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Abstract

Actions are guided by a combination of external cues, internal intentions and stored knowledge. 

Self-initiated voluntary actions, produced without any immediate external cue, may be preceded by 

a slow EEG Readiness Potential (RP) that progressively increases prior to action. The cognitive 

significance of this neural event is controversial. Some accounts link the RP to the fact that timing 

of voluntary actions is generated endogenously, without external constraints, and perhaps even 

randomly. Other accounts take the RP as reflecting the unique role of planning, therefore of 

temporal expectation, in voluntary actions. In many previous experiments, actions are both 

unconstrained by external cues, but also potentially involve preplanning and anticipation. To 

separate these factors, we developed a reinforcement learning paradigm where participants learned, 

through trial and error, the optimal time to act. If the RP reflects freedom from external constraint, 

its amplitude should be greater early in learning, when participants do not yet know the best time to 

act. Conversely, if the RP reflects planning, it should be greater later on, when participants have 

learned, and know in advance, the time of action. We found that RP amplitudes grew with learning, 

suggesting that this neural activity reflects planning and anticipation for the forthcoming action, 

rather than freedom from external constraint.
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Introduction

Human actions are guided by a combination of external cues, internal intentions and stored 

knowledge. Self-initiated voluntary actions – those produced without any immediate external 

prompt – are preceded by a slow EEG Readiness Potential (RP) that ramps up over the second or so 

prior to action (Deecke et al., 1969). The RP is primarily generated by the Supplementary and  pre-

Supplementary Motor Areas (SMA and pre-SMA; Shibasaki & Hallett, 2006), which in turn receive 

strong drive from the subcortical circuitry of the basal ganglia.  Interestingly, the readiness potential 

is reduced or absent prior to externally-triggered actions that are temporally matched to each 

participant’s voluntary actions (Jenkins et al., 2000).  This result suggests that it is a specific neural 

correlate of voluntary action.

Why does the RP occur, and what does it represent? Accounts of the RP tend to focus on 

one of two contrasting facets of self-initiated actions. Some accounts emphasise the random, 

unconstrained, and unpredictable nature of self-initiated actions (Eccles, 1985; Jo, Hinterberger, 

Wittmann, Borghardt, & Schmidt, 2013; Nachev, Rees, Parton, Kennard, & Husain, 2005; 

Schurger, Sitt, & Dehaene, 2012). Others emphasise the unique role of planning and temporal 

expectations in internally-generated actions (Brunia, Boxtel, & Böcker, 2011; Verleger, Haake, 

Baur, & Śmigasiewicz, 2016).  

Randomness and Uncertainty in Action

Schurger and colleagues (Erra, Arbotto, & Schurger, 2019; Schurger, Sitt, & Dehaene, 2012; see 

also Murakami, Shteingart, Loewenstein, & Mainen, 2017) recently proposed that the timing of 

self-initiated actions may effectively be random. In this model, actions are triggered when randomly 

fluctuating neural activity reaches a threshold. When this activity is time-locked to action and 

averaged across trials – the usual way of analysing EEG from RP experiments – this model 

reproduces the classic time course of the RP.  We will refer to this account as the stochastic model. 

The RP usually begins a second or more prior to action (Shibasaki & Hallett, 2006). When 

participants are asked when they decided to move, they typically indicate a time just moments prior 

to action (Libet, 1985), leading to the interesting conclusion that voluntary actions must have 

unconscious causes (Libet et al, 1983).  The stochastic model explains this apparent contradiction. It 

holds that there is no specific neural event corresponds to the start of the RP, and the apparent 

“onset” of of the RP is instead an artefact of averaging across trials.  Any decision to move would in 

fact occur after a stochastic neural signal reaches some predefined threshold for action.
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Could self-initiated actions really be random? Random actions can sometimes be useful 

(Glimcher, 2005; Maye et al., 2007). In animals, the ability to produce actions that cannot be 

predicted by prey or by predators can have an adaptive value (Brembs, 2011; Maye et al., 2007; 

Maynard Smith, 1982). Randomness also plays an important role in optimal models of decision-

making in uncertain environments. In a familiar environment, the optimal policy is to consistently 

choose whatever action has the best pay-off. In an uncertain environment, one must strike a balance 

between exploiting immediately available options and exploring potentially better alternatives 

(March, 1991). A common way to achieve this is through stochastic action selection: usually 

choosing what one believes to be the best option, but sometimes randomly exploring other options 

instead (Gershman, 2018). The Thompson sampling algorithm (Thompson, 1933), where the degree 

of randomness is proportional to the agent’s uncertainty about which action is best, is close to the 

optimal policy in many environments, and approximates human behaviour (Gershman, 2018).

Nachev and colleagues (Nachev et al., 2005, 2008) proposed a slightly different view.  They 

argued that SMA and pre-SMA activity, and hence presumably the RP, reflects conflict or 

uncertainty due to the lack of external constraint on self-initiated actions. In simple self-initiated 

actions, conflict occurs because there are many possible times at which one could act, but no reason 

to favour one over the others – the decision to act is underdetermined. Nachev et al. (2008) 

therefore suggest that medial frontal activity, as measured by RP, may reflect uncertainty about 

when to act, just as the anterior cingulate, located just ventral to SMA, reflects uncertainty about 

which action to perform (Botvinick et al., 2004). This account, like the stochastic account, predicts a 

greater RP when the reasons for action are least clear or most uncertain. 

