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Summary 

Efficient methods for multigene transformation are important for developing novel crop varieties.  Methods 

based on random integrations of multiple genes have been successfully used for metabolic engineering in 

plants.  However, efficiency of co-integration and co-expression of the genes could present a bottleneck.  

Recombinase-mediated integration into the engineered target sites is arguably a more efficient method of 

targeted integration that leads to the generation of stable transgenic lines at a high rate.  This method has 

the potential to streamline multigene transformation for metabolic engineering and trait stacking in plants. 

Therefore, empirical testing of transgene(s) stability from the multigene site-specific integration locus is 

needed.  Here, the recombinase technology based on Cre-lox recombination was evaluated for developing 

multigenic lines harboring constitutively-expressed and inducible genes.  Targeted integration of a 5 genes 

cassette in the rice genome generated a precise full-length integration of the cassette at a high rate, and the 

resulting multigenic lines expressed each gene reliably as defined by their promoter activity.  The stable 

constitutive or inducible expression was faithfully transmitted to the progeny, indicating inheritance-

stability of the multigene locus.  Co-localization of two distinctly inducible genes by heat or cold with the 

strongly constitutive genes did not appear to interfere with each other’s expression pattern.  In summary, 

high rate of co-integration and co-expression of the multigene cassette installed by the recombinase 

technology in rice shows that this approach is appropriate for multigene transformation and introduction of 

co-segregating traits.  

Keywords: Multigene transformation, Cre-lox, site-specific recombination, gene stacking, trait 

engineering. 

Significance Statement: Recombinase-mediated site-specific integration approach was found to be highly 

efficacious in multigene transformation of rice showing proper regulation of each gene driven by 

constitutive or inducible promoter.  This approach holds promise for streamlining gene stacking in crops 

and expressing complex multigenic traits. 
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Introduction 

The demand for resilient, productive, and value-added crops mandates breeding with multiple genes. 

Biotechnology innovates crop improvement through rapid introduction of genes; however, independently 

added genes are difficult to stack into cultivars.  The population size needed to isolate a stacked F2 plant 

increases exponentially with the increasing number of unlinked genes, and screening of thousands of F2 

plants becomes necessary for breeding 5 – 6 unlinked genes as compared to a handful of plants for a single 

gene. Therefore, breeding could be turned into a high efficiency process by simply linking the genes and 

stacking them into a locus (Petolino and Kumar, 2016; Que et al., 2010). 

Multigene stacking could be obtained through co-bombardment of plasmids that tend to recombine 

and co-integrate into the plant genome; however, co-expression of the introduced genes, in this method, 

generally occurs at a low rate (Chen et al., 1998; Gelvin, 1998; Schmidt et al., 2008; Zhu et al., 2008). 

Agrobacterium-mediated T-DNA transfer is also an excellent method of multigene transformation as T-

DNA harboring many genes enters into the plant cell and integrates into the genome (Collier et al., 2018; 

Li et al., 2003; Ruiz-Lopez et al., 2015).  However, integration of tandem repeats or truncated copies of T-

DNA, and disruption of critical genomic regions cannot be ruled out.  These features of random 

transformation methods pose major challenges for multigene transformation, rendering a high number of 

the recovered events unsuitable for product development (Anand and Jones, 2018; Halpin, 2005). 

The targeted integration approaches, on the other hand, are ideal for precise integrations into 

selected genomic sites.  A number of targeted methods have been described that can be grouped into (a) 

recombinase-mediated integration into pre-characterized sites, and (b) integrations into double-stranded 

breaks (DSB) induced by site-specific DSB reagents such as CRISPR/Cas9 (Chen and Ow, 2017; Petolino 

and Kumar, 2016; Srivastava and Thomson, 2016; Weeks et al, 2016).  Each method has its own advantages 

and disadvantages.  While recombinase-mediated methods are highly efficient in targeted integrations, e.g., 

with Cre-lox, FLP-FRT and other site-specific recombination systems, they require placement of 
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recombination target sites that can subsequently be targeted for gene stacking (Anand et al., 2019; Li et al., 

2009; Ow, 2003; Srivastava and Gidoni, 2010). The CRISPR/Cas9 method, on the other hand, can target 

virtually any site in the genome, but the non-homologous mode of DSB repair in plant cells overrides the 

integration of exogenous DNA into the DSB site (Puchta and Fauser, 2014; Voytas, 2013).  As a result, the 

current DSB-based approaches require extensive efforts and expanded post-transformation analysis for 

isolating the rare individuals that contain targeted integrations (Svitashev et al., 2015; Yang et al., 2019). 

