in vivo (Francia et 

al. 2011). We engineered A549 cells with a refined version of our lineage tracing technology (22) (Fig. S2; 

Methods). Specifically, the engineered cells contain: (i) luciferase for live imaging, (ii) Cas9 for generating 10 

heritable indels, (iii) ~10 uniquely barcoded copies of the Target Site for recording lineage information, which 

are expressed and can be captured by single-cell RNA-sequencing, and finally (iv) triple-sgRNAs to direct Cas9 

to the three cut-sites in the Target Sites, thereby initiating lineage recording (Fig. 1A; Fig. S2A–C). To enable 

tracing over the timescale of months, we carefully designed the sgRNAs with nucleotide mismatches to the Target 

Sites, thus decreasing their affinity (36, 37) and slowing the lineage recording rate (22, 38). Approximately 5,000 15 

engineered cells (“A549-LT”) were then embedded in matrigel and surgically implanted into the left lung of an 

immunocompromised (C.B-17 SCID) mouse (Fig. 1B). We followed bulk tumor progression by live luciferase-

based imaging (Fig. 1C): early bioluminescent signal was modest and restricted to the primary site (left lung), 

consistent with engraftment; with time, the signal progressively increased and spread throughout the thoracic 

cavity, indicating tumor growth and metastasis. After 54 days, the mouse was sacrificed and tumorous tissues 20 

were identified by GFP-positive foci. Anatomically, small tumors studded all five lung lobes, tumor cells 

predominated the mediastinal lymph tissue, and a small tumor nodule (likely lymphatic) was found on the liver 

(Fig. 1D). This tissue distribution is consistent with previous studies involving A549 xenografts (35). From these 

tissues, we collected six samples: one from the left lung (including the primary site), two from lobes of the right 

lung, two from the mediastinum, and one from the liver (Fig. 1E, left). The tumor samples were dissociated, 25 
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fluorescence-sorted to exclude normal mouse cells, and finally processed for emulsion-based single-cell RNA-

sequencing. To simultaneously measure the transcriptional states and phylogenetic relationships of the cells, we 

prepared separate RNA expression and Target Site amplicon libraries, respectively, resulting in 41,487 single-

cell profiles from six tissue samples (Fig. 1E, right; Fig. S3; Methods). 

 In addition to the mouse described above (hereafter “M5k”), we also performed lineage tracing in three 5 

other mice from two cohort experiments (called “M10k”, “M100k”, and “M30k”), each injected with varying 

numbers of A549-LT cells that were engineered with different versions of the lineage tracing technology (Figs. 

S17–S18; Methods). We focus our discussion of the results on mouse M5k mouse because it yielded the richest 

lineage tracing dataset (i.e., the most cells and distinct lineages). However, as discussed, the key results described 

below are reproduced in the other collected mice (Figs. S19–S20). 10 

Distinguishing clonal cancer populations  

Our lineage recorder “Target Site” (22) carries two orthogonal units of lineage information: (i) a static 

14bp-randomer barcode (“intBC”) that is unique and distinguishes between the multiple integrated Target Site 

copies within each cell, and (ii) three independently evolving Cas9 cut-sites per Target Site that record heritable 

indel alleles and are used for subclonal tree reconstruction (Fig. 1A). Each Target Site is expressed from a strong 15 

promoter allowing it to be captured by single-cell RNA-sequencing. After amplifying and sequencing the Target 

Site mRNAs, the reads were analyzed using the Cassiopeia processing pipeline (32). Briefly, this pipeline 

leverages unique molecular identifier (UMI) information and redundancy in sequencing reads to confidently call 

intBCs and indel alleles from the lineage data, which inform subsequent phylogenetic reconstruction (Fig. S1; 

Methods). 20 

We first determined the number of clonal populations (i.e., groups of related cells that descended from a 

single clonogen at the beginning of the xenograft experiment), which are each associated with a set of intBCs. 