Zapparoli et al. (2018; see also Seghezzi et al., 2019) report MRI results consistent with this 

idea. They asked participants to perform actions in response to cues, or to freely decide either what 

action to perform, when to act, and whether or not to go ahead with the action (Brass & Haggard, 

2008). They found stronger SMA activation for free actions than cued actions, and found that SMA 

activity was stronger for free decisions about when to act than for free decisions about what action 

to perform, or whether to act.

Planning, Temporal Expectation, and Action

Other explanations link the RP not to randomness, but to determination and imposition of structure 

and pattern on human behaviour.  These views emphasise the unique role of planning and temporal 

expectation in self-initiated actions. The sensory consequences of a voluntary action are thought to 

be automatically and unconsciously predicted by a forward model (Blakemore et al., 2002). Thus, 

self-initiated actions are events that the actor expects to occur (Friston et al., 2010), and which 
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represent a reduction in entropy, or the imposition of an internal model on the external world (Parr 

& Friston, 2019).  This has two implications. First, an agent can begin to prepare an action long 

before they intend to perform it. Second, they can have expectations about when an action and its 

consequences will occur. The RP could reflect either of these processes.

Voluntary movements must be prepared before they are executed (Lara et al., 2018; Wise, 

1985). Direct motor and premotor cortical recording from monkeys and rodents (e.g. Elsayed, Lara, 

Kaufman, Churchland, & Cunningham, 2016; Lara et al., 2018; Murakami et al., 2017) show that 

motor preparation involves passing through a sequence of neural states. Similar preparatory states 

may occur prior to self-initiated actions and prior to speeded, externally-triggered actions, but 

preparation of self-paced actions often takes more time (Lara et al., 2018). The RP reflects the firing 

rates of populations of motor and supplementary motor neurons (Shibasaki & Hallett, 2006). 

Therefore, it provides a one-dimensional readout of the multidimensional pre-movement neural 

activity captured by direct cortical recordings. This implies that the RP may not be a distinctive 

feature of self-initiated actions. Instead, the RP could reflect a general process of motor preparation, 

which can either be performed rapidly in response to an imperative stimulus, or, if necessary, 

initiated endogenously, and extended over a long period of time.

There is also a strong link between motor preparation and temporal expectation. People 

often prepare in advance to ensure they can act at the right time.  The medial frontal cortex, 

including SMA, is also involved in temporal anticipation of future events (Tecce, 1972) and in 

processing the passage of time (Kolling & O’Reilly, 2018). The RP is strikingly similar to the 

Contingent Negative Variation (CNV; Brunia et al., 2011; Tecce, 1972), a slow negative component 

that ramps up prior to the time at which participants expect to receive a behaviourally relevant 

stimulus. CNV is typically recorded in reaction time experiments where a warning cue occurs at a 

fixed interval prior to a “Go” signal. A number of authors have argued that the RP and CNV both 

reflect slow motor preparation (Brunia et al., 2011; Grünewald et al., 1979; Rohrbaugh & Gaillard, 

1983): the RP represents preparation of a self-timed action, while CNV represents preparation of an 

action timed to a predictable external event. This conclusion is supported by source localisation of 

CNV to supplementary motor areas (Hultin et al., 1996). Interestingly, a smaller CNV occurs even 

when participants are not required to respond to the stimulus, suggesting that it also reflects non-

motor temporal processes (Rohrbaugh & Gaillard, 1983). The RP may also occur in the absence of 

immediate action, since it is apparently also found prior to “covert decisions” that do not 

immediately lead to actions (Alexander et al., 2016; Gluth et al., 2013). These findings indicate that 

the RP and CNV may reflect both motor preparation and temporal expectation.
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The contribution of temporal expectation to the RP is supported by classical findings.  Libet 

and colleagues (Libet, 1985; Libet et al., 1983) distinguished between Type I and Type II RPs (see 

also Frith & Haggard, 2018).  When participants preplanned in advance the time at which they 

would move, RPs began early and reached a high amplitude (Type II RPs).  When participants 

instead acted “freely and capriciously” (Libet et al., 1983) without extensive preplanning, RPs 

began just before action, and reached lower amplitudes (Type I RPs).  However, the distinction 

between Type I and Type II RPs was made on the basis of participants’ subjective reports about 

their general strategy for initiating actions.  These reports were apparently made at the end of a 

block of several trials, so cannot be readily linked to individual action events. Other studies (e.g. 

Schurger, 2018) have noted that the RP tends to be greater on trials where participants 

spontaneously waited longer than usual before acting.

Randomness or Planning?

In most studies of the RP, both planning and expectation, and randomness and uncertainty, might all 

play a role in action. Participants may produce actions that are unconstrained by external stimuli, 

and so appear random and unpredictable to an observer. Nonetheless, these actions might well be 

preplanned, and so the movement and its consequences may be expected by the participant 

themselves. In other words, random behaviour might in fact be carefully planned.

As a result, these descriptive studies cannot determine whether the RP reflects a process of 

planning and predetermination, or  randomness and indetermination.  To separate these two possible 

influences, we need an experimental design which explicitly manipulates the degree of 

determination/indeterminacy of action, and investigates how this affects the RP.  Here we do this by 

providing a context where participants must learn, through trial and error, the optimal time to act. 

