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Abstract10

Spatial capture-recapture (SCR) has emerged as the industry standard for11

analyzing observational data to estimate population size by leveraging information from12

spatial locations of repeat encounters of individuals. The resulting precision of density13

estimates depends fundamentally on the number and spatial configuration of traps.14

Despite this knowledge, existing sampling design recommendations are heuristic and15

their performance remains untested for most practical applications - i.e.,16

spatially-structured and logistically challenging landscapes. To address this issue, we17

propose a genetic algorithm that minimizes any sensible, criteria-based objective18

function to produce near-optimal sampling designs. To motivate the idea of optimality,19

we compare the performance of designs optimized using two model-based criteria20

related to the probability of capture. We use simulation to show that these designs21

out-perform those based on existing recommendations in terms of bias, precision, and22

accuracy in the estimation of population size. Our approach allows conservation23

practitioners and researchers to generate customized sampling designs that can improve24

monitoring of wildlife populations.25

Keywords— SCR, spatial capture-recapture, spatially-explicit capture-recapture,26

camera traps, density, optimal design, sampling design, spatial sampling, trap spacing27

Introduction28

In order to conserve wildlife, managers must obtain reliable estimates of density29

(Williams et al., 2002) which has driven the development of data collection and estimation30

methods, especially those that can account for imperfect detection. Capture-recapture (CR),31

and more recently, spatial capture-recapture (SCR: Royle et al., 2014) methods were32

developed specifically for this purpose and are now routinely applied in ecological research.33

Concurrently, SCR methods estimate detection, space use, and density by analyzing34
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individual encounter histories while explicitly incorporating auxiliary information from the35

spatial organization of encounters (Efford, 2004; Royle et al., 2014). Despite widespread36

adoption and rapid method development, recommendations about spatial sampling design37

have received relatively little attention and are arguably heuristic.38

The effects of sampling design have been investigated for both CR (Dillon and Kelly39

2007; Bondrup-Nielsen 1983; Gardner et al. 2010) and SCR methods (discussed in the next40

paragraph). While CR methods aim to balance the number of captures and the number of41

recaptures, SCR requires a third consideration, the number of spatial recaptures, i.e., the42

number of times individuals are observed at multiple locations. The ability to reliably43

estimate these quantities is directly related to the quality of the data collected: the number of44

captured individuals n is the sample size; the number of recaptures is directly related to the45

baseline detection probability, g0; and the number and spatial distribution of recaptures are46

directly related to the spatial scale parameter, σ. Therefore, improving sampling design has47

great potential to increase the quality of the data and the precision of estimates.48

Several simulation studies evaluating SCR designs have shown that the model is robust49

to the spatial configuration of traps, as long as some minimum requirements are met: the50

trap spacing must not be too large relative to individual space use in order to accurately51

estimate σ, but the array must not be too small such that too few individuals are exposed to52

capture (Sollmann et al., 2012; Sun et al., 2014; Wilton et al., 2014; Efford and Boulanger,53

2019). Repeated illustrations of this trade-off have lead to the recommendation that trap54

spacing should be approximately two times σ, which maximizes accuracy and minimizes bias55

of abundance estimates (Sollmann et al., 2012; Efford and Fewster, 2013; Royle et al., 2014;56

Efford and Boulanger, 2019). While most research has focused on complete, uniform grids,57

there is evidence also that clustered designs can outperform uniform designs, offering better58

capability to sample larger areas (Efford and Fewster, 2013; Sun et al., 2014), with further59

evidence suggesting that this is particularly useful for heterogeneously distributed populations60

(Efford and Fewster, 2013; Wilton et al., 2014). In summary, the idea of optimal sampling61
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design for SCR remains poorly understood in general. In particular, it is unclear whether62

existing design heuristics hold for spatially-varying density patterns, or in highly-structured63

landscapes where recommended regular trapping arrays can not be accommodated.64

Sampling design for SCR can be conceived as a problem of selecting a subset of all65

possible trap locations that maximizes some SCR-relevant objective function. Here we66

develop an analytical framework that directly addresses this challenge. Our approach67

generates an optimal sampling design with respect to some appropriate objective function and68

information about available resources (traps), a set of possible trap locations, and information69

about SCR model parameters. To motivate the idea of optimality, we compare the70

performance of designs optimized using two model-based criteria related to current thinking71

about the relationship between data quality and estimator bias and precision and leverage the72

encounter process. We use simulation to demonstrate that optimal designs generated using73

our framework perform well, producing unbiased and precise estimates of abundance. Further,74

we show that these designs are robust to the geometry of the landscape, deviations from75

uniform spatial distribution of individuals, and variation in spatial coverage of the trapping76

array. Our proposed framework is flexible and can be generalized to any species of interest77

and to any landscape.78

Methods79

The standard SCR model80

Typically, SCR models have two model components: a spatial model of abundance81

describing the distribution of individuals characterized by the center of their home range82