Importantly, the A549-LT cells were prepared at high diversity such that clones carry distinct intBC sets. Based 

on sequencing a sample of A549-LT cells pre-implantation, we estimate that the implanted pool of 5,000 cells 

initially contained 2,150 distinguishable clones (Fig. S2D). We assigned the vast majority of cancer cells collected 25 
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post-sacrifice (97.7%) to the largest 100 clonal populations based on their intBC sets (Figs. S4A-B), ranging in 

size from >11,000 (Clone #1, “CP001”) to ~30 cells (CP100) (Fig. S4C). Though there were some smaller clonal 

populations, we focused on the largest ones because lineage tracing in few cells is less informative. Notably, the 

observation of only ~100 successful clonal populations in mouse tumors (and the absence of the vast majority of 

initial clones) suggests that a minority of cells may be competent for engraftment and survival in vivo (as low as 5 

5%; Fig. S2D). Moreover, we find no correlation between initial (pre-implantation) and final (post-sacrifice) 

clonal population size (Spearman’s ρ=-0.026; fig. S2E), suggesting that clone-intrinsic characteristics that confer 

greater fitness in vitro do not necessarily confer greater fitness in vivo (39, 40). 

Features that influence the lineage recording capacity and tree reconstructability differed between clonal 

populations, such as the copy-number of Target Sites, the percentage of recording sites bearing indel alleles, and 10 

allele diversity (Fig. S5A-C). Though most clonal populations exhibited adequate parameters for confident 

phylogenetic reconstruction, some had slow recording kinetics or low allele diversity and failed to pass quality-

control filters (17 clones, 7.3% of total cells; Fig. S5D); these clones were excluded from tree reconstruction and 

downstream analysis (Methods). 

Clonal tissue distributions and metastatic potential 15 

We observed that the clonal populations exhibited distinct distributions across the six tumorous tissues 

(Fig. 1F; Fig. S6), ranging from being present exclusively in the primary site (e.g., CP029, CP046), to 

overrepresented in a tissue (CP003, CP020), or distributed broadly over all sampled tissues (CP002, CP013). The 

level of tissue dispersal is a direct consequence of metastatic spread and thus can inform on the frequency of past 

metastatic events, as follows: clonal populations that reside exclusively in the primary site likely never 20 

metastasized; those that did not broadly colonize tissues likely metastasized rarely; and those with more broad 

dispersal across all tissues likely metastasized more frequently. Some populations’ tissue distributions are more 

difficult to interpret, such as CP022 which resides entirely within the right lung and has no relatives in the primary 

site. This tissue distribution may have resulted from an early metastasis from the primary to the right lung, 

followed by the extinction of cells remaining at the primary site; alternatively, it is possible that we did not sample 25 
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cells from this clonal population in the left lung, presumably because of their rarity. Separately, we cannot exclude 

the possibility that tissue samples carry hematogenous cancer cells, though these are likely rare (41) and therefore 

would not contribute significantly to differences in tissue distribution.  

In silico modeling of the metastatic process indicates that tissue dispersal reports on the underlying 

metastatic rate, albeit imperfectly (e.g., it saturates at intermediate metastatic rates; Fig. S7B). To quantify the 5 

relationship between tissue distribution and metastatic phenotype, we defined a statistical measure of the observed 

versus expected tissue distributions of cells (termed “Tissue Dispersion Score”; Methods) to operate as a coarse, 

tissue-resolved approximation of the metastatic phenotype. Across the 100 clonal populations in this mouse, we 

observed a wide range of Tissue Dispersion Scores (Fig. 1G), suggesting wide metastatic heterogeneity. We next 

explored this metastatic heterogeneity more directly and at far greater resolution using the evolving lineage 10 

information. 