This design encourages gradual acquisition of preparatory planning for action, as participants learn 

when they should act. The task thus encourages a progressive learning-related shift from 

“capricious”, random behaviour to regular, preplanned behaviour (Libet, 1985). Our design would 

initially encourage random exploration of the environment, for example, by acting at various 

different times, and monitoring the outcome. These early actions are unpredictable and 

unconstrained by the environment.  While such exploratory actions might in principle be 

preplanned, preplanning them offers no obvious advantage over simply relying on a random 

generator. Later, after becoming more certain about when they should act, participants should 

consistently wait a fixed time before doing so. These later, post-learning actions would be strongly 

constrained by the environment, or at least by the historical environment of previous actions and 

outcomes.  There is an obvious advantage to preplanning them, and an obvious disadvantage to 
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allowing their timing to vary randomly. Therefore, learning the optimal time to act offers an 

experimentally-tractable  way to investigate whether the RP reflects the process of determining an 

action, or rather represents the indeterminacy and randomness of action generation (figure 1).  If the 

RP reflects randomness and absence of constraint, RPs should decrease over time as participants 

progress from random exploration towards planning based on an internal model of the optimal time 

interval. If the RP instead reflects planning, RPs should increase over with learning (if we assume 

that initial exploratory actions are not preplanned but late actions are preplanned) or should at least 

stay constant (if we assume that even initial exploratory actions in fact derive from strategic plans to 

sample across the distribution of action times).

Figure 1. Predictions. Ovals show latent variables, rectangles observed variables, and arrows causal 

effects. Question marks indicate hypothesised relationships. As participants gain experience over 

the course of each block, their certainty in the correct time to act increases, trial-to-trial changes in 

their waiting times (|δWT|δWT|WT|δWT|) decrease, planning, certainty and temporal expectation increase, and the 

role of randomness or stochasticity and uncertainty in action timing decreases. A. If planning drives 

the RP, it will have greatest amplitude on trials with small changes in waiting times (negative 

relationship between |δWT|δWT|WT|δWT| and RP magnitude). B. If randomness or uncertainty drive the RP, it 

will be greatest on trials with large changes in waiting times (positive relationship between |δWT|δWT|WT|δWT| 

and RP magnitude).  Since our learning task required reduction of temporal uncertainty, we show 

the effects of learning not as a function of time or trial number, but as our behavioural proxy for 

(un)certainty, namely the trial-to-trial update in action time (|δWT|δWT|WT|δWT|) that indicates progressive 

acquisition of the to-be-learned optimal time of action.
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Method

Participants

We aimed to test 20 participants, based on the sample size used for previous RP studies (e.g. 

Khalighinejad et al., 2018). Twenty-one healthy participants (11 female, mean age ± SD: 24.24 ± 

4.37 years) took part in the experiment. We excluded two participants who moved excessively 

during EEG recording. Thus, 19 participants were included in the analyses (10 female, mean age ± 

SD: 23.53 ± 3.58 years). Participants received £7.50 per hour reimbursement upon completing the 

experiment, plus a bonus for performance on the task. The experiment was approved by the UCL 

ICN ethics committee and each participant’s written informed consent was collected before starting 

the experiment.

Procedure

We developed a temporal reinforcement learning paradigm that allows participants to learn, through 

experience, the best time to act. Our cover story treated participants as bakers, placing a soufflé in 

an oven at the beginning of each trial. Their task was to wait until the soufflé was ready, and then 

press a key to withdraw it from the oven to gain a small cash bonus. If participants withdrew a 

soufflé before it was ready, that trial was aborted and the next began after a short interval. Thus, 

participants learned the optimal baking/waiting time through this action feedback.  Crucially, the 

average baking/waiting time required varied between blocks, and had to be learned from feedback. 

Participants completed 15 blocks in total, taking 3 minutes each, and were instructed to 

score as many points as possible in that time.  Soufflés were ready after an average of 3, 5, 7, 9, or 

11 seconds depending on the block, with a SD of 1 second across trials in each block. There was no 

explicit penalty for leaving the soufflé too long, but doing so reduced the number of trials a 

participant could complete in the time available. 

Before  starting  the  experiment,  participants  were  shown  two  sample  trials  by  the 

experimenter. Following this, participants completed one three-minute round in order to get familiar 

with the task and to check their understanding. The baking time of soufflés in the trial round was 

normally  distributed  with a standard deviation  of 1 and a  mean of  7,  giving the participants  a 

reasonable prior expectation for the real task. 

If participants knew the distribution of baking times for each block, the optimal strategy 

would be to wait for time τ when they are sufficiently certain that the soufflé was ready before 

withdrawing it. Since they had to learn this information, the optimal strategy is to initially explore 

the effects of opening the oven (that is, acting) after different times to estimate τ, and then to use 

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.045344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045344
http://creativecommons.org/licenses/by-nc-nd/4.0/


that estimate to score as many points as possible. This can be achieved through Bayesian learning 

strategies such as Thompson sampling. An agent using such a strategy begins each block with low 

posterior precision in their estimate of τ. They will thus be highly stochastic in their actions, but 

learn quickly from new evidence. As they learn, their estimate becomes more precise, their actions 

less stochastic, and their response to new evidence reduced.

