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Abstract: 

Cancer progression is characterized by rare, transient events which are nonetheless highly consequential to              

disease etiology and mortality. Detailed cell phylogenies can recount the history and chronology of these critical                

events – including metastatic seeding. ​Here, we applied our Cas9-based lineage tracer to study the subclonal                

dynamics of metastasis in a lung cancer xenograft mouse model, revealing the underlying rates, routes, and                

drivers of metastasis. We report deeply resolved phylogenies for tens of thousands of metastatically              

disseminated cancer cells. We observe surprisingly diverse metastatic phenotypes, ranging from           

metastasis-incompetent to aggressive populations. These phenotypic distinctions result from pre-existing,          

heritable, and characteristic differences in gene expression, and we demonstrate that these differentially             

expressed genes ​can drive invasiveness. Furthermore, metastases transit via diverse, multidirectional tissue            

routes and seeding topologies. Our work demonstrates the power of tracing cancer progression at unprecedented               

resolution and scale. 

Main Text: 

Cancer progression is governed by evolutionary principles (reviewed in ​( ​1​) ​), which leave clear             

phylogenetic signatures upon every step of this process ​( ​2​, ​3​) ​, from early acquisition of oncogenic mutations                

(i.e., the relationships between normal and malignantly transformed cells ​( ​4​) ​), to metastatic colonization of              

distant tissues (i.e., the relationship between a primary tumor and metastases ​( ​5​) ​), and finally adaptation to                

therapeutic challenges (i.e., the relationship between sensitive and resistant clones ​( ​6​) ​). Metastasis is a              

particularly critical step in cancer progression to study because it is chiefly responsible for cancer-related               

mortality ​( ​7​) ​. Yet because metastatic events are intrinsically rare, transient, and stochastic ​( ​8​, ​9​) ​, they are                

typically impossible to monitor in real time. Analogous to the cell fate maps that have played an essential role in                    

deepening our understanding of organismal development and cell type differentiation ​( ​10​, ​11​) ​, accurately             
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reconstructed phylogenetic trees of tumors and metastases can reveal key features of this process, such as the                 

clonality, timing, frequency, origins, and destinations of metastatic seeding ​( ​12​) ​. 

Lineage tracing techniques allow one to map the genealogy of related cells, providing a crucial tool for                 

exploring the phylogenetic principles of biological processes like cancer progression and metastasis. Classical             

lineage tracing strategies can infer tumor ancestry from the pattern of shared sequence variations across tumor                

subpopulations (e.g., naturally occurring mutations, like single-nucleotide polymorphisms or copy-number          

variations) ​( ​13​, ​14​) ​. These “retrospective” tracing approaches are particularly valuable for studying the             

subclonal dynamics of cancer in patient-derived samples, such as elucidating which mutations contribute to              

metastasis and when they occur ​( ​15​–​18​) ​. However, the resolution of these approaches is typically low because                

of the limited number of distinguishing natural mutations, and the conclusions can be confounded by               

incomplete or impure bulk tumor sampling ​( ​19​) ​, sequencing artifacts ​( ​20​) ​, varying levels of intratumor              

heterogeneity, and non-neutral mutations ​( ​1​, ​5​) ​. Alternatively, so-called “prospective” lineage tracing           

approaches – wherein cells are marked with a static label (e.g. genetic barcode or fluorescent tag) – can measure                   

gross population dynamics at ​clonal resolution ​( ​21​) ​, but cannot resolve important and fine ​subclonal features of                

cancer biology, like evolution and the rate, timing, and directionality of metastatic events. 

The recent development of Cas9-enabled lineage tracing techniques with single-cell RNA-sequencing           

readouts ​( ​22​–​26 ​) provides the potential to explore cancer progression at vastly larger scales and finer resolution                

than has been previously possible with classical prospective or retrospective tracing approaches. These new              

methods most commonly rely on similar technical principles (reviewed in ​( ​27​, ​28​) ​). Briefly, Cas9 targets and                

cuts a defined genomic locus (hereafter “Target Site”), resulting in a stable insertion/deletion (indel) “allele”               

that is inherited over subsequent generations; as the cells divide, they accrue more Cas9-induced indels at                

additional sites that further distinguish successive clades of cells ( ​Fig. 1A ​, ​Fig. S1​). At the end of the lineage                   

tracing experiment, the indel alleles are collected from individual cells by sequencing and paired with               

single-cell expression profiles of the cell state ​( ​22​, ​23​) ​. Then, as in retrospective tracing approaches, various                
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computational approaches ​( ​29​–​34​) can reconstruct a phylogenetic tree that best models subclonal cellular             

relationships (e.g., by maximum-parsimony) from the observed shared or distinguishing alleles. Thus far,             

Cas9-enabled tracing has been successfully applied to study important aspects of metazoan biology, like the               

cellular progenitor landscape in early mammalian embryogenesis ​( ​23​, ​35​) ​, hematopoiesis ​( ​36​) ​, and neural             

development in zebrafish ​( ​22​) ​. Additionally, resources now exist for studying other phylogenetic processes in              

mouse ​( ​23​, ​35​) ​, and analytical tools are available for computationally reconstructing and benchmarking trees              

from large lineage tracing datasets ​( ​34​, ​37​) ​.  

Here we apply lineage tracing to explore the subclonal dynamics of metastatic dissemination in an               

orthotopic xenograft model of lung cancer in mice ​( ​38​) ​. Specifically, we have modified our previously               

described “molecular recorder” for lineage tracing ​( ​23​) ​, now enabling the capture of highly detailed,              

single-cell-resolution phylogenies across tens of thousands of cells with continuous tracing ​in vivo ​over several               

months. Additionally, we have expanded on our analytical toolkit, Cassiopeia ​( ​34​) ​, with algorithms for              

inference of unobserved events from a phylogeny, which we applied here to resolve metastatic transitions               

between tissues ​. These and other advances ​allowed us to study the rates, transcriptional drivers, and tissue                

routes of metastasis at unprecedented scale and resolution.  

Tracing metastasis in a mouse xenograft model 

We chose to study metastasis using a human ​KRAS ​-mutant lung adenocarcinoma line (A549 cells) in an                

orthotopic xenograft model in mice because this system is characterized by aggressive metastases ​( ​38​) and               

orthotopic xenografting experiments such as this are useful for modeling cancer progression ​in vivo ​(39) ​. We                

engineered A549 cells with a refined version of our molecular recorder technology ​( ​23​) ( ​Fig. S2​; Methods).                