(hereby referred to as an activity center), and a spatial model of detection that relates83

encounter rates to the distance between the activity center and a trap (e.g., a camera trap84

located at a point in space) at which the individual was captured. The most basic form85

assumes a uniform prior for the distribution of activity centers, si:86

si ∼ Uniform(S),
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where S, referred to as the state-space, describes all possible locations of individual activity87

centers within the study area. To facilitate analysis, S is discretized as a uniform grid of88

points representing the centroids of equal-sized pixels. The total population size within the89

region, N , is exposed to capture resulting in n observed individuals and hence n0 = N − n90

unobserved individuals.91

While several formulations of the encounter model exist, we use, without loss of92

generality, a half-normal encounter model that describes encounter probability as a decreasing93

function of distance from an individual’s activity center si:94

pijk = g0 × exp(−d(si, xj)
2/(2σ2)), (1)

where pijk is the probability of detecting an individual i with activity center si at trap j95

during sampling occasion k; d(si, xj) is the distance between the activity center si and the96

trap xj , and g0 and σ are parameters to be estimated. In biological terms, an individual is97

more likely to be captured at a trap that is closer to its activity center such that σ serves as a98

proxy for animal space use, relying on spatial recaptures (m) for its estimation.99

Model-based objective functions100

From Equation 1, we can use values of g0 and σ (e.g., from the literature or estimates101

from a pilot study), to compute the probability that an individual with an activity center si102

is detected in any trap in an array X , which we denote as p̄:103

p̄(si,X ) = 1−
J∏
j=1

1− p(si, xj).

The corresponding marginal probability of not being encountered is thus: p̄0(si,X ) = 1 −104

p̄(si,X ). Taking the average over all G activity center locations in the landscape S, we can105

compute the marginal probability of encounter:106

p̄(X ) =
1

G

∑
s

p̄(si,X ).

We can also compute the probability of being captured in exactly one trap:107
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p̄1(si,X ) = p̄0(si,X )

J∑
j=1

p(si, xj)

1− p(si, xj)
.

Finally, the marginal probability of being encountered at more than one trap, i.e., of a spatial108

recapture is:109

p̄m(X ) =
1

G

∑
s

1− p̄0(si,X )− p̄1(si,X ).

Given that the precision of density estimates in spatial capture-recapture depends on110

two aspects of the data – the total number of individuals captured, n, and the number of111

spatial recaptures, m (Efford and Boulanger, 2019; Royle et al., 2014) – the quantities above112

represent logical criteria for generating optimal SCR designs (Royle et al. 2014, Chapter 10).113

Hence, we suggest two design criteria to be minimized: Qp̄ = −p̄(X ), and Qp̄m = −p̄m(X ).114

Importantly, if approximate values of the SCR parameters, g0 and σ, are available, these115

objective functions can be evaluated for any number and configuration of traps, thus116

providing a metric for identifying ‘optimal’ SCR designs.117

Optimization method118

To identify the optimal subset of locations that minimize Qp̄ or Qp̄m , we used a genetic119

algorithm implemented by the function scrdesignGA() in the oSCR package (Sutherland120

et al., 2019). This function is a wrapper of the function kofnGA() from its namesake package,121

kofnGA (Wolters, 2015) with additional arguments to extend the function’s utility for122

generating SCR sampling designs. The k-of-n problem is an appropriate application as it123

describes concisely the challenge of the SCR sampling design problem where some number of124

traps, k, must be placed in a landscape comprised of n possible locations and configured to125

optimize some objective function, which presented here is one of two SCR-specific criteria.126

The criteria Qp̄ is a space-filling objective function that spreads traps across the127

landscape and maximizes exposure of individuals to detection (Appendix 1). Thus,128

minimizing this quantity should maximize the expected sample size n. In contrast, Qp̄m129

prioritises the exposure of individuals to more than one trap, resulting in more compact or130