EEG Acquisition

The experiment was conducted in an electrically shielded room. We used a BioSemi ActiveTwo 

system (BioSemi, 2011) to record 32-channel EEG. Electrodes were placed in locations FP1, FP2, 

F7, F3, Fz, F4, F8, FC5, FC1, FCz, FC2, FC6, T7, C3, C1, Cz, C2, C4, T8, CP5, CP1, CPz, CP2, 

CP6, P7, P3, Pz, P4, P8, O1, Oz, and O2. This montage includes a higher than usual density of 

electrodes clustered around Cz to capture motor activity. Electro-oculogram (EOG) was recorded 

with electrodes above and below the right eye and on the outer canthi of both eyes to control for eye 

movement artefacts. EEG was sampled at 500 Hz. 

EEG Preprocessing

EEG data preprocessing was performed with Python using the MNE software package (Gramfort et 

al., 2013). Data were bandpass filtered between 0.1 and 250 Hz, and downsampled to 250 Hz for 

analysis. As electrodes were more densely clustered around Cz, a pure average reference would 

disproportionately subtract activity from this area. Ideally, an average reference signal should give 

equal weights to signals from all areas of the scalp. Therefore, we used the average of all electrodes 

excluding FCz, C1, C2, CPz, T7, and T8 as a more representative reference signal. Data with large 

motor artefacts were removed by visual inspection. Independent component analysis (ICA) was 

then used to identify eye movement and blink artefacts from the EEG data. Eye-movement related 

ICA components were identified by visual inspection and by correlating their activity with that of 

the EOG channels. 

RP epochs were extracted from 3 seconds before to 0.5 seconds after action. Epoch 

recordings were baseline-corrected to the average of the window -3 to -2.9 seconds prior to action. 

Epochs with amplitude values exceeding 60 μV from baseline were excluded from the analysis. To V from baseline were excluded from the analysis. To 

reduce noise for single-trial analyses, we averaged the signal from the five electrodes around 

location FCz: Fz, FC1, FCz, FC2, and Cz. To quantify the RP amplitude on a single trial, we 

compared the average voltage on these electrodes in the final 50 ms prior to action, to a baseline 

defined as the average signal between 3.1 and 3 s prior to action (Figure 3B). 
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Figure 2. Temporal reinforcement-learning task and behavioural results. A. Outline of behavioural  

task. A soufflé was placed in the oven at the start of each trial, and participants had to wait an 

unknown time before pressing a button to withdraw it. Points were awarded only on trials where 

action was not premature. B. The time participants needed to wait before acting differed across  

conditions (differed coloured ovens), and had to be learned through experience. C. Waiting times 

across the experiment for a single participant. Horizontal bars show mean ±2SD times at which 

soufflés were ready in each block. Green (red) dots show trials where participants did (not) wait 

long enough. D. Participants waited considerably longer after trials where they acted too soon 

(failures) and acted slightly sooner after a previous trial where they waited long enough to retrieve 

the soufflé (successes). E. Trial-to-trial changes in waiting times decreased over the course of each 

block. Thus, people learned a better time for action.
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Results

Behavioural results

Participants’ behaviour is consistent with a simple iterative reinforcement learning strategy (Figure 

2B-C). If their action was too early (i.e., feedback showed soufflé not yet ready) on trial t-1, 

participants waited 1.9 s (SD = 0.7 s) longer on trial t, t(19) = t(19) = 12.63, p < .001. If their action 

was later than required (i.e., feedback confirmed that soufflé was already baked on trial t-1), 

participants acted 0.4 s (SD = 0.4 s) sooner on trial t, t(19) = 4.28, p < .001. 

The amount participants adjusted their wait times in response to feedback decreased 

progressively in each block (Figure 2C), indicating strong learning initially, and weaker learning 

later on. By reducing their learning rates in this way, participants can home in on the optimal 

waiting time in a way that approximates Bayesian learning. In other words, participants should, and 

do, substantially update how long they wait before acting in response to feedback early in learning, 

when they are uncertain of the correct time.  Conversely, later in learning they should update their 

wait times only slightly, because they have acquired greater certainty about the optimal time to 

wait. We used absolute, unsigned changes in participants’ wait time from one trial to the next, |

δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or 

stochastic their actions were. This lets us characterize individual responses as being more 

exploratory (strongly different from time of previous action, therefore high |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT|) or more 

exploitative (repeating time of action from previous trial, therefore low |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT|).

We use |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT| rather than trial number, or progress through a block, as our proxy for 

certainty in later analyses (see also figure 1). We do so for several reasons. First, the number of 

trials a participant completes per block depends on how long they wait on each trial. Trial counts 

therefore vary considerably between participants and between blocks, and trial number cannot 

readily be compared across blocks. Second, the time and number of trials needed to converge on a 

consistent waiting time varies between participants and blocks, so that a participant might be very 

certain about when to act after one minute, or after 10 trials, on one block, but be unsure at the same 

point in time, or after the same number of trials, in another block. Since |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT| is a consequence of 

participants’ level of certainty, which is the focus of the learning task, it avoids these ambiguities. 