Specifically, the engineered cells contained: (i) luciferase for live imaging; (ii) Cas9 for generating heritable               

indels; (iii) ~10 uniquely barcoded copies of the Target Site for recording lineage information, which can be                 

captured as expressed transcripts by single-cell RNA-sequencing; and finally (iv) triple-sgRNAs to direct Cas9              

to the Target Sites, thereby initiating lineage recording ( ​Fig. 1A; Fig. S2A–C ​). To enable tracing over                
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months-long timescales, we carefully designed the sgRNAs with nucleotide mismatches to the Target Sites,              

thereby decreasing their affinity ​( ​40​, ​41​) and tuning the lineage recording rate ​( ​23​, ​42​) ​. Approximately 5,000                

engineered cells (“A549-LT”) were then embedded in matrigel and surgically implanted into the left lung of an                 

immunodeficient (C.B-17 ​SCID ​) mouse ( ​Fig. 1B​). We followed bulk tumor progression by live luciferase-based              

imaging ( ​Fig. 1C ​): early bioluminescent signal was modest and restricted to the primary site (left lung),                

consistent with engraftment; with time, the signal progressively increased and spread throughout the thoracic              

cavity, indicating tumor growth and metastasis. After 54 days, the mouse was sacrificed and tumors were                

identified in the five lung lobes, throughout the mediastinal lymph tissue, and on the liver ( ​Fig. 1D ​), in a pattern                    

that is consistent with previous studies in this model ​( ​38​) ​. From these tumorous tissues, we collected six                 

samples, including one from the left lung (i.e., including the primary site; ​Fig. 1E, left ​). The tumor samples                  

were dissociated, fluorescence-sorted to exclude normal mouse cells, and finally processed for single-cell             

RNA-sequencing. To simultaneously measure the transcriptional states and phylogenetic relationships of the            

cells, we prepared separate RNA expression and Target Site amplicon libraries, respectively, resulting in 41,487               

paired single-cell profiles from six tissue samples ( ​Fig. 1E, right ​; ​Fig. S3 ​; Methods). 

In addition to the mouse described above (hereafter “M5k”), we also performed lineage tracing in three                

other mice (called “M10k”, “M100k”, and “M30k”), using A549-LT cells engineered with slightly different              

versions of the lineage tracing technology ( ​Fig. S4; ​Methods). Unless otherwise noted, we focus our primary                

discussion of the results on mouse M5k because it yielded the richest lineage tracing dataset with the most cells                   

and distinct lineages. 

Distinguishing clonal cancer populations  

Our lineage recorder “Target Site” ​( ​23​) carries two orthogonal units of lineage information: (i) a static                

14bp-randomer barcode (“intBC”) that is unique and distinguishes between multiple integrated Target Site             

copies within each cell; and (ii) three independently evolving Cas9 cut-sites per Target Site that record heritable                 

indel alleles and are used for subclonal tree reconstruction ( ​Fig. 1A ​). Each Target Site is expressed from a                  
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constitutive promoter allowing it to be captured by single-cell RNA-sequencing. After amplifying and             

sequencing the Target Site mRNAs, the reads were analyzed using the Cassiopeia processing pipeline ​( ​34​) ​.               

Briefly, this pipeline leverages unique molecular identifier (UMI) information and redundancy in sequencing             

reads to confidently call intBCs and indel alleles from the lineage data, which inform subsequent phylogenetic                

reconstruction ( ​Fig. S1 ​;​ ​Methods). 

We first determined the number of clonal populations (that is, groups of related cells that descended                

from a single clonogen at the beginning of the xenograft experiment), which are each associated with a set of                   

intBCs. Importantly, the A549-LT cells were prepared at high diversity such that clones carry distinct intBC                

sets. By sampling the A549-LT cells before implantation, we estimate that the implanted pool of 5,000 cells                 

initially contained 2,150 distinguishable clones ( ​Fig. S2D ​). Based on their intBC sets, we assigned the vast                

majority of cancer cells collected from the mouse (97.7%) to 100 clonal populations ( ​Figs. S5A-B​), ranging in                 

size from >11,000 (Clone #1, “CP001”) to ~30 cells (CP100) ( ​Fig. S5C ​). Though there were some smaller                 

clonal populations, we focused on these largest 100 because lineage tracing in few cells is less informative.                 

Furthermore, despite initially implanting ~2,150 distinct clones, only ~100 clones successfully engrafted and             

proliferated; this indicates that only a small minority of cells may be competent for engraftment and survival ​in                  

vivo ​( ​Fig. S2D ​). Moreover, we find no correlation between initial (pre-implantation) and final (post-sacrifice)              

clonal population size (Spearman’s ​ρ ​=​-0.026 ​; ​Fig. S2E​), suggesting that clone-intrinsic characteristics that            

confer greater fitness ​in vitro ​ do not necessarily confer greater fitness ​in vivo ​ ​( ​43​, ​44​) ​. 

Features that influence the lineage recording capacity and tree reconstructability differed between clonal             

populations, such as the copy-number of Target Sites, the percentage of recording sites bearing indel alleles,                

and allele diversity ( ​Fig. S6A-C; Fig. S7​). Though most clonal populations exceeded parametric standards for               

confident phylogenetic reconstruction, some had slow recording kinetics or low allele diversity and failed to               

pass quality-control filters (17 clones, 7.3% of total cells in mouse M5k, ​Fig. S6D; Fig. S7B​); these clones were                   

excluded from tree reconstruction and downstream analyses (Methods). 
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We observed that the clonal populations exhibited distinct distributions across the six tissues ( ​Fig.              

S8A-C ​), ranging from being present exclusively in the primary site (e.g., CP029, CP046), to overrepresented in                

a tissue (CP003, CP020), or distributed broadly over all sampled tissues (CP002, CP013). The level of tissue                 

dispersal is a consequence of metastatic dissemination and thus can inform on the frequency of past metastatic                 

events as follows: clonal populations that reside exclusively in the primary site likely never metastasized; those                

that did not broadly colonize tissues likely metastasized rarely; and those with more broad dispersal across all                 

tissues likely metastasized more frequently. ​To quantify the relationship between tissue distribution and             

metastatic phenotype, we defined a statistical measure of the observed-versus-expected tissue distributions of             

cells (termed “Tissue Dispersion Score”; Methods) to operate as a coarse, tissue-resolved approximation of the               

metastatic rate. Across the 100 clonal populations in this mouse, we observed a wide range of Tissue Dispersion                  

Scores ( ​Fig. S8D ​), suggesting broad metastatic heterogeneity across the tumor populations. We next explored              

this suggested metastatic heterogeneity more directly and at far greater resolution using the evolving lineage               

information. 

Single-cell-resolved cancer phylogenies 

The key advantage of our lineage tracer is not in following ​clonal lineage dynamics (i.e. from cells’                 

static intBCs, as described in the section above) but rather in reconstructing ​subclonal lineage dynamics (i.e.                

from cells’ continuously evolving indel alleles). As such, we next reconstructed high-resolution phylogenetic             

trees using the Cassiopeia suite of phylogenetic inference algorithms ​( ​34​) with modified parameters tailored to               

this dataset’s unprecedented complexity and scale (Methods). Each of the resulting trees comprehensively             

describes the phylogenetic relationships between all cells within the clonal population ( ​Fig. 2A ​), thus              

summarizing their life histories from initial, clonogenic founding in the mouse to final dissemination across               

tissues and tumors. The trees are intricately complex (mean tree depth of ​7.25; ​Fig. S6E​) and ​highly resolved                  

(consisting of 37,888 cells with 33,266 (87.8%) unique lineage states; ​Fig. S6C ​). 
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To illustrate the intricate complexity of the trees in this dataset, we present the reconstructed phylogram                

and lineage alleles for a representative clonal population of 5,616 cells (CP003; ​Fig. 2B​) ​with 99.0% (5,560)                 

unique cell lineage states, mean tree depth of 10.0, and maximum tree depth of 20. Intuitively, cells that are                   

more closely related to one another ought to share more lineage alleles, which is evident from the patterns of                   

shared alleles within clades and distinguishing alleles between clades ( ​Fig. 2B, zoomed inlays ​). Indeed, we find                

systematic agreement between phylogenetic distance (i.e., the distance between two cells in the tree) and allelic                

distance (the difference between two cells’ lineage alleles) for this example ( ​Fig. 2C ​) and across all other trees                  

( ​Fig. S10​), thus supporting their accuracy. The high diversity of distinguishable Cas9-induced indels (9,936              

unique alleles across all M5k cells; evident in the array of unique allele colors in ​Fig. 2B​) also reduces the                    

probability of homoplasy, an issue which complicates tree reconstruction and impairs tree accuracy ​( ​34​, ​45​) ​.               