6

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.045740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045740


clustered configurations relative to those produced by minimizing Qp̄. Minimizing Qp̄m should131

maximize the number of spatial recaptures m.132

Design constraints133

Our primary motivation is to evaluate, using simulation, the performance of SCR134

designs produced by our proposed framework, employing the two design criteria described135

above: Qp̄ and Qp̄m . In addition, and where possible, we also evaluate the regularly-spaced,136

2σ grid design, as it represents current design recommendations (Sollmann et al., 2012; Royle137

et al., 2014; Efford and Boulanger, 2019). For our measures of performance, we focus on138

relative bias, precision, and accuracy of estimates of total abundance. Beyond standard139

testing scenarios, we are interested in evaluating the performance of these designs under a140

range of biologically-realistic scenarios in an attempt to develop a more general understanding141

of how performance varies as a function of the following design constraints: geometry, defined142

as the shape of the study area and ease at which a regular square trapping grid can be143

deployed; density pattern, defined as the nature of departure from uniform distribution of144

individuals; and effort, defined as the number of traps available for the design.145

Geometry – As has been typical in studies investigating SCR sampling designs, we146

begin using a square study area with complete accessibility and which lends itself to uniform147

grids of traps (the regular area, Figure 1). To replicate the design challenges posed when148

generating real-world designs, we also consider an irregular area (Figure 1). For this, we use149

one of the study areas that motivated this work: a large area in Northern Pakistan (3865150

km2) that is the focus of a snow leopard (Panthera uncia) camera trapping study, but that151

has several logistical challenges that determine accessibility (i.e., remoteness, altitude, and152

slope). To define the complete region of the state-space, we used a 3σ buffer around the153

trapping extent. The regular area is represented by 24 x 24 landscape with a resolution of 0.5154

units, the irregular study area is represented by 89.85 x 133.04 landscape with a resolution of155

1.73 units, for a total of 2304 cells in each of the geometries (Figure 1). While these two156

state-spaces differ in absolute terms, we insured comparability in relative terms by the157
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definition of area-specific sigma (see below).158

Density pattern – Existing investigations of SCR sampling designs typically assume a159

homogeneous distribution of individuals (but see Efford and Fewster, 2013). Here we formally160

test the adequacy of designs under specific violations of this assumption. As such, we consider161

three classes of spatial density patterns for the state-space: one uniform and two162

spatially-varying. To generate non-uniform density patterns, we simulated landscapes with163

spatial dependence by employing a parametric Gaussian random field model that allows for164

specification of the degree and range of spatial autocorrelation. Gaussian random fields were165

generated using the R package, NLMR (Sciaini et al., 2018). The values of the simulated166

landscape were scaled from 0 to 1 and individual activity centers distributed according to the167

following cell probabilities:168

πi =
eβ1∗Xi∑
eβ1∗Xi

, (2)

where Xi is the scaled landscape value at pixel i and β1 is defined as 1.2 to represent a weak169

but apparent density pattern. The two classes of non-uniform density patterns (generated170

using the Gaussian random fields model) differ in the scale of spatial autocorrelation. For171

consistency, we defined this distance in relative terms to the length of the longest side of the172

state-space: 6% for a weak density pattern or 100% for a strong density pattern (see Figure 1173

for a single realization of the density patterns). Weak spatial autocorrelation produces a174

patchy landscape, while strong spatial autocorrelation produces a landscape with a more175

contiguous gradient between area edges. Using these three density patterns allows us to176

evaluate designs through a full range of biological realism, with uniform and strong density177

patterns representing the polar ends of reality, and the patchy landscape representing the178

most realistic sampling scenario.179

Design generation180

Designs were generated using fixed values of g0 and σ (see below), a set of potential181

trap locations, and the number of traps that are available to deploy. It is assumed that the182
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user would have a good sense of the parameter values for the focal species, that they would183

be able to produce a set of all potential sampling points, and would have some idea of184

resources (traps) available. Only geometry and effort affect the generation of optimal designs.185

For the regular area, we generated Qp̄ and Qp̄m designs for each of the three levels of effort186

where there was no restriction on where traps could be placed. In addition, we generated a187

regular 2σ design for comparison. For the irregular area in the mountains of Pakistan, we188

generated Qp̄ and Qp̄m designs at each of the three levels of effort (Figure 2). In this case,189

areas that were too remote, too high altitude, or too steep to be accessed were removed from190

the set of potential trap locations. Mirroring real design challenges faced by managers, it was191

not practical to generate a 2σ grid for the irregular area, and therefore it is not included.192