Further, on some trials participants updated their waiting times in the wrong direction, acting later 

after success or sooner after premature responses.  We assume that the absolute magnitude of the 

update indicates that they were uncertain.  In contrast, the sign of the update may simply indicate 

whether they responded appropriately to their own uncertainty.  We therefore used the absolute 
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magnitude of the update in waiting time in either direction as our measure of certainty.  A small 

update in either direction is taken to reflect high certainty about when to act, and a large update is 

taken to reflect high uncertainty.

EEG Analysis

Analyses were conducted using the lme4 package for R (Bates et al., 2015). To test the effect of 

uncertainty while controlling for possible confounds, we fit a linear mixed model with single-trial 

RP voltage as the dependent variable, |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT| as our predictor of interest, and signed δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT, WT, and 

block number as covariates. All predictors were centred on their mean value within participants. 

Random  intercept  terms  were  included  for  each  participant.  More  complex  random  effects 

structures  yielded  singular  variance-covariance  matrices,  and  so  could  not  be  interpreted.  For 

visualisation purposes (Figure 3C), we coded trials as being either above the median value of |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT| 

for that block (exploratory responses) or below it (exploitative responses). Since |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT| is compared 

to the median value within each particular  block,  half  of the trials  in each block are coded as 

exploratory,  half  as  exploitative.  This  eliminates  any  confounds  due  to  systematic  differences 

between blocks.

EEG Results

A clear RP occurred prior to participants’ responses in this task (Figure 3A-B). Average RP ERPs 

for explore and exploit responses are plotted in Figure 3C. The RP appears to have a greater 

amplitude explore actions (high |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT|) than exploit actions (low |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT|) throughout most of its time 

course. This was confirmed by the linear mixed model analysis on RP amplitudes in the final phase 

before action. Thus, there was a significant effect of |δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT| on RP amplitudes, b = 0.28 CI = [0.04, 

0.53], t(3308.1) = -2.240, p = .030, meaning that greater trial-to-trial updates in waiting times were 

associated with lower (less negative) RPs. This is consistent with the averaged ERP results. There 

was no effect of  signed δWT|, as a measure of their uncertainty about the optimal time to act, and so of how exploratory or WT (increasing or decreasing wait times), B = 0.03 CI = [-0.16, 0.22], 

t(3307.9) = 0.280, p = 0.780, of actual wait time (longer or shorter wait times), B = -0.03 CI = [-

0.15, 0.09], t(3307.4) = -0.540, p = .590, or of block number, B = -0.01 CI = [-0.09, 0.06], t(3309.8) 

= -0.380, p = .700.
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Figure 3. EEG Results.  A. A clear Readiness Potential (RP) occurred prior to action. B. RP Event-

Related-Potential (ERP) averaged across centro-frontal electrodes  ( Fz, FC1, FCz, FC2, and Cz).  

The average voltage in the last 50 ms prior to action (grey) was used as an estimate of single-trial  

RP voltages. C. RP ERPs for actions where absolute changes in wait times (|δWT|δWT|WT|δWT|) were larger  

(orange) or smaller (blue) than the median for that block.  D. Estimate (±SE) of single-trial RP 

voltages as a function of |δWT|δWT|WT|δWT| , after adjusting for other terms in the model.
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Discussion

Does the Readiness Potential reflect randomness and uncertainty, or planning and expectation? We 

found that RP amplitude increases as participants learn through experience how long to wait before 

acting, so that their certainty about action time increases, and their actions become less random, 

more preplanned and more predictable. This is consistent with the proposal that the RP reflects 

anticipatory planning and preparation to make an action at a specific time in the future. It appears 

inconsistent, however, with the proposal that the RP reflects uncertainty (Nachev et al., 2008), or 

arises as the result of a purely stochastic triggering process (Schurger et al., 2012).

Accumulator Models of Action

Schurger et al. (2012) proposed that spontaneous self-initiated actions could be triggered by a 

neural circuit that accumulates random noise until it reaches a threshold. They showed that the RP 

could reflect random fluctuations in accumulated noise, time-locked to the time they crossed 

threshold. How might such a model apply to our paradigm? 

One possibility is that the Schurger et al. (2012) model applies only to pure self-initiated 

actions where timing is unspecified, and not to actions during model-based cognitive tasks such as 

ours, where there is an optimal time to act. However, there was a clear RP prior to action in our task 

(Figure 3A). If this model does not apply here, we must conclude that it is not an explanation of the 

RP in general, but rather an explanation of the RP under specific condition that participants are 

asked to act, but given no guidance at all about when to act.