Therefore, although, recombinase-mediated approach can only be practiced on the ‘prepared’ target lines, 

it provides a promising platform for developing gene stacking technologies for crops. 

Cre-lox site-specific recombination is one of the most attractive systems for recombinase-mediated 

genome engineering.  Its high efficiency has been demonstrated in a number of plant species, most of which 

develop into healthy fertile plants (Gidoni et al., 2008; Srivastava and Thomason, 2016).  The phenotypic 

effects of Cre recombinase in plants are either undetectable or reversible owing to its high specificity and 

undetectable off-target activity (Coppoolse et al., 2003; Ream et al., 2005; Srivastava and Nicholson, 2006). 

Other site-specific recombination systems that show high efficiency in plant cells include FLP-FRT, 

phiC31-att and Bxb1-att systems (Anand et al., 2019; Hou et al, 2014; Li et al., 2009; Nandy et al., 2011; 

Ow, 2011; Thomson and Ow, 2006).  Recombinase-mediated gene stacking has been demonstrated in 

soybean by inserting gene silencing and overexpression constructs through two rounds of transformation 

(Li et al., 2010).  However, more research is needed to test the efficiency of gene stacking by recombinases, 

and verify its efficacy for co-expression of the stacked genes.  Further, since the stacked genes could consist 

of conditionally or developmentally regulated genes, it is important to test the recombinase-mediated gene 

stacking approach with inducible genes.  

This study evaluated Cre-lox mediated site-specific integration of a set of 5 genes consisting of 3 

constitutively-overexpressed and 2 inducible genes in the crop model rice by analyzing transformation 

efficiency and expression stability over three generations.  High transformation efficiency of the multigene 

construct harboring repeat sequences, strong expression of the constitutively-expressed genes, and proper 
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regulation of the inducible genes demonstrates that Cre-lox mediated integration into the engineered target 

sites is a practical approach for gene stacking and trait engineering into the crop genomes. 

Results 

Molecular strategy 

This study used the Cre-lox mediated site-specific integration approach based on the use of mutant lox sites, 

lox75 and lox76, to stabilize the integration locus as described earlier (Albert et al., 1995; Srivastava and 

Ow, 2002).  Specifically, the rice target line, T5, is retransformed by the donor vector pNS64 to obtain the 

multigene site-specific integration locus. T5 target locus consists of a lox76 placed between the maize 

ubiquitin-1 promoter (ZmUbi1) and cre coding sequence (Fig. 1a), and pNS64 contains a loxP and lox75 -

flanked gene construct consisting of a promoter-less selectable marker (NPT II) and 4 genes-of-interest 

(GFP, GUS, DREB1a, pporRFP), each expressed by their dedicated promoters (Fig. 1b).  Upon entry into 

T5 cells, pNS64 undergoes Cre-lox recombination leading to site-specific integration of the gene construct 

(without vector backbone) into the target site (Fig. 1c). The resulting site-specific integration (SSI) is 

selectable due to the placement of NPT II downstream of strong promoter (ZmUbi1), and characterized by 

distinct left and right junctions.  

Characterization of the transgenic lines 

Using gene gun mediated transformation of T5 line (cv. Taipei-309) with pNS64, 32 T0 plants were 

obtained (Table S1).  Four of the T0 plants were removed from the analysis due to their weak stature at the 

young vegetative stage, and remaining 28 were analyzed by PCR.  Twenty-seven of these lines were found 

to contain the SSI junctions indicated by 0.5 kb and 1 kb left and the right junction bands, respectively (Fig. 