Altogether, these features indicate that the reconstructed trees accurately model the true phylogenetic             

relationships between cells. 

Inferring and quantifying past metastatic events from phylogenies 

A striking feature revealed by the reconstructed phylogenies is the varying extent to which closely               

related cells reside in different tissues ( ​Fig. 2A ​), patterns which directly result from ancestor cells having                

physically transited from one tissue to another in the past (i.e., metastatic seeding). Varying rates of metastasis                 

produce different patterns of concordance between phylogeny and tissue ( ​Fig. 3A ​). For example, non-metastatic              

populations result in all clades remaining within a single tissue ( ​Fig. 3A-B, left ​); conversely, highly metastatic                

populations result in closely related cells residing in different tissues ( ​Fig. 3A-B, right ​). Finally, intermediate               

levels of metastasis can similarly lead to a dispersed tissue distribution as in the highly metastatic regime,                 

though with fewer metastatic transitions, thus supporting the need to reconstruct trees in order to distinguish                

such cases ( ​Fig. 3A-B, middle​). 

To quantitatively study the relationship between metastatic phenotype and phylogenetic topology, we            

used the Fitch-Hartigan maximum parsimony algorithm ​( ​46​, ​47​) ​. Our implementation of this algorithm provides              
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the minimal number of ancestral (i.e., not directly observed) metastatic transitions that are needed to explain the                 

final (i.e., observed) tissue location of each cell in a given tree. We defined a score of the metastatic potential                    

(termed “TreeMetRate”) by dividing the inferred minimal number of metastatic transitions by the total number               

of possible transitions (i.e., edges in the tree). Empirically, we observe a distribution of clonal populations that                 

spans the full spectrum of metastatic phenotypes between low (non-metastatic) and high (very metastatic)              

TreeMetRates ( ​Fig. 3B,C ​). The TreeMetRate is stable across bootstrapping experiments in simulated trees ( ​Fig.              

S9E-F​) and when using an alternative phylogenetic reconstruction method (Neighbor-Joining ​( ​29​) ​) on empirical             

data ( ​Fig. S11A ​; Pearson’s ​ρ​=0.94), indicating that the TreeMetRate is a robust measurement of metastatic               

behavior – though, notably, Cassiopeia trees are more parsimonious than those reconstructed by             

Neighbor-Joining ( ​Fig. S11B​). Empirically, the Tissue Dispersal Score agrees with the TreeMetRate at low              

metastatic rates ( ​Fig. S12A,C ​), however, the TreeMetRate more accurately captures the underlying metastatic             

rate over a broad range of simulated metastatic rates because it can distinguish between moderate and high                 

metastatic rates ( ​Fig. S9D ​), which both result in broad dispersion across tissues ( ​Fig. 3A ​), whereas the Tissue                 

Dispersal Score saturates at intermediate metastatic rates ( ​Fig. S9B​). Furthermore, the TreeMetRate also agrees              

with the probability that a cell’s closest relative (by lineage allele similarity) resides in a different tissue for each                   

clonal population (termed “AlleleMetRate”; ​Fig. S12B, D ​); importantly, the AlleleMetRate is an alternative             

metric of metastatic potential that exploits the evolving nature of our lineage tracer but is independent of tree                  

reconstruction. Again, however, simulations indicate that the TreeMetRate is the superior measurement of the              

underlying metastatic rate ( ​Fig. S9A-D ​), underscoring the value of the reconstructed phylogenies in helping              

identify aspects of metastatic behavior that would otherwise be invisible.  

We further extended our parsimony-based approach to quantify the metastatic phenotype at the             

resolution of individual cells (termed the “scMetRate”) by averaging the TreeMetRate for all subclades              

containing a given cell (Methods). This measurement is sensitive to ​subclonal differences in metastatic behavior               

( ​Fig. 3C ​), and highlighted intriguing bimodal metastatic behavior for clone CP007 ( ​Fig. 5G; ​discussed below).               
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Additionally, we find that the scMetRate is uncorrelated to clonal population size, proliferation signatures ​( ​48​,               

49​) ​, or cell cycle stage ​( ​50​) ( ​Fig. S13​), indicating that it can measure metastatic potential uncoupled from                 

proliferative capacity. Overall, these results indicate that cancer cells in this dataset exhibit diverse metastatic               

phenotypes both between and within clonal populations, which can be meaningfully distinguished and             

quantified by virtue of the lineage tracer, but would have otherwise been hidden from classical barcoding                

approaches. 

Transcriptional drivers of differences in metastatic phenotype 

A central question in cancer biology is the extent to which cellular properties (e.g., transcriptional state)                

underlie cancer phenomena ​( ​51​) ​, like metastatic capacity. By comparing the paired transcriptional and lineage              

datasets, we found that different metastatic behaviors corresponded to differential expression of genes, many              

with known roles in metastasis. First, after filtering and normalizing the scRNA-sequencing data, we applied               

Vision ​( ​52​) ​, a tool for assessing the extent to which the variation in cell-level quantitative phenotypes can be                  

explained by transcriptome-wide variation in gene expression. While we found little transcriptional effect             

attributable to clonal population assignment, we found a modest association between a cell’s transcriptional              

profile and its tissue sample or metastatic rate ( ​Fig. S14​). We next performed pairwise differential expression                

analyses comparing cells from completely non-metastatic clonal populations (i.e., four clones that never             

metastasized from the primary tissue in the left lung, like CP029) to metastatic clones in the same tissue ( ​Fig.                   

S15​). This clone-resolution analysis identified several genes with significant expression changes which were             

also consistent across each non-metastatic clone (log2 fold-change > 1.5, FDR < 0.01), such as IFI6. These                 

initial results suggested that differences in metastatic phenotype may manifest in characteristic differences in              

gene expression, and motivated deeper analysis. 

Next, we sought to comprehensively identify genes that are associated with metastatic behavior by              

regressing single-cell gene expression against the scMetRates (over all observed cells, clonal populations, and              

tissues; ​Fig. 4A ​; Methods), thereby leveraging both the scRNA-seq dataset and the single-cell phylogenies.              
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Many of the identified positive metastasis-associated candidates (i.e., genes with significantly higher expression             

in highly metastatic cells) have known roles in potentiating tumorigenicity ( ​Fig. 4B, top ​). For example, IFI27 is                 

an interferon-induced factor that is anti-apoptotic and promotes epithelial-mesenchymal transition (EMT), cell            

migration, and cancer stemness in various carcinomas ​( ​53​, ​54​) ​; REG4 enhances cell migration and invasion in                

colorectal carcinoma ​( ​55​) and ​KRAS- ​driven lung adenocarcinoma ​( ​56​) ​; and TNNT1 has elevated expression in              

many cancers and may promote EMT and invasiveness ​( ​57​) ​. Similarly, many negative metastasis-associated             

candidates (i.e., genes with significantly lower expression in highly metastatic cells) have known roles in               

attenuating metastatic potential ( ​Fig. 4B, bottom​). For example, NFKBIA (I ​κBα) is a pan-cancer tumor              

suppressor via inhibition of pro-tumoral NF ​κ​B signaling ​( ​58​) ​; lower expression of ID3 enhances tumor cell               

migration and invasion ​in vitro and in lung adenocarcinoma xenograft models ​( ​59​) ​; and downregulation of               

ASS1 supports tumor metabolism and proliferation ​( ​60​) ​. (Interestingly, our most significant negative candidate             

was KRT17, which has previously been implicated in ​promoting invasiveness in lung adenocarcinoma ​( ​61​) and               

its overexpression has been associated with poor prognosis in some cancers ​( ​62​) ​; we follow-up on this                

unexpected finding below.) Additionally, many of the identified genes were significantly reproduced across             

every mouse in this study ( ​Fig. 4C-D ​; Fig. S17​). And more generally, the gene-level expression trends are                 

broadly supported by significant correlation between the TreeMetRate and several gene expression signatures             

( ​63​) ( ​Fig. S16​), including interferon signaling programs ​( ​64​) ​, RAS pathways ​( ​65​) (A549 cells are              

KRAS ​-mutant), cancer invasiveness ​( ​66​) ​, and EMT ​( ​67​) ​ (consistent with increased NF ​κ​B signaling ​( ​68​, ​69​) ​).  