This full scenario analysis resulted in a total of 15 designs; 9 designs for the regular area193

(three levels of effort for each of the Qp̄, Qp̄m , and 2σ criteria), and 6 designs for the irregular194

area (three levels of effort for the Qp̄ and Qp̄m criteria).195

Evaluation by simulation196

We exposed a population of N = 300 individuals to sampling via each of the 15 designs197

described above. We simulated encounter histories under the binomial model above (Equation198

1), assuming camera traps (proximity detectors), with g0 = 0.2, k = 5, and area-specific199

space-use parameters σreg = 0.80 and σirreg = 2.59. Because the two geometries differ in the200

relative size of their spatial units, area-specific σ values were chosen such that the number of201

home ranges required to fill the areas and achieve an equal density was equivalent. We202

simulated individuals according to the three density patterns described above (Equation 2),203

resulting in a total of 45 scenarios of interest (three density patterns for each of the 15204

designs, see Appendix 2 for summary table).205

For each scenario, we simulated 300 realizations of activity centers. Covariate surfaces206

were generated randomly using the same seed, again resulting in variation among simulations207

but consistency across scenarios. In some cases, the realization of activity centers did not208

provide at least one spatial recapture; we recorded the number of these failure events and209
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generated a new realization of activity centers until a single spatial recapture was obtained in210

order to proceed with model fitting. This only occurred for Qp̄ designs with minimum effort,211

and for less than 5% of the simulations.212

We analyzed the resulting encounter history data using a null SCR model (d·).213

Additionally, for scenarios involving non-uniform density patterns, we used the data214

generating landscape values as a covariate in a density-varying model (ds). This allowed us to215

test if accounting for the landscape would improve bias and precision in parameter estimates.216

For each simulation, and each model, we retained estimates of g0, σ, and N̂ .217

Across the various designs, we compared estimates of model parameters to the218

data-generating values in terms of bias, precision, and accuracy. We calculated the219

discrepancy between estimates and true values relative to the true values for every simulation220

and reported the mean of those values by scenario to represent bias (percent relative bias,221

%RB). For precision, we calculated the coefficient of variation (CV) by scenario by taking the222

standard deviation of parameter estimates relative to the mean of the estimates for that223

scenario. Accuracy was evaluated by scenario using the root mean square error scaled to the224

true value (scaled root mean square error, SRMSE). All simulations were conducted in R,225

SCR models were fit using the package oSCR (Sutherland et al., 2019), and designs were226

generated using the scrdesignGA() function also in oSCR (see Appendix 3 for an example).227

Design generation and simulations were performed in R version 3.6.1 (R Core Team, 2019).228

Results229

Encouragingly, under the regular-area, homogeneous-density scenario, designs generated230

using the optimal design algorithm perform as well as existing 2σ recommendations,231

producing unbiased estimates of abundance for nearly all combinations of design and effort232

(Figure 3, Table 1). In the case of the irregular geometry with uniform density, Qp̄m designs233

perform well for all levels of effort, but performance of Qp̄ designs strongly declines as the234

number of traps is reduced, which results in widely-spaced traps and consequently very few235
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spatial recaptures (Figure 3, Table 1, Appendix 4, Appendix 5, Appendix 6).236

For scenarios from the regular study area with inhomogeneous density, all designs237

produced unbiased estimates of abundance, generally. There is a slight bias (± 5%)238

introduced as the number of traps declines, even for the 2σ designs. However, this239

phenomenon is less apparent in Qp̄m designs. In the irregular study area, design performance240

is more dependent on the spatial structure of density. Once again, Qp̄m designs produced241

unbiased estimates, but Qp̄ designs continue to perform poorly with fewer traps (Figure 3,242

Table 1, Appendix 4, Appendix 5, Appendix 6).243

Interestingly, explicitly including the landscape covariate governing spatial variation in244

density (i.e., ds rather than d·) does not appear to improve performance of the designs in any245

scenario (Figure 3, Table 1), reinforcing the general opinion that SCR models are robust to246

misspecification of the density model. In fact, fitting the data-generating model for the247

inhomogeneous cases actually performs worse in low effort scenarios. This suggests that the248

low numbers of traps do not adequately represent the variation in the landscape, and249

therefore, the model is unable to estimate the underlying landscape effect (Figure 3, Table 1).250