Reconstructed cancer cell phylogenies 

 The key advantage of our lineage tracer is not in following clonal lineage dynamics (i.e. from cells’ static 

intBCs, as described above) but rather in reconstructing subclonal lineage dynamics (i.e. from cells’ continuously 

evolving indel alleles, as in retrospective approaches). As such, we next reconstructed high-resolution 15 

phylogenetic trees using the Cassiopeia suite of phylogenetic inference algorithms (32) with modified parameters 

tailored to this dataset’s unprecedented complexity and scale (Methods). The resulting trees comprehensively 

describe the phylogenetic relationships between the cells within each clonal population (Fig. 2A). The trees are 

intricately complex (mean tree depth 7.25; Fig. S5E) and highly resolved (consisting of 37,888 cells with 33,266 

(87.8%) unique lineage allele states; Fig. S5C). 20 

To illustrate the intricate complexity of the trees in this dataset, we present the reconstructed phylogram 

and lineage alleles for a representative clonal population of 5,616 cells (CP003; Fig. 2B) with 99.0% (5,560) 

unique cell lineage states, mean tree depth of 10.0, and maximum tree depth of 20. Intuitively, cells that are more 

closely related to one another ought to share more lineage alleles, which is evident from the patterns of shared 

alleles within clades and distinguishing alleles between clades (Fig. 2B, inlays). Indeed, we find systematic 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.16.045245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045245
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

agreement between phylogenetic distance (the distance between two cells in the tree) and allelic distance (the 

difference between two cells’ alleles) for this example (Fig. 2C) and across all other trees (Fig. S8), thus 

supporting their accuracy. The high diversity of indel alleles here (9,936 unique indels across all cells in mouse 

M5k; represented by the array of unique colors in the “character matrix”, Fig. 2B) also reduces the probability of 

homoplasy, an issue that can complicate tree reconstruction and diminish tree accuracy (32, 42). Altogether, these 5 

features indicate that the reconstructed trees accurately model the true phylogenetic relationships between cells. 

Quantification of past metastatic events from phylogenies 

A striking feature revealed by the reconstructed phylogenies is the varying extent to which closely related 

cells reside in different tissues (Fig. 2A), patterns which directly result from ancestral cells physically 

transitioning from one tissue to another (i.e., metastatic seeding). Varying rates of metastasis produce different 10 

patterns of concordance between phylogeny and tissue (Fig. 3A). For example, non-metastatic populations result 

in all clades inhabiting a single tissue (Fig. 3A-B, left); conversely, highly metastatic populations result in closely 

related cells residing in different tissues (Fig. 3A-B, right). Finally, intermediate levels of metastasis can similarly 

lead to a dispersed tissue distribution as in the highly metastatic regime, though with fewer metastatic transitions, 

thus supporting the need to reconstruct trees in order to distinguish such cases (Fig. 3A-B, middle). 15 

To quantitatively study the relationship between metastatic phenotype and phylogenetic topology, we used 

the Fitch-Hartigan maximum parsimony algorithm (43, 44). This algorithm provides the minimal number of 

ancestral (unobserved) metastatic transitions that are needed to explain the observed tissue assignment of cells in 

a given tree. We defined a score of the metastatic potential (termed “Tree MetRate”) by dividing the inferred 

minimal number of metastatic transitions by the number of possible transitions (i.e., edges in the tree). 20 

Empirically, we observe a distribution of clonal populations that spans the full spectrum of metastatic phenotypes 

between low (non-metastatic) and high (very metastatic) Tree MetRates (Fig. 3B). The Tree MetRate is stable 

across bootstrapping experiments in simulated trees (Fig. S7E-F) and when using an alternative phylogenetic 

reconstruction method (i.e., Neighbor-Joining (27); Fig. S9A; Pearson’s ρ=0.94), indicating that the Tree MetRate 

is a robust measurement of metastatic behavior – though, notably, Cassiopeia trees are more parsimonious than 25 
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those reconstructed by Neighbor-Joining (Fig. S9B). Though the Tissue Dispersal Score Tree agrees with Tree 

MetRate at low metastatic rates (Fig. 3C), the Tree MetRate more accurately captures the underlying metastatic 

rate over a broad range of simulated metastatic rates (Fig. S7D) because it can distinguish between moderate and 

high metastatic rates, which both result in broad dispersion across tissues (Fig. S7B; e.g., Fig 3B). Furthermore, 

the Tree MetRate also agrees with the probability that a cell’s closest relative (by lineage allele similarity) resides 5 

in a different tissue for each clonal population (termed “Allele MetRate”; Fig. 3D); importantly, the Allele 