While we identified many interesting and reproducible gene candidates in our regression analysis above,              

it was unclear whether they were directly driving the metastatic phenotype or were merely associated with it. To                  

address this important point, we next explored the functional impact on metastatic behavior of modulating the                

expression of five high-scoring gene candidates (IFI6, IFI27, KRT17, ID3, and ASS1). First, we engineered               

A549 cells to enable CRISPR-inhibition or -activation perturbations (CRISPRi/a; activity validated in ​Fig.             

S18C,D)​, then increased or decreased expression, respectively, of the five gene targets using two independent               
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sgRNAs per gene. Finally, we measured the perturbed cells’ invasion phenotype ​in vitro using a transwell                

invasion assay ( ​Fig. 4E,F​; Methods). As hypothesized, CRISPRi knock-down resulted in ​decreased            

invasiveness for positive metastasis-associated genes (IFI6 and IFI27; ​p=​0.001, 0.005, respectively) and            

increased invasiveness for negative metastasis-associated genes (KRT17, ID3, and ASS1; ​p=​0.054, 0.003, and             

0.062, respectively; ​Fig. 4E​). Conversely, we found that elevating candidate gene expression by CRISPRa              

produced the exact opposite results ( ​Fig. 4F​), indicating that the invasion phenotype can be quantitatively               

altered by both increased or decreased expression for each of the five candidate genes tested, including notably                 

KRT17. We confirmed that the modulation of expression of each of these genes strongly and significantly                

modulated invasiveness ( ​p​<0.01) in a separate human lung cancer cell line (H1299 cells, which are ​KRAS                

wild-type, ​TP53​-mutant, and harbor endogenous ​NRAS ​Q61K​; ​Fig. S18A,B​); though, for two of the genes (IFI27,               

IFI6), CRISPRa had a significant effect ( ​p​<0.01) while CRISPRi did not. Taken together, these results indicate                

that (i) the lineage tracer can meaningfully identify metastasis-associated genes ​in vivo ​, (ii) some of these gene                 

candidates are sufficient to drive differences in metastatic phenotype, and (iii) these genes’ roles in mediating                

invasiveness extend beyond the one A549 cancer model and across different oncogenic backgrounds. 

Heterogeneity and heritability of metastatic behavior in pre-implantation cells 

We next used the positive and negative metastasis-associated genes identified above ( ​Fig. 4A ​) to define               

a ​de novo transcriptional signature (hereafter, “Metastasis Signature”; ​Fig. 5A ​; Fig. S19A ​). We found that even                

prior to implantation into the mice, the cells already exhibited meaningful heterogeneity in the Metastatic               

Signature ( ​Fig. 5B​), and metastasis-associated genes like ID3 and TNNT1 were similarly heterogeneously             

expressed pre-implantation ( ​Fig. 5C ​). Next, we used the lineage barcodes to map cells from the ​in vitro                 

pre-implantation pool to the clonal populations that engrafted ​in vivo ( ​Fig. S19B​). We then segregated these                

mapped cells into the top and bottom halves by their corresponding TreeMetRate, and queried their               

pre-implantation Metastatic Signatures. We found that cells from more metastatic clones in the mouse had               

modestly yet significantly higher metastatic signatures prior to implantation, and vice versa ( ​Fig. S19C ​). This               
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indicates that the pre-implantation transcriptional signature is mildly predictive of ​in vivo metastatic phenotype              

( ​Fig. S19D ​), though the distinction becomes more amplified ​in vivo ​( ​Fig. S19C, D ​). This result suggests that                 

even before cells were xenografted into the mouse, they were primed for greater or lesser metastatic capacity ​in                  

vitro ​. 

While the pre-existing transcriptional heterogeneity in the pre-implantation cells was noteworthy, it            

remained unclear whether these differences were stochastic or intrinsic properties of the cells that could be                

robustly propagated ​in vitro ​and in vivo ​. One way to address this question is by implanting two cells from the                    

same clone into two distinct mice and querying how well their metastatic phenotype is reproduced. Using the                 

cells’ intBCs, which statically mark clones, we identified two such instances where cells from the same clonal                 

population seeded tumors in two different mice ( ​Fig. 5D; Fig. S20​). Strikingly, for each of the two pairs of                   

clonal populations, the TreeMetRates were nearly identical ( ​Fig. 5E​). In fact, one of these pairs had the most                  

similar TreeMetRates across all pairs of clones in the two mouse experiments (∆(TreeMetRate)=0.0005,             

p​=0.0049; ​Fig. 5F​). Taken together, these results indicate that (i) the diverse metastatic phenotypes ​in vivo are                 

determined before implantation (also ​Fig. 5B, C ​), (ii) the metastatic phenotype is reproducible over generations               

and is thus heritable ( ​Fig. 5E,F​; also ​Fig. S19C,D ​), and (iii) our analytical approaches for quantifying the                 

metastatic rate, including reconstruction of the phylogenies, are experimentally robust ( ​Fig. 5E ​). 

Evolution of metastatic phenotype 

Though we have thus far discussed how metastatic phenotype is clone-intrinsic and stably inherited, we               

identified a single example within the dataset that was the exception to this general rule. Specifically, Clone #7                  

(CP007) exhibited exceptionally distinct subclonal metastatic behaviors, wherein one clade metastasized           

frequently to other tissues while another clade remained predominantly in the right lung ( ​Fig. 5G​). This                

distinction is reflected in a bimodal distribution of scMetRates ( ​Fig. 3C ​; Fig. 5H​). To explore the relationship                 

between subclonal structure and gene expression, we applied ​Hotspot ​( ​70​) and identified two modules of               

correlated genes that exhibit heritable expression programs ( ​Fig. S21A ​). Strikingly, the cumulative expression             
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of genes in Module 1 is correlated with lower metastatic rates, while the opposite holds for Module 2 ( ​Fig. 5I;                    

S21B,C ​). Consistently, the two modules broadly correspond to the two clades with diverging metastatic              

phenotypes ( ​Fig. 5J​). This result is reproduced even in a control analysis of CP007 cells from the right lung                   

only ( ​Fig. S21D-G​), indicating that these differences in gene expression indeed reflect differences in metastatic               

phenotype rather than tissue-specific effects. This example serves to illustrate that though the metastatic rate is                

stably inherited, it can also evolve – albeit rarely – within a clonal population, alongside concordant changes in                  

transcriptional signature. Importantly, this finding could only be appreciated by virtue of the subclonal              

resolution of the lineage tracer. 