Second, actions might be generated by several different pathways, only some of which give 

rise to an RP. Thus, the lateral premotor pathway for externally-triggered actions has been 

distinguished from the medial frontal pathway, based on pre-SMA and SMA, for internally-

triggered actions (Passingham, 1993). Similarly, there might be one mechanism for generating 

spontaneous, arbitrary actions, and one for deliberate, preplanned movements.  Our results might 

arise because the latter generates stronger RPs than the former.  This view recalls Libet et al.’s 

(1983) distinction between Type I and Type II RPs.  An analogous distinction was proposed by 

Maoz et al. (2019), who reported a smaller RP prior to responses to value-based decisions (choosing 

to donate to one of two possible charities) than prior to arbitrary actions (pressing one of two 

buttons at random). Those authors suggested that arbitrary actions are triggered by the accumulation 

of noise in SMA (Schurger et al., 2012), leading to an RP, while value-based actions are triggered 

by another mechanism, possibly in ventromedial prefrontal cortex, that does not lead to an RP 

(Wallis, 2007).
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In most contexts, including our task, actions are neither purely random nor purely value-

based, but are hybrid actions driven by some mixture of these processes (Luce, 1959). Any 

particular action might be triggered by just one of these mechanisms (e.g., Obhi & Haggard, 2004), 

or by a combination of the two (see Hughes et al., 2011). In any event, the random mechanism may 

be assumed to play a greater role earlier compared to later in learning, while the converse holds for 

the value-based mechanism.  If the random accumulation mechanism is the generator of the RP, we 

would expect to find an RP of greater amplitude early in learning. Since we found the opposite 

effect, our results are inconsistent with the interpretation of the RP as reflecting a random process 

for triggering actions, at least in the context of the present task.

A third possibility is that the same neural accumulation mechanism is responsible for the 

timing of both random, arbitrary actions and planned, value-based actions, but that the input to the 

accumulator differs. Arbitrary actions could be triggered by random noise in the accumulator, while 

value-based actions are triggered by a specific external input. We have simulated this possibility. 

Briefly, the RP can indeed be reproduced by a model that accumulates random noise in the absence 

of specific inputs.  However, we find that the same model predicts greater RP amplitudes when 

driven by clear evidence that one should act now. We illustrate this idea in Figure 4, and describe 

the simulations used to reach it below. The full simulation parameters and the python code used to 

conduct the simulations can be found in Supplementary Materials.

In our simulations we assume that the input It to the accumulator over time depends on the 

agents’ posterior belief that an action at that time would be rewarded. Since the distribution of 

reward times is Gaussian, the posterior estimate of P(Reward|Act Now), marginalising over 

possible readiness times μ, is a cumulative Gaussian function centred around μ̂, an estimate of the 

average time taken for a soufflé to be ready, with a slope β that increases as the estimate of μ̂ 

becomes more precise: It = Φ(β(t - μ̂), where Φ is the cumulative Gaussian function. Prior to any 

experience, uncertainty about μ̂ is extremely high, so β is close to 0, the input to the accumulator is 

weak and constant over time, and the timing of action is largely determined by random noise in the 

accumulator (Figure 4A). This is equivalent to the model proposed by Schurger et al. (2012), As the 

estimate of μ̂ becomes more precise, the input to the accumulator becomes more temporally 

specific, and actions are triggered directly by this input (Figure 4B-C). As a result, simulated wait 

times cluster more closely around a time shortly after μ̂.
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Figure 4. Simulation results. Simulations from a model where A.) the observer is highly uncertain  

of the correct time to act (constant weak input;, B.) somewhat uncertain (weak gradually  

increasing input;, or C .)is highly certain (strong, temporally precise input. D. Simulated RP 

amplitudes, baseline-corrected 2 s before action. Although the threshold for action is the same,  

differences in activity at the (arbitrarily-chosen) baseline time mean RP amplitudes appears  

greatest when action is triggered by a strong input signal, and weakest when triggered by  

stochastic noise.

What happens to the RP? In these models, actions are triggered once the accumulator 

reaches a fixed threshold. This means that the level of the accumulator at the time of action is the 

same in all cases. However, the state of the accumulator during the baseline window a few seconds 

prior to action can change across simulations, and these changes can account for differences in the 

apparent amplitude of the RP.  Therefore, we will focus on the shape of the simulated RP, and the 

time at which it appears to begin rising to threshold. When actions are driven by noise (Figure 4A), 

the simulated RP obtained by time-locking accumulator traces to the simulated response times 

reproduces the classic shape of the RP (Schurger et al, 2012). Since the shape of the RP here is an 

artefact of biased sampling of random fluctuations, there is no specific moment at which the RP 

begins. Instead, the slope is steepest close to the time of action, and appears progressively shallower 

further back in time. This also means that the accumulator is already moderately activated 2 s prior 

to action. As a result, the amplitude of the RP – the change in activity from -2 s to the time of action 

– is small here.
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As participants become more certain of the optimal time of action (Figure 4B), there is a 

clear input to the accumulator prior to actions, and the simulated RPs have a clearer onset time. 

Later still, when the correct time to act is precisely known (Figure 4C), the input to the model ramps 

up sharply at this time, and the accumulator quickly rises to threshold. From these simulations, we 

can see that the apparent amplitude of the RP depends not on the state of the accumulator at the 

time of action, but on how much the accumulator changes between the baseline and the time of 

action. As a result, the apparent RP amplitude is largest when actions are triggered by a strong input 

signal, and smallest when triggered by stochastic fluctuations in the accumulator. Thus, if the RP 

wholly or partly reflects stochastic fluctuations in an evidence accumulation process, then 

increasing the contribution of the stochastic process does not necessarily produce a larger RP.  

Rather, greater stochasticity leads to a slower, more gradual rise of the RP.