MetRate is an alternative metric of metastatic potential that exploits the evolving nature of our lineage tracer but 

is independent of tree reconstruction. Again, however, simulations indicate that the Tree MetRate is a superior 

measurement of the underlying metastatic rate (Fig. S7A-D), underscoring the value of the reconstructed 

phylogenies in helping identify aspects of metastatic behavior that would otherwise be invisible.  10 

Though metastatic phenotype appeared to be generally consistent within a clonal population, there may 

have been subclonal variations. To this end, we extended our parsimony-based approach to quantify the metastatic 

phenotype at the resolution of single-cells (termed the “single-cell Tree MetRate”) by averaging the Tree MetRate 

for all subclades containing a given cell (Methods). Importantly, this measurement is sensitive to subclonal 

differences in metastatic behavior (Fig. 3E), such as the bimodal metastatic rates observed in CP007 cells 15 

(discussed below; Fig. 4E). Additionally, we find that the single-cell Tree MetRate is uncorrelated to clonal 

population size, proliferation signatures (45, 46), or cell cycle stage (47) (Fig. S10), indicating that it can measure 

metastatic potential uncoupled from proliferative capacity. Overall, these results indicate that cancer cells in this 

dataset exhibit diverse metastatic phenotypes both between and within clonal populations, which can be 

meaningfully distinguished and quantified by virtue of the lineage tracer. 20 

Transcriptional signatures of distinct metastatic phenotypes   

 By overlaying the single-cell transcriptional information and the cell phylogenies, we found that different 

metastatic behaviors corresponded to differential expression of genes with known roles in metastasis. First, after 

filtering and normalizing the scRNA-sequencing data, we applied Vision (48), a tool for assessing the extent to 

which the variation in cell-level quantitative phenotypes can be explained by transcriptome-wide variation in gene 25 
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expression. While we found little transcriptional effect attributable to clonal population assignment, we found a 

modest association between a cell’s transcriptional state and its tissue or single-cell Tree MetRate (Fig. S11). To 

more sensitively identify the transcriptional features of metastatic cells within a single tissue, we next performed 

pairwise differential expression analyses comparing cells from completely non-metastatic clonal populations (i.e., 

four that never metastasized from the primary tissue in the left lung, like CP029) to all other cells observed in the 5 

left lung (Fig. 4A). Many genes, such as IFI6, exhibited significant expression changes that were consistent across 

each non-metastatic clone (log2 fold-change > 1.5, FDR < 0.01). This suggests that differences in metastatic 

phenotype are manifested in characteristic differences in transcriptional state. Importantly, this differential 

expression analysis is limited to cells from a single tissue (i.e., the left lung), so gene expression differences we 

identified are unlikely due to tissue-specific differences. 10 

Next, we more comprehensively identified genes that are associated with metastatic behavior – either 

positively or negatively – by regressing single-cell gene expression against the single-cell Tree MetRates (over 

all observed cells, clonal populations, and tissues; Fig. 4B; Methods). Many positive hits (i.e., genes with 

significantly higher expression in highly metastatic cells) have known roles in potentiating tumorigenicity (Fig. 

4C, top); for example, IFI27 is an interferon-induced factor that is anti-apoptotic and promotes epithelial-15 

mesenchymal transition (EMT), cell migration, and cancer stemness in various carcinomas (49, 50), REG4 

enhances cell migration and invasion in colorectal carcinoma (51) and KRAS-driven lung adenocarcinoma (52), 

and TNNT1 has elevated expression in many cancers and may promote cell invasion via EMT (53). Similarly, 

many negative hits (genes with significantly lower expression in highly metastatic cells) have known roles in 

attenuating metastatic potential (Fig. 4C, bottom); for example, NFKBIA (IκBα) is a pan-cancer tumor 20 

suppressor via inhibition of pro-tumoral NFκB signaling (54), overexpression of ID3 inhibits tumor cell migration 

and invasion in vitro and in similar xenograft models of lung adenocarcinoma xenograft (55), and downregulation 

of ASS1 supports tumor metabolism and proliferation (56). Paradoxically, our most significant negative hit is 

KRT17, which has previously been implicated in promoting invasiveness in lung adenocarcinoma (57) and its 

overexpression is associated with poor prognosis in many cancers (58). This suggests that KRT17 may play a 25 
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context-specific role in metastatic progression in this model, which could be further explored experimentally. 