Tissue routes and topologies of metastasis 

The phylogenetic reconstructions also made it possible to describe detailed histories about the tissue              

routes and the directionality of metastatic seeding. For example, the phylogenetic tree for CP095 reveals five                

distinct metastatic events from the left lung to different tissues, in a paradigmatic example of simple primary                 

seeding ( ​Fig. 6A–B​). Other phylogenies revealed more complicated trajectories, such as CP019, wherein early              

primary seeding to the mediastinum was likely followed by intra-mediastinal transitions and later seeding from               

the mediastinum to the liver and right lung ( ​Fig. 6D–E​). To more systematically characterize the tissue                

transition routes revealed by the phylogenetic trees, we extended the Fitch-Hartigan algorithm ​( ​46​, ​47​) to infer                

the directionality of each tissue transition (i.e., the origin and destination of each metastatic event) along a                 

clonal population’s ancestry. Our algorithm, called ​FitchCount​, builds on other ancestral inference algorithms             

like MACHINA ​( ​71​) by scaling to large inputs and providing tissue transitions frequencies that are aggregated                

across all ancestries that satisfy the maximum parsimony criterion (Methods; Supplemental Text). Through             

simulation we show that ​FitchCount can accurately recover underlying transition probabilities better than a              

naive application of the Fitch-Hartigan algorithm ( ​Fig. S9G–H​; Methods), likely because the naive approach              

summarizes only a single optimal assignment solution, whereas ​FitchCount summarizes all optimal solutions.             

The resulting conditional probabilities of metastasis to and from each tissue are summarized in a tissue                
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transition probability matrix ( ​Fig. 6C, F​). Notably, we found that these transition matrices are varied and                

distinct to each clone ( ​Fig. G; Fig. S22​). We next used principal component analysis (PCA) to stratify clones                  

by their transition matrices ( ​Fig. 6H​) and identified descriptive features that capture differences in the               

metastatic tissue routes traversed by each clone ( ​Fig. 6I; Fig. S23​). These descriptive features include primary                

seeding from the left lung (as in CP095, ​Fig. 6A–C ​), metastasis from and within the mediastinum (CP098, ​Fig.                  

6G, left ​), or metastasis between lung lobes (CP070, ​Fig. 6G​), and may reflect intrinsic differences in tissue                 

tropism. From this feature analysis we also note that many clones primarily metastasized via the mediastinal                

lymph tissue ( ​Fig. 6H–I ​), suggesting that the mediastinum may act as a nexus for metastatic dissemination in                 

this mouse model. This observation is consistent with previous experiments in this model ​( ​38​) ​, bulk live                

imaging during tumor progression in this experiment wherein tumors appear to quickly colonize the              

mediastinum ( ​Fig. 1C ​), and the terminal disease state wherein the mediastinum harbors the majority of the                

tumor burden ( ​Fig. S8 ​).  

Many models of metastatic seeding topology (i.e, the sequence and directionality of metastatic             

transitions) have been described in cancer ​( ​1​) ​, including reseeding, seeding cascades, parallel seeding, and              

others; and each is characterized by a distinct phylogenetic signature ( ​Fig. 6J​). These different metastatic               

topologies can critically influence the progression, relapse, and treatment of cancers ​( ​9​, ​72​–​74​) ​; for example,               

reseeding of metastatic cells returning to the primary tumor site can contribute genetic diversity, resistance to                

treatment, and metastatic potential to tumors ​( ​75​, ​76​) ​. Within this single dataset, we find numerous examples of                 

all of these topologies ( ​Fig. 6K​); in fact, we most often observe examples of all topologies within every clone                   

( ​Fig. S24​), as well as more complex topologies that defy simple classifications (e.g., ​Fig. 6D ​and G, right ​),                  

further underscoring the aggressive metastatic nature of A549 cells in this xenograft model. 

Discussion 

We applied our next-generation, Cas9-based lineage tracer to study metastasis in a lung cancer xenograft               

model in mice. We tracked metastatic spread at unprecedented scale and resolution that would have been                
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unattainable by static barcoding experiments (i.e., “prospective” tracing), bulk tissue sampling, or single-cell             

RNA-sequencing methods alone, and were only made possible by experimental and algorithmic advances that              

we made on our molecular recorder platform ​( ​23​) ​. Experimentally, we increased lineage recorder information              

capacity and tuned the tracer dynamics for longer experimental timescales, thus allowing us to uniquely mark                

tens of thousands of cells descended from dozens of clonogens over several months. Analytically,              

enhancements to Cassiopeia, including ​FitchCount​, allowed us to reconstruct ​accurate, informative, and deeply             

resolved phylogenetic trees, and interpret them to identify rare, transient events in cells’ ancestry (here,               

metastasis). Beyond the utility of this experimental and analytical framework for exploring many facets of               

cancer biology, we believe this tracing approach is broadly applicable to study the phylogenetic foundations of                

many biological processes that transpire over multiple cell generations. 

When we applied this tracing strategy to a lung cancer xenograft model, several key insights emerged:                

(1) Single-cell lineage tracing revealed meaningful and reproducible differences in the frequency and             

directionality of metastatic dissemination that would not have been discernible from bulk experiments (e.g.,              

gross distribution of clones across tumorous tissues). For example, even among clonal populations that are               

broadly disseminated across tissues, the lineage tracer reveals substantive differences in the underlying             

metastatic rates. (2) Even within a single cancer line and xenograft model, we found surprisingly diverse                

metastatic phenotypes, ranging from metastasis-incompetent to highly metastatic, which we then used to             

generate and test hypotheses regarding metastatic biology. We show that these distinctions in metastatic              

behavior were driven by specific differentially expressed genes, like IFI6, ID3, and KRT17, that can directly                

modulate invasion phenotype in multiple cancer contexts. Furthermore, we empirically demonstrate that these             

distinct metastatic phenotypes are pre-programmed prior to implantation, stably inherited over generations, and             

predictive of future metastatic behavior. (3) Metastatic dissemination was rapid, frequent, and complex in this               

model, transiting via different complicated seeding topologies, such as seeding cascades, parallel seeding, and              

more. Additionally, we illustrated that it is possible to capture subtle differences in tissue tropism and, using this                  
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Fig. S23. Describing the principal features of metastatic seeding routes. ​( ​A ​, ​C ​) PCA projections of the                
metastatic tissue transitions for each clonal population (annotated). The percentage of the variance explained by               
each component is indicated on the axes for the first and second ( ​A ​) or first and third ( ​C ​) components. ( ​B​, ​D ​)                     
Biplot vectors representing the most explanatory features of the first, second, and third principal components,               
annotated by descriptive features of metastatic transitions. The length and angle of the vector describe the scale                 
and direction, respectively, of each descriptive feature. ( ​F​) The PCA loadings of the metastatic transition               
features for  each principal component. 
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Fig. S24. Seeding topologies observed in each clonal population. ​A table describing classified seeding              
topologies (rows) that are present or absent (dark or light gray, respectively) in each clonal population                
(columns). The majority of clonal populations exhibit examples of all seeding topologies. 
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1 Deriving transition matrices from phylogenetic trees

In this document, we describe our approach for solving the following problem: Consider a phy-
logenetic tree T rooted at vertex r over V vertices and E edges which we denote as T

r. In this
tree, each leaf l is assigned a state state(l), where states are drawn from a state space ⌃ (i.e.
8v, state(v) 2 ⌃). Here, leaves are single cells derived from a single-cell lineage tracing experiment
(Chan et al. 2019) studying cancer metastasis, the tree describes the cells’ evolutionary history
(as inferred by Cassiopeia (Jones et al. 2020)), and the states represent the tissues from which the
cells were obtained. Our task is to derive summary statistics obtained by assigning states to the
internal nodes of the tree(i.e., ancestral cells that were not observed in the study). Specifically,
the summary statistics we are interested at are: (1) the overall number of metastatic events (i.e.,
transition between tissues) that occurred in a clone’s history and (2) the frequency (i.e. number)
of transitions between each pair of tissues si and sj .