S1a). Five of these lines contained biallelic integrations as indicated by target site PCR and genetic 

segregation among T1 progeny (Fig. S1a; Table S1).  Southern blot hybridization of EcoRI-digested 

genomic DNA showed the presence of predictable 3.2 kb left junction and 2.1 kb right junction, upon 
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hybridization with GFP and pporRFP probes, respectively (Fig. S2a-b), and hybridization with GUS and 

AtDREB1a probes, in a subset of 22 lines, showed the predictable 2.5 kb GUS or 2.0 kb AtDREB1a in all 

except 4 lines (Fig. S2c-d). Thus, full-length SSI copy was found in 18 lines, and the remaining 4 contained 

truncation of the middle portion of the cassette (Table S1).  Long PCR (4 kb) at the right junction verified 

this finding and identified another line (#4) with full-length SSI (Fig. S1b; Table S1). The lines lacking 

GUS and AtDREB1a genes in the Southern blot failed this PCR, while the remaining showed the predicted 

4 kb amplicon, indicating a full-length SSI structure (Fig. S1b).  In addition, Southern analysis revealed 

that 13 lines contained only the SSI copy, whereas the remaining contained additional 1 – 3 copies (Fig. 

S2; Table S1).  Two clonal lines showing identical hybridization patterns with 4 genes were also identified 

(Fig. S2; Table S1).  In summary, the presence of multigene SSI locus was validated in 19 of the 30 SSI 

lines (removing two clonal line from the initial total of 32) developed from the bombardment of 30 callus 

plates.  Eleven of these lines were selected, based on plant vigor and seed abundance, for gene expression 

analysis (Table S1).  

Expression of the constitutive genes 

Three constitutively-expressed genes, NPT II, GFP, and GUS, in the order of arrangement in the SSI locus, 

are each controlled by a strong constitutive promoter (Fig. 1). While NPT II serves as the selectable marker, 

GFP and GUS represent the genes-of-interest.  Expression of these genes was determined at transcript and 

protein levels in the T0 lines and their progeny using T5 line as the negative control.  Transcript analysis 

by RT-qPCR, in the T0 plants, showed that most lines abundantly expressed the three genes within 2 to 5-

fold range (Fig. 2a-c).  However, SSI line #12 behaved atypically as it expressed NPT II and GFP 

transcripts within the range but showed markedly lower levels of GUS transcripts (Fig. 2c).  Although, gene 

expression at transcript levels in SSI lines has not been evaluated in previous reports, >10-fold lower GUS 

transcript in line #12 was somewhat surprising.  Transcript abundance analysis in the T1 progeny was 

performed in 10-day old seedlings grown in the germination media.  This analysis showed a greater 

variation in the transcript levels of the three genes (Fig. 2d-f); however, all T1 plants abundantly expressed 
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the three genes. Notably, T1 progeny of line #12 showed a similar pattern as found in the parental line, 

consisting of higher levels or NPT II and GFP transcripts but markedly lower levels of GUS transcripts 

(Fig. 2f).  

Steady state mRNA levels can only partially predict protein abundance as post-transcriptional 

regulation and cell perturbation among other factors influence the correlation of transcript and protein 

abundance (Vogel and Marcotte, 2012).  Therefore, gene expression analysis at the protein level is 

important for interpreting the functional effects.  In this study, NPT II ELISA, GFP fluorescence, and GUS 

activity were measured to understand gene expression from the stacked locus.  The NPT II activity in T0 

plant was expected be strong owing to the selection during tissue culture; therefore, NPT II ELISA was 

done only in T1 progeny.  We found a 4-fold variation in GFP fluorescence and 2.8-fold variation in GUS 

activity among SSI lines (Fig. 3a-b), indicating a good correlation of these protein activities with their 

transcript levels. However, line #12, to our surprise, showed a comparable GUS activity (Fig. 3b), even 

though it was found to express markedly lower levels of the GUS transcripts (Fig. 2c).  The reason behind 

this discrepancy is not clear but it could be an artifact of the GUS assay.  If optimum amount of substrate 

is not used in the reaction, the enzyme rate may not be directly proportional to the enzyme concentration 