Indeed, all of the identified genes here are prime candidates for deeper study to elucidate their possible molecular 

roles in this xenograft model of metastasis. Overall, the gene-level expression trends are broadly supported by 

significant correlation between the Tree MetRate and several gene expression signatures (59) (Fig. S12), 

including interferon signaling programs (60), RAS pathways (61) (A549 cells are KRAS-mutant), cancer 5 

invasiveness (62), and EMT (63) (consistent with increased NFκB signaling (64, 65)). Additionally, the identified 

gene hits are significantly reproduced across all mice in this study (Fig. S20). 

Clone #7 (CP007) exhibits exceptionally distinct subclonal metastatic behaviors, wherein one large clade 

metastasized frequently to other tissues and another large clade remained predominantly in the right lung (Fig. 

4D). This distinction is reflected in a bimodal distribution of single-cell Tree MetRates (Fig. 3E; Fig. 4E). To 10 

explore the relationship between subclonal structure and gene expression, we applied Hotspot (66) and identified 

two modules of correlated genes that exhibit heritable expression programs (Fig. S13A). Strikingly, the 

cumulative expression of genes in one module is correlated with lower metastatic rates, while the opposite holds 

for the other module (Fig. 4F; S13B-C). Consistently, the two modules correspond to the two phylogenetic 

subclades with diverging metastatic phenotypes (Fig. 4G). This result is reproduced even in a control analysis of 15 

CP007 cells from the right lung only (Fig. S13D-G), indicating that these differences in gene expression indeed 

reflect differences in metastatic phenotype rather than tissue-specific effects. Thus, this example illustrates that 

the metastatic phenotype is not an intrinsically immutable characteristic of each clonal population, and that 

metastatic rate, alongside concordant changes in transcriptional state, can change substantially during tumor 

development. 20 

Tissue routes and topologies of metastasis 

The phylogenetic reconstructions also make it possible to describe detailed histories about the tissue routes 

and directionality of metastatic seeding. For example, the phylogenetic tree for CP095 reveals five distinct 

metastatic events from the left lung to different tissues in a paradigmatic example of simple primary seeding (Fig. 

5A–B). Other phylogenies reveal more complicated trajectories, such as CP019, wherein early primary seeding 25 
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to the mediastinum was likely followed by intra-mediastinal transitions and later seeding from the mediastinum 

to the liver and right lung (Fig. 5D–E). To more systematically characterize the tissue transition routes revealed 

by the phylogenetic trees, we extended the Fitch-Hartigan algorithm (43, 44) to infer each tissue transition event 

along a clonal population’s ancestry. Our algorithm, called FitchCount, builds on other ancestral inference 

algorithms like MACHINA (67) by scaling to large inputs and providing tissue transitions frequencies that are 5 

aggregated across all ancestries that satisfy the maximum parsimony criterion (Methods; Supplemental Text). 

Through simulation we show that FitchCount can accurately recover underlying transition probabilities better 

than a naive application of the Fitch-Hartigan algorithm (Fig. S7G–H; Methods), likely because the naive 

approach summarizes only a single optimal solution (i.e., assigning tissues to ancestral nodes to minimize the 

number of transitions), whereas FitchCount summarizes all optimal solutions (the number of which scales 10 

exponentially with the tree size). The resulting conditional probabilities of metastasis to and from each tissue are 

summarized in transition matrices, suggesting the most probable tissue transition routes in a clone’s past. Notably, 

we found that the transition matrices are varied and distinct to each clone (Fig. 5C, F, G; Fig. S14). We next used 

principal component analysis (PCA) to classify clones by their transition matrices (Fig. 5H) and identified 

descriptive features that capture differences in the metastatic routes traversed by each clone (Fig. 5I; Fig. S15). 15 