This class of problems typically requires what is known as “ancestral state reconstruction"
(Joy et al. 2016; Slatkin and Maddison 1989; McPherson et al. 2016), which in essence attempts
to assign an ancestral states to every node in a given tree that minimizes some function. Here,
we use parsimony as our objective function. Our work relies on classical algorithms (Fitch 1971;
Hartigan 1973) and is also inspired by recent algorithms using these principles to infer metastatic
histories like MACHINA (El-Kebir, Satas, and Raphael 2018).

As noted by El-Kebir et al (El-Kebir, Satas, and Raphael 2018), while there exist several
algorithms for effectively inferring clone trees from DNA samples of metastatic cancers (Reiter

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.04.16.045245doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045245
http://creativecommons.org/licenses/by-nc-nd/4.0/


et al. 2017; Deshwar et al. 2015; El-Kebir et al. 2015), none of them except for MACHINA propose
an ancestral node labeling and subsequent classification of metastatic topologies. This is because
a metastatic history does not follow uniquely from a tree structure, and metastasis itself is not
necessarily unidirectional (i.e. there exist polyclonal & reseeding events that may introduce cyclic
topologies). Though MACHINA represents a significant advance, we build on it by reporting
summary statistics over all optimal solutions rather than one, and additionally circumvent the
computationally-intensive Integer Linear Programming (ILP) optimization routine in favor for a
dynamic programming approach.

Below, we describe our algorithmic strategy (and prove it) for inferring both summary statis-
tics. We begin by describing how the overall number of transitions can be derived from the
Fitch-Hartigan algorithm (Fitch 1971; Hartigan 1973). Next, we introduce FitchCount, an algo-
rithm for counting the number of transitions between any two tissues in a given phylogeny over all
optimal solutions to the Fitch-Hartigan algorithm.

2 Algorithmic strategy

The first summary statistic that we are interested ind is the minimal possible number of state
transitions in the tree that is sufficient to explain the state assignment to the leaves (which is given
as an input). In other words, out of all possible assignment of tissue labels to the ancestral cells
(which can be exponentially many), consider the assignments that entail the minimum number of
cases in which a parent node and a child node come from a different tissue (i.e., state transition).
Our first goal is to retrieve the number of state transitions in these optimal assignments, but
not the assignments themselves (note that the number of transition is the same [i.e., minimum
possible] in all optimal assignments). In our second goal, we are interested in the number of
specific transitions across all optimal assignments, which means that we would have to also look
at the optimal assignments themselves.

While our first goal can be readily addressed by the classical algorithm of Fitch (Fitch 1971)
and Hartigan (Hartigan 1973) or using another algorithm by Sankoff (Sankoff 1975), the second
goal requires an additional procedure. The reason for this is that the existing algorithms are able
to retrieve only one specific optimal assignment in each run through the tree. However, we would
ideally like to base our summary statistics on the space of all possible optimal assignments. Since
there can be exponentially many optimal assignments, we needed to find an efficient way to extract
the summary statistic without actually enumerating all algorithms.

Notably, the Fitch (Fitch 1971) algorithm was originally designed for binary trees. An im-
portant property of this algorithm is that the optimal assignments that it produces guarantee
optimality even if we consider every sub-tree in isolation. This is different from a scenario where
we allow state assignments that may not be optimal when we are considering only a certain sub-tree
but become optimal due to compensation elsewhere in the tree. The Hartigan algorithm extends
it to non-binary trees and can also be modified such that its optimal assignments remain optimal
in every sub-tree. We refer to this modification as the Fitch-Hartigan algorithm. This algorithm
operates in a time linear in the input size (i.e., it scales proportionally to n · k where n is the
number of cells and k is the number of possible states [tissues, in our case]). The Sankoff algorithm
(Sankoff 1975) uses a more involved formulation with a slower run time (it scales proportionally
to n · k2) that can account for different penalties to different state transitions. It also returns all
possible optimal solutions, including solutions that may not be optimal for every sub-tree, if it is
considered in isolation. Here, we employ the Fitch-Hartigan approach due to its simplicity and
speed and since we reasoned that it is desirable that our solutions remain optimal, not just for the
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entire clone, but also for every sub-clone individually.

3 Finding the minimal number of transitions

The Fitch-Hartigan algorithm begins with a "bottom-up" procedure in which labels at the leaves
are propagated up to internal nodes in the tree. This "bottom-up" phase assigns a set of labels
(tissues) opt[v] to each node v in the tree that satisfy the optimality demands (namely, maximum
parsimony). Specifically, for every s 2 opt[v] there exists at least one state assignment to the nodes
in T v (the tree rooted by v) where the state of v is s and that is optimal for T v and for every
sub-tree of T v. Furthermore, the set opt[v] includes all such states. For completeness, we provide
a proof for these claims in the appendix (Claim 3).

In addition to generating the sets opt the algorithm can also count for every node v the
minimum possible number of state transitions n(v) required in the sub-tree rooted by v (Observe
that n(r) for the tree rooted at r corresponds to the number of transitions across the entire tree).
The "bottom-up" procedure opt is applied in post-order traversal (evoked by applying it on the
root node) with the following pseudocode:

1: function opt(node = v)
2: if is_leaf(v) then
3: return {state(v)} . for leaves return their assignment, which was provided as input

4: 8s 2 ⌃, c(s) = #{u 2 child(v) s.t. s 2 opt(u)}

5: k = maxs2⌃c(s)

6: n(v) =| child(v) | �k + sumu2child(v)n(u)

7: return {s 2 ⌃ s.t. c(s) = k}

Note that in the original formulation by Hartigan, an additional complication is added to
increase the number of optimal assignments that can be retrieved by the algorithm. This is done
by accumulation of an additional set of states opt2(v) for every node v that can be used to derive
solutions that are globally optimal, but are not optimal in the sub-tree rooted by v. We therefore
excluded this part of the algorithm (see appendix for proof [Claim 3]).

4 Inferring the frequency of different state transition events

The second part of the Fitch-Hartigan algorithm is a top-down procedure for finding one (out of
potentially many) optimal solution, i.e., a labeling state : V ! ⌃ of each node v 2 V in the tree
with a state s 2 ⌃. It starts by randomly selecting a state for the root node r out of the set
opt(r) and then continues to select legal (see Definition 1) states for child nodes, based on the
value assigned to their parent.

1: function state-assignment(node = v)
2: if is_root(v) then
3: state(v) = random selection out of opt(v)
4: else
5: if state(parent(v)) 2 opt(v) then state(v) = state(parent(v))

6: elsestate(v) = random selection out of opt(v)

3
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The above procedure can face many ties during its execution, and can thus potentially return
all optimal solutions (provided that they remain optimal for every sub-tree) if it is applied many
times. When we compare Fitch-Hartigan to FitchCount in the main text, we use one top-down
round (i.e., consider one optimal solution) for the former.