(Robinson, 2015).  To further check GUS activity in line #12, histochemical staining of leaf cuttings was 

done according to Jefferson et al. (1987).  A lower staining intensity in line #12 compared to other lines 

such as #10 (Fig. 3c), suggested that #12 contains a lower GUS activity, and the transcript abundance in 

this line is a good indicator of its GUS levels.  Among T1 progeny of the SSI lines, only <3-fold variation 

for NPT II and GFP abundance, and ~5-fold variation for GUS activity was observed (Fig. 3d-f). Finally, 

a subset of 4 SSI lines was selected for T2 progeny analysis.  T2 seedlings of these lines were found to 

abundantly expressed GFP fluorescence and GUS activities at more or less similar levels (Fig. 3g-h), 

indicating that stacked genes at the SSI locus are stably transmitted to the progeny.  The stability of the 

genes was also reflected by the gene dosage effect as the biallelic lines generally expressed GFP and GUS 

at higher levels compared to the monoallelic lines, although, a significant difference was only found for 
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GFP (Fig. 3i).  In summary, stable expression of the three stacked genes regulated by strong promoters at 

the SSI locus was found in all lines tested in this study.  Only one SSI line (#12) showed sub-optimal 

expression of one of the three genes (GUS), while all other showed comparable expression that were 

transmitted to the subsequent generations. 

Expression of inducible genes  

The SSI locus contained two inducible genes, a transcription factor, AtDREB1a, and a fluorescent protein, 

pporRFP, driven by RD29a and HSP17.5E promoters, respectively.  These genes are expected to be ‘off’ 

at room temperature but abundantly induced by specific treatments, i.e., cold-shock for RD29a and heat-

shock for HSP17.5E.  The expression pattern of these genes was studied by RT-qPCR in T0 plants and their 

progeny, at room temperature and upon treatment, using T5 as the negative control.  Expression analysis of 

AtDREB1a in T0, T1, and T2 plants showed abundant transcripts upon cold-shock treatment (Fig. 4a – c). 

Similarly, pporRFP analysis in T0, T1, and T2 plants showed abundant transcripts in heat-shock treated 

samples (Fig. 4d – f).  These experiments verified that the two inducible genes work properly and respond 

to the treatment. Notably, both genes expressed at a basal level at the room temperature, indicating proper 

regulation of the genes in SSI lines, and its faithful transmission to the progeny.  The fold-induction was 

highly variable between lines, but most lines showed strong induction upon treatment.  Finally, specificity 

of the genes was determined by checking their expression upon non-specific perturbation, i.e., induction of 

RD29a:AtDREB1a by heat-shock and HSP17.5E:pporRFP by cold-shock treatment.  As expected, heat-

shock treatment had little effect on AtDREB1a and cold-shock treatment did not induce pporRFP (Fig. S3a-

b), showing that stacking these two genes closely together did not break their promoter-specificity in the 

SSI lines. 

Downstream targets of AtDREB1a transcription factor during cold stress are not clearly known in 

rice (Oh et al., 2005); therefore, it’s downstream effects in SSI lines could not be analyzed.  The functional 

effects of AtDREB1a expression would require phenotypic analysis in stress conditions.  Therefore, protein 
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abundance analysis was performed only on pporRFP.  Confocal imaging of root or leaf samples was done 

on the T1 seedlings of three SSI lines (#9, #10, #12) using GFP as the internal control. pporRFP is a 

complex dsRed type RFP that undergoes homo-dimerization to become functional and emit fluorescence 

(Saccheetti et al., 2002). In a constitutive expression system, dimerization would occur continuously. 

However, in the inducible expression system, it is important to determine the lag time for pporRFP 

maturation.  For this, SSI #9 seedlings were heat-treated and their roots were imaged at 3 different time 

intervals. Optimum fluorescence was observed 72 hours after heat-treatment (Fig. S4).  This is in agreement 

with the published report on temporal decoupling of dsRed RFP mRNA and protein expression. In 

Medicago, dsRed RFP mRNA was found to peak at 2 – 3 days after transformation, while fluorescence 

peak occurred 3 – 5 days later (Jansing and Buyel 2019).  Accordingly, seedlings of SSI lines #9, #10, and 

#12 were subjected to 3 h of heat-shock treatment at 42oC followed by fluorescence imaging 72 h later in 

confocal microscope.  As expected, each SSI line abundantly expressed GFP regardless of the treatment. 