These results highlight a fundamental limitation of EEG and related approaches. These 

recordings allow us to infer changes in neural activity over time, but not absolute firing rates. Thus, 

we can only estimate the amount of activity at the time of action relative to a pre-action baseline, 

and not the actual level of activity at the time of action. We can try to reduce the risk of distorting 

apparent RP amplitudes by using a baseline window long before action and a longer ERP. 

Unfortunately, EEG data contains high-amplitude, low-frequency noise components, and the high-

pass filter used to attenuate this noise would also distort longer ERPs. These issues are avoided by 

direct electrophysiological recordings, although these are only rarely possible in humans. Notably, 

direct recordings in macaques (Lara et al, 2018) show that the same patterns of firing rates occur 

prior to self-initiated and externally-triggered actions, consistent with the idea that there is a 

constant accumulator threshold for action.

Readiness Potentials and Anticipation

An important limitation of these accumulator models is that they do not capture the kind of 

temporal expectation and anticipation that some claim the RP reflects (e.g. Brunia et al., 2011). In 

an accumulator model the state of the accumulator will either ramp up quickly if there is a strong 

external signal, or ramp up slowly if the external signal is weak or absent. In contrast, temporal 

expectation can be captured in predictive processing models of cognition and motor control 

(Blakemore et al., 2002; Wolpert et al., 2003). These models are commonly used to explain the 

consequences of self-initiated actions (Farrer & Frith, 2002; Haggard, 2017), but do not generally 

focus on the precursors of actions, nor on temporal dynamics in the seconds prior to action.  Thus, 

they cannot readily provide a mechanistic explanation of preparation and RP.  A challenge for 

future work will be to reconcile evidence accumulation and predictive processing accounts. To do 
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this, it will be necessary to develop models that capture the temporal dynamics of evidence 

accumulation both during action preparation and during action outcome representation..

Some authors argue that RP and CNV both reflect a single underlying process of temporal 

anticipation and motor preparation (Brunia et al., 2011; Rohrbaugh & Gaillard, 1983). Our results 

are consistent with this theory. However, another interpretation is possible. It might be that the RP 

reflects spontaneity and uncertainty in self-generated actions, while CNV reflects temporal 

anticipation and prediction. Furthermore, it might be that as our participants become more certain 

about the best time to act, an RP component becomes weaker but a CNV component becomes 

stronger.  Measured EEG would reflect the sum of these components, which cannot be separately 

identified.  It is difficult to rule out this possibility.  Although CNV and RP are traditionally studied 

using different experimental paradigms, they are not otherwise readily distinguishable (Brunia et 

al., 2011). Consistent with this, we compared scalp topographies for high certainty and low 

certainty actions in an exploratory analysis, and found no other notable differences beyond the 

greater peak amplitude around FCz for high certainty actions.

Why is motor preparation so slow?

Motor actions, even relatively complex reaching and grasping actions can be initiated within less 

than 200 milliseconds and completed accurately, and motor preparation takes only some of that 

time (Lara et al., 2018). The simple keypress required in RP studies should in principle require even 

less time to prepare. Neural computations are usually metabolically efficient (Hasenstaub et al., 

2010). Why does the nervous system expand so much energy maintaining preparatory activity for 

so long? We have three hypotheses. First, although movement precision is not important in standard 

RP tasks, it is crucial in other contexts. By preparing movements well in advance whenever 

possible, the motor system may give itself time to correct for any inaccuracies before movement 

begins (Churchland & Shenoy, 2007). Second, slow motor preparation may leave time for 

upcoming actions to be modified or vetoed. This can happen if external factors mean that an action 

is no longer appropriate (Schultze-Kraft et al., 2016), or if internal feedback from predictive 

processing indicates that the action will have undesirable consequences. Third, while rapid changes 

in neural activity can occur, it may be that these abrupt changes are themselves metabolically 

costly. Thus, slow motor preparation might strike a balance between avoiding unnecessary 

prolonged periods of elevated firing rates and avoiding overly abrupt changes in firing rates.

Learning When to Act
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We presented participants with a novel temporal decision-making task. While there exists a large 

body of work on how humans and animals decide what action to produce (Bogacz, 2007; Edwards, 

1954; O’Connell, Shadlen, Wong-Lin, & Kelly, 2018), and how they learn about the value of 

alternative actions (Lee, Seo, & Jung, 2012), less research focusses on deciding when to produce an 

action. Even then, work on decisions about when to act has almost exclusively focused on when 

agents cease sampling sensory evidence, and commit to a decision (Cisek, Puskas, & El-Murr, 

2009; Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 2012; Ratcliff, 1978). In 

contrast, our task is a pure timing task, in that one must decide when to perform an action, and there 

is no interaction between the when decision and the amount of evidence available to support the 

decision.  In our task, the decision when to act is based on a model learned from previous 

experience, rather than on current sensory input.  In fact, pure timing decisions of this kind are 

common in natural behaviour, and can be of vital importance. For instance, animals must decide 

how long to rest between other activities such as foraging or hunting, and prey must decide how 

long to avoid an area after seeing a predator there. When two animals meet in confrontation, a 

stand-off often follows.  Each animal must then compute when to attack, or run away etc.  Human 

agents must decide not only when to remove food from the oven, but also when to change job, 

apply for promotion, start a family etc. 