Precision and accuracy (Appendix 4 and Appendix 5, and Appendix 6, respectively)251

generally follow the same patterns as for the bias. Design performance decreases with252

decreasing effort for all designs across every scenario. In the regular study area with uniform253

density, the 2σ and Qp̄m designs share similar levels of precision, while the Qp̄ design with254

minimal effort is less precise in comparison, with this pattern being magnified in the irregular255

area. Generally, there is a slight loss of precision in estimates across all designs, but less so for256

Qp̄m designs, which maintain their relative equivalency to the standard recommendation,257

including for the lowest level of effort (when considering comparison across geometries). In258

scenarios with inhomogenous density, only Qp̄ designs with minimum effort show precision259

that is obviously reduced using the null model. However, the density-varying model once260

again shows no noticeable improvement, and causes a decrease in precision for Qp̄m designs261

with the fewest traps.262
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Overall, designs generated using our proposed framework showed comparable263

performance to standard recommendations, and critically, these designs are robust to a264

variety of constraints that include effort, density signal, and geometry.265

Discussion266

In this study, we develop a conceptual and analytical framework for generating optimal267

designs for SCR studies. We suggested two intuitive and statistically-grounded design criteria268

that can be optimized to produce candidate designs. We demonstrate that designs generated269

using our framework perform as well as designs based on existing design heuristics, and that270

the generality of our approach means it can be applied to any species or landscape according271

to logistics and available resources.272

It is worth noting that the designs produced using this framework can be considered273

approximate in terms of specific location, and that the actual, finer-scale site-selection for274

traps can be informed by knowledge of the species’ biology and behavior (e.g., Fabiano et al.,275

2020). Further, while we develop this framework with camera traps in mind, this method can276

easily be applied to determine the general location of other non-invasive surveys, wherein the277

selection of a sampling location instead activates some other form of sampling effort (see278

Fuller et al. 2016; Sutherland et al. 2018). Importantly, the degree of sampling effort must be279

maintained among all selected sampling locations.280

The designs we created using model-based criteria exhibit two unique behaviors281

(Appendix 1). The Qp̄ criteria generates space-filling designs to maximize the area covered282

and thereby the expected sample size of unique individuals. As more traps are added, the283

inner area becomes fully-saturated (such that it is insured that every possible home range will284

contain at least one trap), and the criteria instead focuses on selecting external traps that285

patrol the edge of the trapping extent in order to increase the probability of capture for286

individuals outside of that area. However, despite the benefit of increasing the sample size (n287

captured individuals), traps placed too distant from each other fail to generate important288
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spatial recaptures. This is precisely the issue that propagated failures for the Qp̄ design with289

minimum effort.290

In contrast, Qp̄m designs are space-restricting as a result of an inherent trade-off291

between finding individuals to capture and having traps close together to insure captures at292

more than one trap. With fewer traps, however, the effective sampling area is markedly293

decreased (Figure 2), thereby reducing the sample size. This observation further motivated294

our evaluations of the designs for inhomogeneous density, and is likely responsible for the295

slight bias introduced in those scenarios, as well as the lower precision.296

More generally, these designs support previous recommendations while also providing297

new insights into sampling design for SCR. When full effort is possible in the regular area298

geometry, the Qp̄ design fully saturates the trapping extent with some traps to spare in order299

to meet its objective, while Qp̄m does not quite fill the trapping area (Figure 2, Appendix 1).300

Interestingly, the 2σ design falls somewhere between these two extents, likely striking an301

effective balance between the number of captures (as in Qp̄) against the number of spatial302

recaptures (as in Qp̄m), similar to the effect described by Efford and Boulanger (2019).303

Despite these differences in spatial configuration, differences in design performance are mostly304

negligible (Figure 3, Table 1, Appendix 4, Appendix 5, Appendix 6).305

As shown by Sun et al. (2014), incorporating trap clustering into sampling designs can306

be advantageous, as doing so allows for increased likelihood of spatial recaptures to facilitate307

estimation of the spatial scale parameter, σ. However, the clustered designs proposed by Sun308

et al. (2014) follow a regular pattern such that there are only a few levels of trap spacing,309

whereas the designs we generated result in a wider distribution of distances between traps.310