Whereas, pporRFP showed an inducible pattern, characterized by undetectable red fluorescence at room 

temperature (RT) and enhanced fluorescence upon heat-shock (HS) in the root or leaf tissues (Fig. 5).  In 

summary, the two co-localized inducible genes that are regulated by specific stress treatments, expressed 

properly from the stacked SSI locus without apparent interference of the neighboring strong constitutive 

genes or the inducible genes.  

Discussion 

Multigene transformation has overcome the technical barriers of high load gene transfer but the challenges 

related to co-integration and co-expression remain to be fully addressed.  Both Agrobacterium and gene 

gun are competent at multigene transfers; however, complexity of DNA integration into the plant cell leads 

to multiple random outcomes consisting of complex integrations into unique genomic sites (Saika et al., 

2017; Somers and Makarevitch, 2004).  Co-bombardment of gene vectors or multi-genic T-DNA have been 

used for metabolic engineering in plants (Naqvi et al., 2009; Ruiz-Lopez et al., 2015), however, low rate of 

co-expression from multigene assemblies poses a major bottleneck (Ghareeb et al., 2016; Schmidt et al, 
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2008).  Recombinase-mediated site-specific integration overcomes the complexity of DNA integration and 

simplifies the structure, which in turn removes gene silencing triggers and creates a favorable environment 

for stable gene expression (Akbudak et al., 2010; Chawla et al., 2006; Day et al., 2000; Li et al., 2010; 

Nanto et al., 2009).  In this study, we evaluated the recombinase approach for multigene transformation, 

specifically, asking how efficiently a multigene construct integrates into the targeted site and whether the 

integrated genes express faithfully in the plants.  Using an available target line, we developed site-specific 

integration of a 5-gene cassette through Cre-lox recombination in rice.  The molecular strategy of site-

specific integration has been described earlier (Srivastava and Ow, 2002).  Using gene gun mediated particle 

bombardment, 30 transgenic events were obtained from 30 shots, 19 of which contained precise multigene 

integration characterized as full-length integration of the cassette into the target site.  This efficiency of co-

transformation is exceptionally higher than generally found in conventional methods.  As observed in 

previous studies (Albert et al., 1995; Srivastava et al., 2004), the majority of these lines (13 out of 19) 

contained only the SSI copy, and random integrations were low or undetectable.  Most importantly, all 

tested lines expressed each of the 5 genes, affording stable expression at 100% rate for the multigene 

assembly in this study.  The strong constitutive genes showed abundant expression levels and the inducible 

genes functioned according to their promoter specificity.  Notably, the two inducible genes showed no 

apparent interference of the neighboring genes.  Additionally, the multigene cassette was faithfully 

transmitted to the progeny as shown by gene expression analysis in T1 and T2 progeny.  Interestingly, the 

repeated use of nos terminator in the construct did not seem to affect the structure stability.  However, for 

product development, this feature should be avoided as repeat sequence in multigene assemblies could 

induce homology-directed truncations.  In conclusion, recombinase-mediated site-specific integration 

approach proved to be highly efficient in developing site-specific integration lines harboring precise 

integration of the 5-gene cassette, and the efficacy of the approach was further demonstrated by proper 

expression of all genes and their inheritance by the progeny.  The recombinase mediated multigene 

transformation approach can also be practiced with the ‘cassette exchange’ strategy as described earlier (Li 

et al., 2010).  In addition, the strategy can easily be modified to incorporate marker-removal feature by 
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employing another recombinase system (Nandy et al., 2012), that have been found to function in plant cells 

(Chen and Ow, 2017; Cody et al., 2020). 
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Experimental Procedures 