The FitchCount procedure was designed to provide a comprehensive evaluation of state tran-
sition frequencies, by basing its estimation on the space of all possible optimal state assignments,
instead of only a single or few optimal assignments. Compared to the naive approach to enumerate
all possible optimal state assignments given by the Fitch-Hartigan algorithm (which may require
exponential number of executions), FitchCount performs in O(n · k3) time for a tree with n leaf
nodes and k possible states (assuming each internal node has at least two child nodes, which is the
case in our work).

4.1 The algorithm

We define several arrays for storing necessary information:

1. opt[v]: The set of optimal assignments for a node v given by the Fitch-Hartigan bottom up
approach procedure (defined in the algorithm opt).

2. N [v, s]: The number of optimal solutions below the node v given that it takes on the state s.

3. C[v, s, si, sj ]: The number of transitions from state si to state sj in all optimal solutions of
the tree rooted at v, given that v takes on the state s.

4. M [i, j]: The number of transitions between si and sj observed across all optimal solutions
to the Fitch-Hartigan algorithm.

Our overall objective is to fill in the dynamic programming matrix M , which will subsequently
require knowledge of the other dynamic programming arrays. Note that in the following we refer
to the arrays using either rounded parenthesis or rectangular parenthesis. The former denotes a
function call and the latter denotes a retrieval of an already-computed entry (which we assume
to get populated automatically after the respective function call and available globally to the
algorithms). Our Main function is:

1: function main(tree = T , states = ⌃).
2: r = root of T
3: Call opt(r) . Note that opt(r) fills out the array opt in post-order from the root
4: for all s 2 opt[r] do
5: Call N(r, s)

6: for all s 2 opt[r] do
7: for all {si, sj} 2 ⌃2 do
8: Call C(r, s, si, sj)

9: for all {si, sj} 2 S2 do
10: M [si, sj ] = sum(C[r, :, si, sj ])

11: return M

The following algorithms for filling in specific entries to N [v, s], and C[v, s, si, sj ]:

4
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1: function N(node = v, state = s)
2: if is_leaf(v) then
3: return 1
4: A = [] . an array storing the number of solutions in each subtree below v given its state s

5: for all u 2 child(v) do
6: LS = ; . The set of legal states for node u given state(v) = s

7: if s 2 opt[u] then
8: LS = {s}

9: else
10: LS = opt[u]

A[u] =
P

s02LS N(u, s0)

11: return
Q

u2child(v) A[u]

12: function C(node = v, state = s, from = si, to = sj)
13: if is_leaf(v) then
14: return 0
15: K = [] . A temporary array to store the number of transitions observed for each child
16: for all u 2 child(v) do
17: LS[u] = ; . The set of legal states for node u given state(v) = s

18: if s 2 opt[u] then
19: LS[u] = {s}

20: else
21: LS[u] = opt[u]

22: K[u] =
P

s02LS[u] C(u, s0, si, sj)

23: if (si == s) ^ (sj 2 LS[u]) then
24: K[u]+ = N [u, sj ]

25: return
P

u2child(v)

 
K[u]

Q
u02child(v)\{u}

⇣P
s02LS[u0] N [u0, s0]

⌘!

4.2 Proof

We prove correctness of the dynamic programming matrices N, and C.

Claim 1. For any node v and state s 2 opt[v], N [v, s], is precisely the number of optimal solutions
in T (v) where state(v) = s.

Proof. To prove the correctness of the dynamic programming array N , we’ll proceed by induction
over the height of the tree height(T ) = h. For convenience, we’ll also make use of a temporary
dynamic programming array A which stores the number of solutions for each child c 2 child(v),
aggregated across each possible state of that child given the parent’s state s.

Base Case #1, h = 0. N [l, state(l)] = 1. This relation is trivially true for the case where h = 0

and there exists a single leaf l1 in which case the only solution consists of state(l) = s.

Base Case #2, h = 1. Consider a tree T (v) rooted at node v, where child(v) = {l1, ..., lm}. We
know that each leaf li has a single assignment state(li) from the definition of the small-parsimony

5
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problem. Thus, the number of possible solutions for this tree with state(v) = s is always one,
namely with each leaf taking on their only state. Specifically, in this base case, we observe that
A[u] = 18u 2 {l1, .., lm}. To show this, we consider two cases:

• If s /2 opt(li): A[li] =
P

s02opt[li]
N [li, s0] = N [li, state(li)] = 1 since height(T (li)) = 0.

• If s 2 opt[li]: s == state(li) and A[li] = N [li, s] = 1 since height(T (li)) = 0.

and the relation

N [v, s] =
Y

u2child(v)

A[u] = A[l1] ⇤ ... ⇤A[lm] = 1

thus is correct.

Inductive Hypothesis. For a tree T (v) of height h, and some s 2 opt[v], N [v, s] exactly stores
the number of optimal solutions in the tree rooted at v.

Inductive Step. Consider a tree T (v) of height h + 1 and some state s 2 opt[v]. We will show
that both the array A correctly stores the number of solutions for the child u given state(v) = s

and that the relation N [v, s] =
Q

u2child(v) A[u] is correct.
First, we note that for the tree to be globally optimal, for each u 2 child(v), state(u) must

be s if s 2 opt[u]; else, any state from opt[u] can be assigned to u as each incurs a cost of 1 to the
overall parsimony of the tree (see Claim 3). These choices for “optimal" states are stored in the
array LS[u].

Second, we know from our inductive hypothesis that N [u, s0] is correct for any child u 2

child(v) and any state s0 2 opt[u] as the tree T (u) has a height h. Thus, it is clear that A[u] =
P

s02LS[u] N [u, s0] correctly returns the number of solutions in the subtree rooted at u over all
possible legal states that u can take on.

Finally, we observe that given state(v) = s, each child can be treated independently as we
consider global solutions that in the tree T (v) with state(v) = s. Because of this, the number of
such solutions is the size of the permutation of all optimal sub-trees rooted at each u 2 child(v) -
i.e. the product of all A[u]. To show this, consider v has m children. Let the set of optimal internal
labellings to T (uj) be denoted as ⌧j = {t(j)i }

A[uj ]
i=1 where t(j)i is the ith solution for the tree rooted

at uj given state(v) = s. Then, the possible set of solutions is the Cartesian Product between
⌧1, ⌧2, ..., ⌧m:

⌧1 ⇥ ...⇥ ⌧k =
n
{t(1)1 , t(2)1 }, {t(1)2 , t(2)1 }, ..., {t(1)A[u1]

, t(2)1 }, ..., {t(m�1)
1 , t(m)

2 }, ..., {t(m�1)
A[um�1]

, t(m)
[A[um]}

o

This Cartesian product has a size |⌧1|⇥ |⌧2|...⇥ |⌧m| = A[ui]⇥ ...⇥A[uk] =
Q

u2child(v) A[u].
Thus, this relation holds T (v) where height(T (v)) = h+ 1.

Claim 2. For any node v and state s 2 opt[v] assigned to v and {si, sj} 2 2⌃, the array
C[v, s, si, sj ] correctly stores the number of transitions from si ! sj in T (v).

Proof. We will prove by induction over the height of the tree, h, that for a node v, a state state(v) =
s, and some (si, sj) 2 2⌃ both K[u]8u 2 child(v) and

C[v, s, si, sj ] =
X

u2child(v)

 
K[u]

Y

u02child(v)\{u}

⇣ X

s02LS[u0]

N [u0, s0]
⌘!
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are correct. Here K[u] is the number of transitions from si to sj that exist by considering
child u of node v given state(v) = s and LS[u] is a function that finds the set of legal (Definition
1) assignments to u given the parent’s state is s.