Traditionally, computational accounts of temporal decision-making have fallen into one of 

two categories. Some treat timing decisions as a series of discrete decisions about what to do, for 

instance deciding once per trial whether to continue pumping up a balloon, or not (Lejuez et al., 

2002), Others treat temporal decision-making as simply a prior decision about how long to wait 

before acting (e.g. Misirlisoy & Haggard, 2013). Here, we treat it as a continuous-time decision 

about when to act. Doing so opens up a whole swathe of new questions. For instance, studies of 

continuous-space reinforcement learning – decisions about where to act – have shown that humans 

use a sophisticated and near-optimal approach to generalise across space (Wu, Schulz, 

Speekenbrink, Nelson, & Meder, 2018). Moving through time is not like moving through space, 

since we move through time in only one direction, and at a constant rate. The computations 

underlying temporal decisions remain unclear, although models of neural timing are widespread 

(Paton & Buonomano, 2018).

Finally, an important topic for future research will be to outline just how endogenous and 

exogenous causes of action interact in naturalistic decision-making. One promising approach is to 

consider how participants adjust the amount of external evidence they require before they commit to 

a decision (Bogacz et al., 2010; Cisek et al., 2009; Ratcliff, 1978). This is commonly captured by 
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decision-models that include an endogenous urgency signal (Cisek et al., 2009) or by time-varying 

decision criteria (Bogacz et al., 2010). Urgency can increase as a function of elapsed time on a 

single trial. Self-initiated actions such as those required in our task might be caused by an urgency 

signal in the absence of any external evidence. Mechanisms such as these are likely to play an 

important role in any theory of endogenous and exogenous action.

Conclusion

Participants learned through trial and error when to make a simple action.  As participants grew 

more certain about when to act, and became less variable and stochastic in the timing of their 

actions, the readiness potential prior to their actions became larger in amplitude. This is consistent 

with the proposal that the RP reflects motor planning or temporal expectation. It is harder to 

reconcile with the proposal that the RP is generated by random neural fluctuations in frontal cortical 

areas, or that it reflects uncertainty in the timing of action. Our findings raise new questions about 

the neural antecedents of self-initiated actions, and the mechanisms underlying temporal decision-

making.
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The Readiness Potential reflects expectation, not uncertainty, in the timing of action
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Supplementary Behaviour

Figure S1. Waiting times across the experiment for individual participants (1 of 2). Horizontal bars  
show mean ±2SD times at which soufflés were ready in each block. Green (red) dots show trials  

where participants did (not) wait long enough.
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Figure S2. Waiting times across the experiment for individual participants (2 of 2). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.045344doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045344
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S3.  Supplementary behaviour. A.  Smoothed average wait times over time in each condition.  
Dashed lines show mean ready times for each condition. In this and subsequent plots, data is  
pooled across participants, and shaded region shows standard error. “N(3, 1)” denotes the  

condition where soufflés were ready after 3 seconds on average, with a standard deviation of 1  
second. B. Probability of successfully waiting until the soufflé is ready, over time. C. Absolute  

change in wait times, over time. D. Changes in wait time as a function of the previous outcome.  E. 
Absolute changes in wait time as a function of the previous outcome, over time. F.   Absolute  
changes in wait time as a function of previous outcome, and time in block (early = first 90  

seconds). G. Panel E, split by condition.
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Supplementary Analysis: Regression to the Mean
Participants waited considerably longer after trials where they acted too soon (failures) and acted 
slightly sooner after a previous trial where they waited long enough to retrieve the soufflé 
(successes), suggesting that they followed some form of reinforcement learning strategy. However, 
waiting times were also shorter for failures (M =  7.8 s, SD = 0.6 s) than for success (M= 9.1 s, SD 
= 0.5 s), t(19) = 8.456, p < .001. This raises the possibility that the effect of the previous outcome 
may be explained by regression to the mean: participants might simply slow down after faster-than-
usual actions, and speed up after slower-than-usual actions. 

To ensure that regression to the mean alone does not explain the relationship between 
previous outcomes and wait times, we fit a linear mixed model with δWT (seconds) as the outcome,WT (seconds) as the outcome, 
and both previous outcome (binary) and previous wait time (seconds) as predictors. There was a 
significant effect of previous outcome, indicating that participants learned from previous actions, 
b = -2.14, CI = [-2.25, -2.02], t(4796.7) = 36.4, p < .001, and a significant effect of previous wait 
time, indicating some regression to the mean, b = -0.16, CI = [-0.18, -0.15], t(4793.4) = 20.0,  
p < .001.
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Supplementary EEG

Figure S4. Electrode positions. The four electrodes  
excluded from the average reference are marked in red.

Figure S5. Scalp distributions of the RP in the second prior to action on trials with small absolute 
changes in wait time (top), large changes (middle), and the difference wave (bottom). The negative 
RP component centred around electrode FCz is more pronounced for trials with small changes in 
wait times.

Figure S6. Regression parameter  
estimates for the linear mixed model  
reported in the manuscript. Black error  
bars show SE. Grey bars show 95% 
confidence intervals. Block = 
Experimental block (1 to 15, centred as 
-7 to +7). WT = Wait time in seconds.  
δWT = Signed change in wait time fromWT = Signed change in wait time from 
previous trial. |δWT| = Absolute changeδWT = Signed change in wait time fromWT|δWT| = Absolute change = Absolute change  
in wait time.
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