Vector construction and transformation 

The multigene vector, pNS64 (Fig. 1b), was developed through the standard restriction digestion and 

ligation method.  The individual gene cassettes from pUC vectors were ligated one by one into pAA12 

backbone that contains a promoterless neomycin phosphotransferase II (NPT II) gene between loxP and 

lox75 (Akbudak and Srivastava, 2017).  Two gene cassettes, 35S:GFP and 35S:GUS were already available 

that contained CaMV 35S promoter driving GFP or GUS gene.  To build RD29a:AtDREB1a cassette, 

Arabidopsis thaliana dehydration responsive element B1A (AtDREB1A) and Arabidopsis cold inducible 

RD29a promoter sequences were generated by PCR.  For HSP17.5E:pporRFP cassette, the promoter 

fragment of Gmhsp17.5E was obtained by PCR on soybean DNA and pporRFP from pANIC6A that 

contains coral Porites porites  RFP (Alieva et al. 2008; Mann et al., 2012).  Primers used for cloning are 

given in Table S2. All gene constructs contain nopaline synthase transcription termination sequence (nos 

3’).  
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The rice line T5 (Taipei 309) that contains a Cre-lox target site was used in the present study to 

develop site-specific integration lines.  The development of T5 line is described by Srivastava and Ow 

(2002).  The pNS64 vector was delivered by gene gun (PDS 1000, Bio-Rad Inc.) into the embryogenic 

callus derived from T5 mature seeds.  The bombarded callus was selected on 100 mg/l geneticinTM to isolate 

the site-specific integration lines.  The tissue culture media for callus induction and plant regeneration were 

used according to Nishimura et al. (2006). 

 

Molecular analysis 

The polymerase chain reaction (PCR) was performed on genomic DNA using Emerald Amp MAX PCR 

Master Mix (Takara Bio, CA, USA) using the primers given in Table S2.  Southern blot analysis was 

performed on genomic DNA digested with EcoR1 using 32P-labeled DNA probes of GFP, RFP, GUS, and 

AtDREB1A.  Gene expression analysis by reverse transcriptase (RT)-quantitative (q) PCR was performed 

on total RNA isolated using Trizol reagent (Invitrogen, Inc.) according to manufacturer’s protocol, and 

quantified on Nano-drop 2000 (Thermo-Fisher Inc.).  Two microgram of total RNA, treated with RQ1-

RNAse free DNase (Promega Inc.), was used for the cDNA synthesis using PrimeScript RT reagent kit 

(Takara Bio, CA, USA), and used for qPCR using TB green Premix Ex Taq II (Takara Bio, CA, USA) on 

Bio-Rad CFX 96 C1000. The product specificity was verified by the melt curve analysis and the Ct values 

were normalized against 7Ubiquitin.  The relative expression was calculated against T5 negative control 

and the untreated controls using delta-delta Ct method (Livak and Schmittgen, 2001).  Each line contained 

two to three biological replicates with two technical replications of each.  For inducible gene expression 

analysis, excised leaf blades from the greenhouse plants wrapped in aluminum foil or seedlings germinated 

on MS/2 media in petri dishes, were placed on ice pack for 20 h for cold-shock treatment or 42oC incubator 

for 3 h for heat-shock treatment.  The room temperature controls were handled in the same way except they 

were kept at the ambient room temperature.  

 

Protein Analysis 
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NPT II enzyme linked immunosorbent assay (ELISA) were conducted using a commercial kit (Agdia Inc. 

USA) according to the manufacturer’s instructions. Fifty milligrams of fresh leaf from 1-month old plants 

was ground in the protein extraction buffer provided in the kit, and centrifuged to collect the crude protein 

extract.  The NPT II protein provided in the kit and the T5 crude protein extract were used as a positive and 

negative controls, respectively. ELISA plates were read at A650 in the Synergy Biotek Cytation 3.  The 

ratio of the absorbance of samples to T5 negative control was used as the measure of NPT II expression.  

GFP fluorescence was observed in the young tissue under the Leica 56D stereoscope fitted with 

the 440 – 460 nm excitation and 500 – 560 nm (band pass) emission filters (Night Sea, Lexington, MA).  