These features include primary seeding from the left lung (as in CP095, Fig. 5A–C), metastasis from and within 

the mediastinum (CP098, Fig. 5G, left), or metastasis between lung lobes (CP070, Fig. 5G), and may reflect 

intrinsic or stochastic differences in tissue tropism. From this feature analysis we note that many clones primarily 

metastasized via the mediastinal lymph tissue (Fig. 5H–I), suggesting that the mediastinum may act as a nexus 

for metastatic dissemination in this model. This observation is consistent with past experiments in this model 20 

(35), bulk live imaging during tumor progression in this experiment wherein tumors appear to quickly colonize 

the mediastinum (Fig. 1C), and the terminal disease state wherein the mediastinum harbors the majority of the 

tumor burden (Fig. 1E).  

Many models of metastatic seeding topology (i.e, the sequence and directionality of metastatic transitions) 

have been described in cancer (1), including reseeding, seeding cascades, parallel seeding, and others; and each 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.16.045245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045245
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

is characterized by a distinct phylogenetic signature (Fig. 5J). These different metastatic topologies can critically 

influence the progression, relapse, and treatment of cancers (9, 68–70); for example, reseeding of metastatic cells 

returning to the primary tumor site can contribute genetic diversity, resistance to treatment, and metastatic 

potential to tumors (71, 72). Within this single dataset, we find numerous examples of all of these topologies (Fig. 

5K); in fact, we most often observe examples of all topologies within every clone (Fig. S16), as well as more 5 

complex topologies that defy simple classifications (e.g., Fig. 5D and G, right), further underscoring the 

aggressive metastatic nature of A549 cells in this xenograft model. 

Discussion 

We applied our next-generation, Cas9-based lineage tracer to study metastasis in a lung cancer xenograft 

model in mice, tracking metastatic spread at unprecedented resolution. These observations were made possible 10 

by experimental and algorithmic advances that we made on our “molecular recorder” platform (22). 

Experimentally, we increased lineage recorder information capacity and tuned the tracer dynamics for longer 

experimental timescales, thus allowing us to uniquely mark tens of thousands of cells descended from dozens of 

clonogens over several months. Analytically, enhancements to Cassiopeia, including FitchCount, allowed us to 

reconstruct accurate, informative, and deeply resolved phylogenetic trees, and interpret them to identify rare, 15 

transient events in cells’ ancestry. Beyond the utility of this experimental and analytical framework for exploring 

many facets of cancer biology, we believe this tracing approach is broadly applicable to study the phylogenetic 

foundations of many biological processes that transpire over multiple cell generations. 

When we applied this tracing strategy to a lung cancer xenograft model, several key insights emerged: (1) 

Single-cell lineage tracing reveals the frequency and directionality of metastatic dissemination that would not be 20 

discernible from bulk experiments (e.g., gross distribution of clones across tumorous tissues). For example, even 

among clonal populations that are broadly disseminated across tissues, the lineage tracer reveals substantive 

differences in the underlying metastatic rates. (2) Even within a single cancer line and xenograft model, we find 

surprisingly diverse metastatic phenotypes, ranging from metastasis-incompetent to highly metastatic, which are 

heritable and correspond to distinct, reproducible transcriptional states involving important hallmarks of 25 
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metastasis; these transcriptional differences nominate these genes as candidates for further study to determine 

their possible molecular roles in metastasis. (3) Metastatic dissemination is rapid, frequent, and complex in this 

model, transiting via different complicated seeding topologies, such as seeding cascades, parallel seeding, and 

more. Furthermore, we illustrate that it is possible to capture subtle differences in tissue tropism and, using this 

strategy, we identify the mediastinum as a hub for metastatic seeding, perhaps because the mediastinal lymph is 5 

a favorable niche with extensive tissue connections (73). Extending beyond this xenograft model, these findings 

suggest that metastatic seeding patterns can be highly complex and possibly patient-specific. 

As a first report, this work by necessity focuses on a single model of metastasis. Looking forward, it will 

be important to explore these findings in other experimental contexts, including those described below, wherein 

the lineage tracer may also be deployed. First, because A549s exhibit highly aggressive metastatic spread, the 10 

rapid and frequent metastatic events we observe may be most relevant to advanced stages of cancer progression. 