Base Case #1, h = 0. The relation trivially holds for a tree of height 0 as there cannot exist
any transitions for a tree without edges. As calculated, C[v, s, si, sj ] = 0 for all leaves and thus
the relation holds.

Base Case #2, h = 1. Consider a tree of height 1, T (v), where child(v) = {l1, ..., lm} and that
N [li, state(li)] = 1. We can count the number of transitions by considering for every edge the
following:

• s 6= si then C[v, s, si, sj ] is necessarily 0.

• s == si, then C[v, s, si, sj ] is the number of leaves that have state sj .

By construction, for some child li, C[v, s, si, sj ] must be

K[li] = 1[s == si ^ sj 2 LS[u]] == 1[s == si ^ sj == state(li)]

Then, C[v, s, si, sj ] =
P

l2child(v) K[li]. We’ll prove that this is equal to the relation described
above:

C[v, s, si, sj ] =
X

l2child(v)

 
K[l]

Y

l02child(v)\{l}

⇣ X

s02LS[u0]

N [u0, s0]
⌘!

=
X

l2child(v)

⇣
K[l]

Y

l02child(v)\{l}

1
⌘

=
X

l2child(v)

K[l]

Thus, our relation holds for h = 1.

Inductive Hypothesis. Assume for a tree T (v) of height h where state(v) = s, C[v, s, si, sj ] cor-
rectly computes the number of transitions from si, sj 2 2⌃ for the tree.

Induction Step. Now consider a tree of height h + 1 rooted at v where state(v) = s. We’ll show
that both K[u] is correct for all u 2 child(v) and that the relation for calculating C[v, s, si, sj ]

holds.
We’ll first show that K[u] is correct 8u 2 child(v). As defined above, K[u] is the number

of si ! sj transitions that are due to the node u given state(v) = s. We know that given our
inductive hypothesis, for the subtree rooted at u, T (u), C[u, s0, si, sj ] for any state s0 2 opt[u] is
correct. Then, the number of si ! sj transitions under u, given state(v) = s, is equal to the sum
of all C[u, s0, si, sj ] for those s0 2 LS[u] as those are the only solutions that would be considered
by the Fitch-Hartigan algorithm (note that we are guaranteed to have optimal state assignments
to chose from for LS[u] as we prove in Claim 3), plus the transition (if it exists) from v to u.

Now, we’ll show that the relation for C[v, s, si, sj ] holds. For the tree T (v) let’s assume that
v has m children: child(v) = {ui}

m
i=1. As above, we’ll maintain the notation that the set of

legal assignments given that state(v) = s for ui to be LS[ui]. Furthermore, let the set of si ! sj

transitions underneath uj be ⇢j = {r(j)i }
K[uj ]
i=1 and the set of trees that are legal, optimal assignments
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under uj be ⌧j = {t(j)i }
⇤(uj)
i=1 where ⇤(uj) =

P
s02LS[uj ]

N [uj , s0], assuming state(v) = s. We can
see then that the total number of transitions from si ! sj is

n
{r(1)1 , t(2)1 }, {r(1)2 , t(2)1 }, ..., {r(1)K[u1]

, t(2)1 },

{r(1)1 , t(2)2 }, ..., {r(1)K[u1]
, t(2)⇤(u2)

}, ..., {r(1)K[u1]
, t(m)

⇤(um)},

{r(2)1 , t(1)1 }, ..., {r(2)K[u2]
, t(m)

⇤(um)},

{r(m)
1 , t(1)1 }, ..., {r(1)A[um], t

(2)
1 }, {r(m)

A[um], t
(m�1)
⇤(um�1)

}

o

Which is equal to the sum of the following Cartesian Products:

⇢1 ⇥ {(⌧2, ..., ⌧m)}+ ⇢2 ⇥ {(⌧1, ⌧3, ..., ⌧m)}+ ...+ ⇢m ⇥ {(⌧1, ..., ⌧m�1)}

where the cardinality of this set is

K[u1]
Y

i22..m

⇤(ui) +K[u2]
Y

i21,3,..m

⇤(ui) + ...+K[um]
Y

i21,...,m�1

⇤(ui)

which can be further simplified to

X

u2child(v)

K[u]
Y

u02child(v)\{u}

X

s02LS[u0]

N(u0, s0)

Thus the relation is correct and C[v, s, si, sj ] is correct by induction.

5 Appendix

Definition 1. (Legal Assignment). An assignment state(v) = s is legal for a node v and given
state(parent(v)) = s0 if either s == s0 or s0 /2 opt(v). Observe that only legal assignments are
explored in the Fitch-Hartigan algorithm, and are guaranteed to be optimal in the sub-tree rooted
at v.

Claim 3. Consider any node v and let T (v) denote the sub-tree rooted at v. The bottom up
procedure above returns a set opt(v) such that for every s 2 opt(v): (1) there exists a solution
(state assignment) that is optimal for T (v) and every sub-tree of T (v), in which the state of v is
s; and (2) there does not exist a solution that is optimal for T (v) and for every sub-tree of T (v),
in which the state of v is some s0 /2 opt(v)

Proof. Proof by induction on tree height h (max length from root to any leaf).

Base Case #1, h = 0. In this case the tree consists of a single leaf node, for which state assignment
is already fixed and the claim follows trivially.

Base Case #2, h = 1. In this case, we have one internal node v with n leaves as its immedi-
ate descendants. Here, we define opt(v) as the set of all states that are found in k out of n

descendants, where k is maximal. Clearly, the value of the optimal solution in this case has n� k

state transitions, which can be obtained by assignment of any state in opt(v) to v. Furthermore,
the solution is trivially optimal for every sub-tree (i.e., singleton), thus proving the first part of the
claim. Furthermore, assignment of any s0 /2 opt(v) to v will necessarily entail strictly more than
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n� k state transitions, thus proving the second part of the claim.

Inductive step. Assume an internal node v whose corresponding sub-tree is of height h. Let
C denote the set of its child nodes. From the induction, we assume that the claim holds for every
node u 2 C. opt(v) is defined as the set of all states that are found in k out of the m =| C |

child nodes, where k is maximal. First let us denote by optval(v) the value (number of state
transitions) of the optimal solution for T (v). From the assumption of the induction, it is easy to
see that optval(v) = sumu2Coptval(u)+m� k. This value can be reached following the top-down
procedure of the Fitch- Hartigan algorithm: (i) assign v with some state s 2 opt(v); (ii) assign s

to all child nodes u where s 2 opt(u) (iii) assign each remaining child node u0 with some other
state from opt(u0) (iv) consider some optimal solution for each of the sub-trees that are rooted
by the child nodes. Note that these optimal solutions must exist due to the assumption of our
induction. Clearly, the solution that we built satisfies the first part of our claim. For the second
part of our claim, assume by contradiction that there exists a state assignment in which the state
of v is s0 /2 opt(v) that achieves optimality for T (v) and all of its sub-trees. However, from the
assumption of the induction we must choose an assignment for every child u out of its set opt(u). It
therefore follows that the value of any such solution must be at least sumu2Coptval(u)+m�k+1.
We note that in the original paper by Hartigan, a solution is possible where for one or more child
nodes u we select an assignment that is identical to the state of the parent v but is not from opt(u).
However, while this solution reaches optimality for T (v), it will not be optimal for T (u).
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