For the quantitative estimation, fresh tissue was ground in 10 mM Tris–EDTA, pH 8.0, at 4°C and 

centrifuged at 13,000 rpm for 20 min to collect the supernatant.  A strongly expressing rice GFP line, C30-

1, described earlier (Pathak et al., 2019), was used as a reference.  Ten microgram of protein was used for 

GFP fluorescence measurement in Versa-fluorimeter (Bio-Rad Inc) equipped with 490 ± 5 nm excitation 

filter and 510 ± 5 nm emission filter.  All lines were measured against C30-1 positive control and the T5 

negative control.  A unit of GFP was defined as relative fluorescence units per 10 µg of total protein 

(RFU/10 µg).  

Histochemical GUS staining was done by submerging leaf cuttings in the GUS staining solution 

containing 1 mM X-Gluc (Gold Biotechnologies, St. Louis, MO, USA) according to Jefferson et al. (1987).  

For quantitative measurements, 10 µg of total protein extracted in 50 mM phosphate buffer, pH 7, was used 

for GUS assay using 4-methylumbelliferyl b-D-glucuronide (4-MUG) as the substrate, and the kinetics of 

the reaction measured in spectrophotometer by appearance of a colored product 4-methylumbelliferone (4-

MU) according to Jefferson et al., (1987).  A unit of GUS activity was defined as nmol 4-MU produced per 

minute from 1 mg of the protein (nmol/min/mg).  For each of the above assays, 2 – 3 biological replicates 

with the two technical replicates were included, and all protein estimations were done using Bradford 

reagent (VWR Inc.).  

 

Confocal Imaging 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.045435doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045435
http://creativecommons.org/licenses/by/4.0/


14 
 

The pporRFP detection was performed using confocal imaging in the 7 – 10 days old seedlings.  The 

seedlings were heat-shocked as described in the molecular analysis section, and imaging was done at 24, 

48 and 72 hours post heat-shock treatment.  The images were captured using a Leica TCS SP5 (Buffalo 

Grove, IL. USA) confocal microscope by the bandwidth adjustment for the fluorescence detection.  For 

roots imaging, the samples were excited using 514 Argon and 594 HeNe laser channels and emission was 

collected at 542 – 582 mm for GFP, and at 610 – 710 nm for pporRFP.  For leaf imaging, samples were 

excited at 514 Argon laser channel, and emission was collected at 590 – 610 nm for blocking the chlorophyll 

auto-fluorescence.  The leaf images were captured through sequential scan to prevent the bleed-through 

between chlorophyll auto-fluorescence and fluorescent protein(s).  A GFP positive line, C30-1, described 

earlier (Pathak et al., 2019), and the parental T5 seedlings were used as controls.  For all samples, first the 

gain, zoom and offset were adjusted for T5 negative control, and then all images were captured using the 

same parameters at 20x magnification. 
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Figure Legends: 

Figure 1: Molecular approach for site-specific integration (SSI) of a multigene stacking. (a) T5 locus in 
rice cv. Taipei-309 consisting of a single-copy of T-DNA encoding Cre activity and the target lox76 site 
(black triangle). (b) Donor vector, pNS64, in pBluescript SK backbone (not shown) containing 
promoterless NPT II gene and four expression units (GFP, GUS, AtDREB1A, and pporRFP) between loxP 
and lox75 (black triangles).  The loxP x lox75 recombination circularize the gene construct, which 
subsequently integrates into T5 locus to generate the site-specific integration (SSI) structure.  The NPT II 
gene captures the maize ubiquitin-1 promoter (ZmUbi1) at T5 locus to make the event selectable on 
geneticinTM, and SSI locus expresses four genes, two constitutive (GFP and GUS) and two inducible 
(AtDREB1A and pporRFP) genes.  (c) Structure of the predicted site-specific integration (SSI) locus that 
expresses a stack of four genes (NPT II, GFP, GUS, AtDREB1A, and pporRFP).  The primers sites and the 
expected PCR products are indicated below the structure, while EcoRI sites (E) and the fragment sizes are 
shown above the structure.  35S: Cauliflower Mosaic Virus 35S promoter, NPT II: neomycin 
phosphotransferase II, GFP: green fluorescent protein, GUS: β-Glucuronidase, AtRD29a: Arabidopsis 
thaliana RD29a promoter, AtDREB1A: Arabidopsis thaliana dehydration responsive element 1A, 
HSP17.5E: soybean heat-shock 17.5E gene promoter, and pporRFP: sea coral Porites porites red 
fluorescent protein. Each gene carries a nopaline synthase (nos 3’) transcription terminator (not shown).  