Future work could apply this lineage tracing approach to models of any stage in cancer progression, such as (i) 

other cell lines that represent earlier cancer stages, (ii) genetic models of inducible tumor initiation (74), or (iii) 

patient-derived xenograft (PDX) models (75, 76). Second, this xenograft model requires immunodeficient host 

mice, and therefore does not reflect the pervasive influence wielded by the immune system on natural cancer 15 

progression (77–79); lineage tracing in syngeneic lines or spontaneous models of cancer could chart how an intact 

immune system affects cancer progression. Third, it would be valuable to test how transcriptional differences 

relates to (or determine) metastatic capacity, for example by genetically perturbing the candidate metastasis-

related gene targets identified here via Cas9 knock-out or CRISPRi knock-down (80, 81). These perturbations 

could be executed alongside lineage tracing, allowing for the simultaneous readout of transcriptional, 20 

phylogenetic, and phenotypic changes in vivo. Indeed, it should be possible to perform a pooled screen of a subset 

of gene candidates in a single perturbation experiment or in a single mouse, using the lineage tracer to demultiplex 

perturbation conditions (82). Fourth, this work describes metastasis at the spatial resolution of tumorous tissues 

(i.e., not individual tumors) because we bulk together tissues that contain multiple tumors (including extensive 

micrometastases). An important direction would be to merge lineage data with high-resolution spatial information 25 
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using the rapidly advancing techniques for spatial single-cell approaches (23, 83–85); this would clarify, among 

other features, the clonality of micrometastases, monophyletic versus polyphyletic dissemination (12), and the 

spatial constraints of tumor growth and metastasis. 

More broadly, Cas9-enabled lineage tracing technologies should be readily deployable to explore aspects 

of cancer progression and evolution, especially the history and chronology of rare and transient events like 5 

metastasis. This will empower future work to more comprehensively describe cancer – as well as other biological 

phenomena – at unprecedented resolution and scale.   
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Fig. 1. Lineage tracing in a lung cancer xenograft model in mouse. (A) Our Cas9-enabled lineage tracing 

technology. Cas9 and three sgRNAs bind and cut cognate sequences on genomically integrated Targets Sites, 

resulting in diverse indel outcomes (multicolored rectangles), which act as heritable markers of lineage. (B) 

Xenograft model of lung cancer metastasis. Approximately 5,000 A549-LT cells were surgically implanted into 5 

the left lung of immunodeficient mice. The cells engrafted at the primary site, proliferated, and metastasized 

within the five lung lobes,  mediastinal lymph, and liver. (C) In vivo bioluminescence imaging of tumor 

progression over 54 days of lineage recording, from early engraftment to widespread growth and metastasis. (D) 

Tumorous tissues collected, featuring tumors widespread throughout the lungs and mediastinum and a 

preponderance of tumor cells in the mediastinum. (E) Anatomical representation of the six tumorous tissue 10 

samples (left), and the number of cells collected with paired transcriptional and lineage datasets (right). (F) Tissue 
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distributions of the largest 100 clonal populations. (G) The Tissue Dispersion Score is a statistical measurement 

of the distribution across tissues for each clonal population. 
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Fig. 2. High-resolution phylogenetic trees capture the histories of clonal cancer populations. (A) 

Phylogenetic reconstructions for each clonal population represented as radial phylograms, with each cell along 

the circumference colored by tissue as in Fig. 1E. Trees are scaled by the square-root of the number of cells in 

the clonal population. (B) Phylogenetic tree and lineage alleles of one clonal population (CP003; N=5,616 cells). 