Figure 2: Transcript abundance analysis of constitutively expressed genes by real time quantitative PCR 
(RT-qPCR). Relative expression of NPT II, GFP, and GUS genes in the T0 plants (a – c) and the T1 progeny 
seedlings (d – e) of site-specific integration (SSI) lines in comparison to the T5 negative control.  The SSI 
line numbers are given on x-axis. The values are the average of 2 biological replicates and 2 technical 
replicates of each. Standard errors are indicated as the error bars. 

Figure 3: Protein abundance analysis of constitutively-expressed genes in the site specific integration (SSI) 
lines.  (a – b) Quantitative GFP fluorescence and GUS activity in T0 plants. (c) comparative histochemical 
GUS staining of leaf cuttings from SSI lines #10 and #12. (d – f) GFP fluorescence, GUS activity, and NPT 
II ELISA in T1 progeny seedlings. (g – h) quantitative GFP fluorescence and GUS activity in T2 progeny 
seedlings. (i) average GFP and GUS activities in monoallelic and biallelic T0 SSI lines (described in Table 
S1). The SSI line numbers are given on x-axis. Statistical differences, shown by the alphabets, were 
determined by student t-test at p=0.05. Standard errors are indicated as the error bars. 

Figure 4: Expression analysis of the inducible genes by real time quantitative PCR (RT-qPCR) in the site-
specific integration (SSI) lines relative to T5 negative control.  (a – c) AtDREB1a expression analysis at 
room temperature (white bars) or upon cold-induction (20 hours in ice pack, magenta bars) in T0, T1, and 
T2 plants.  (d – f) pporRFP expression at room temperature (white bars) or upon heat-induction (42ºC for 
3 hours; red bars) in T0, T1, and T2 plants. The SSI line numbers are given on x-axis. The values are the 
average of 2 biological replicates with standard error indicated as the error bars. 

Figure 5: Confocal imaging of GFP (top) and pporRFP (bottom) in the roots and leaves of the 10 days old 
T1 seedlings of site-specific integration lines #9, #10, and #12. All images were taken 72 hours post heat-
shock treatment at 20x magnification. T5: Target line (negative control); RT: Room Temperature; HS: 
Heat-shock. Scale bar in leaves: 100 µm and in roots: 50 µm. 

Supplementary Figure 1: PCR verification of 28 T0 site-specific integration (SSI) lines. (a) presence of 
left SSI junction, right SSI junction, and the target site. (b) Long PCR at right junction to verify full-length 
integration. Primer positions in the SSI and target sites, and the fragment sizes are shown in Figure. 1. T5, 
target line as negative control; NTC, no template control. 
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Supplementary Figure 2: Southern hybridization of EcoR1-digested genomic DNA of T0 site-specific 
integration (SSI) lines using (a) GFP, (b) pporRFP, (c) GUS and, (d) AtDREB1A probes. Size markers are 
indicated.  EcoR1 map and fragment sizes of the SSI structure is shown in Fig. 1. 
 
Supplementary Figure 3: Non-specific perturbation analysis of the inducible genes by real time 
quantitative PCR (RT-qPCR) on the T1 progeny seedlings of 3 site-specific integration (SSI) lines relative 
to the T5 negative control.  (a) AtDREB1a analysis, and (b) pporRFP analysis in heat-shock (HS) and cold-
shock (CS) treated samples.  Standard errors are indicated as the error bars. 

Supplementary Figure 4: Time course confocal imaging of pporRFP in 10 days old T1 seedlings of SSI 
line #9. Images are captured 24, 48 and 72 hours post heat-shock treatment at 20x magnification using the 
same parameters. GFP imaging is included as an internal control. T5, negative control; RT, room 
temperature. 
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