The phylogram (left) represents cell relationships and the color matrix (right) represents the lineage alleles for 5 

each cell. Alleles are uniquely colored and color saturation represents allele rarity (legend). (B, inlays) Nested 

zooms of individual clades highlight allele state diversity, tree depth, and tree complexity. (C) Correlation 

between phylogenetic distance (the normalized pairwise tree distance between two cells) and allelic distance (the 

normalized pairwise difference in alleles between two cells) for CP003, indicating that the tree accurately models 

phylogenetic relationships.  10 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.16.045245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045245
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

 

Fig. 3. Phylogenetic trees reveal that clonal populations exhibit diverse metastatic phenotypes. (A) 

Theoretical continuum of metastatic phenotypes, spanning non-metastatic (never exiting the primary site) to 

highly metastatic (frequently transitioning between tumors; arrows). Ancestral metastatic events between tissues 

leave clear phylogenetic signatures (yellow stars). (B) Three clonal populations illustrate the wide range of 5 

metastatic phenotypes observed: a non-metastatic population that never exits the primary site (CP029); a 

moderately metastatic population that infrequently transitions between different tissues (CP019); and a frequently 

metastasizing population with closely related cells residing in different tissues (CP013). Cells colored by tissue 
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as in Fig. 1E; metastatic phenotypes scored by the Tree MetRate. (C and D) Comparison of three lineage tracer-

derived measurements of metastatic phenotype: “Tissue Dispersion Score” (as in Fig. 1F) is a statistical measure 

of the clone’s distribution across tissues; “Allele MetRate” measures the probability that a cell’s closest relative 

by allele state is in a different tissue; and “Tree MetRate” measures the inferred frequency of metastatic transitions 

from the reconstructed phylogeny. Examples from (B) shown in red. (E) The distributions of single-cell-5 

resolution metastatic phenotypes (single-cell Tree MetRates) for each clonal population, ordered by Tree 

MetRate; median rate indicated in black; examples from (B) shown in red. 
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Fig. 4. Divergent metastatic phenotypes correspond to differences in gene expression. (A) Differential gene 

expression analysis comparing four non-metastatic clonal populations and all metastatic clonal populations in the 

primary tumor tissue. Significantly differentially expressed genes are colored by the log2-transformed fold-

change in gene expression and scaled by the adjusted Wilcoxon rank-sum test P-value. (B) Poisson regression 

analysis of gene expression and single-cell Tree MetRate for all cells and all tissues;  fold-change and coefficient 5 

of regression shown. The strongest and most significant positive and negative gene hits are annotated (red and 

blue, respectively). (C) Expression level of positive and negative gene hits (top and bottom, respectively) in cells 

with high or low single-cell Tree MetRate (red and blue, respectively). Boxes and whiskers represent first, second, 

and third quartiles, and 9th and 91st percentiles of expression distribution. (D) Divergent subclonal metastatic 

behavior exhibited in the phylogenetic tree of clonal population #7, with annotated subclades; cells colored by 10 

tissue as in Fig. 1E. (E) The bimodal distribution of single-cell Tree MetRates for cells in CP007, with cells from 

the divergent subclades indicated. (F) Comparison of single-cell metastatic phenotype and Hotspot transcriptional 

module scores. (G) Overlay illustrating concordance between CP007 phylogeny, single-cell Tree MetRates, and 

Hotspot Module scores. 
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Fig. 5. Metastases follow complex, multidirectional tissue routes and seeding topologies. (A and D) 

Phylogenetic trees and lineage alleles for clonal population #95 and #19 clades, respectively. Notable metastatic 

events are annotated in the phylogram and represented graphically as arrows (B and E); cells colored by tissue as 

in Fig. 1E; lineage alleles colored as in Fig. 2B; dashed arrow indicates an assumed transition. (C and F) Tissue 5 

transition matrices representing the conditional probability of metastasizing from and to tissues, defining the 
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tissue routes of metastasis for each clonal population. CP095 solely exhibits primary seeding from the left lung, 

whereas CP019 shows more complex seeding routes. (G) Tissue transition matrices illustrating the diversity of 

tissue routes, including metastasis from and within the mediastinum (left), between the lung lobes (middle), or 

amply to and from all tissues (right). (H) Principal component analysis (PCA) of tissue transition probabilities 

for each clonal population. Displayed clones are annotated in red; percentage of variance explained by 5 

components indicated on axes. (I) Component vectors of PCA with descriptive features. (J) Possible topologies 

of metastatic seeding, represented graphically and phylogenetically as in Fig. 3A. (K) Number of clonal 

populations that exhibit each metastatic seeding topology. 
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