This shifts the importance away from a regular spatial structure of trap configuration to one311

that is decidedly irregular in order to gain better resolution of movement distances for312

estimating σ. This is especially useful knowledge and central to generating designs for313

irregular study areas. Interestingly, this results in designs with smaller effective sampling314

areas, suggesting that it might be better to reduce the total area covered by the design rather315
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than focus on completely covering the area (within reason). A major insight here is that316

hierarchical clustering (the selection of approximately 2σ-spaced clusters of traps with further317

reduced within-cluster spacing) emerges naturally from the Qp̄m criterion, effectively318

formalizing the clustering heuristic proposed by Sun et al. (2014).319

Our proposed criteria produced designs which perform well, yet there is scope for320

improvement. With a decrease in effective sampling area, the introduction of bias and321

imprecision in parameter estimates could be complicated further when the population being322

sampled has a stronger degree of spatial structuring than we tested here. Designs sampling323

only areas where individuals are concentrated will result in overestimates of population size324

and density relative to the whole study area, while those sampling away from concentrated325

areas will do just the opposite. This effect is particularly noticeable from the density-varying326

model (ds), which generally has relatively lower performance over the fully invariant model as327

it is including information from nearby traps sampling a landscape that is intrinsically has328

spatial auto-correlation. Advancing this framework to generate designs that explicitly account329

for the spatial patterns in density as a function of a given landscape is clearly an area for330

further development, especially if the inferential objective is to estimate density-landscape331

relationships rather than total density or abundance.332

Recently SCR sampling design for multi-species sampling has been considered, with333

some discussion on how the distribution of trap spacing can allow for better estimates for334

species with a variety of home range sizes (Rich et al., 2019). However, the design proposed335

for this purpose lacks a reproducible framework that can be generalized to any biological336

community. Alternatively, employing our framework for multi-species sampling could be a337

straightforward approach to this problem, with important implications for the use of SCR to338

be more easily applied for the study of biological populations. Again, a highly appealing339

feature of our Qp̄m approach is the emergence of designs with much better distribution of trap340

spacing than under regular designs such as 2σ grids.341

We considered two criteria that are intuitive in the context of the performance trade off342
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of sample size (n) and spatial recaptures (m). While intuitive, alternative criteria surely exist.343

For example, Efford and Boulanger 2019 propose an approximation of the variance of density344

which is related to n and m, and therefore can easily be formulated as an objective function345

to be optimized in the same way as Qp̄ and Qp̄m . Indeed, the function scrdesignGA() is346

designed such that any user-defined objective functions can be used. We hope that this347

ability to simultaneously (and efficiently) generate and evaluate designs based on a variety of348

design criteria will motivate further research on SCR study design.349

Our results show that designs obtained under the our proposed criteria perform well350

relative to design heuristic and can be obtained efficiently as solutions to an optimization351

problem for arbitrary configurations of possible trapping locations and landscapes, unlike352

standard recommendations based on 2σ and cluster designs. Both CR and SCR studies are353

extremely expensive and require substantial effort to conduct, making it imperative that354

managers are provided with a method to select detector placement before deployment, such355

as what we have presented here. As a result, designs will produce a greater amount of356

expected information and will lead to more accurate estimates of parameters that describe357

biological populations of interest, which is critical to conservation efforts around the world.358
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Table 1: Percent relative bias of baseline detection (g0), space use (σ) and total

abundance (EN) for each simulation scenario, varying: design criteria (Design),

landscape shape (Geometry), the number of traps (Effort), and density patterns

(Density). We present results from null (d·) and varying density (ds) models.

g0 σ EN

Geometry Effort Density Design d· ds d· ds d· ds
regular 49 uniform 2σ 2.52 – -0.38 – 0.78 –

Qp̄m 1.33 – -0.19 – 1.76 –
Qp̄ 0.82 – -1.00 – 7.27 –

weak 2σ 3.16 3.16 -0.62 -0.61 -0.26 -0.05
Qp̄m

0.08 0.08 0.06 0.11 0.99 1.99
Qp̄ -0.58 -0.58 0.20 0.25 5.70 5.75

strong 2σ 2.26 2.26 -0.47 -0.48 1.82 3.48
Qp̄m 2.09 2.09 -0.47 -0.48 1.20 6.82
Qp̄ 1.84 1.84 -0.75 -0.78 6.43 6.55

100 uniform 2σ 2.04 – -0.69 – 0.58 –
Qp̄m

-0.97 – 0.20 – 1.07 –
Qp̄ 2.42 – -0.61 – 0.90 –

weak 2σ -0.13 -0.13 0.15 0.14 -0.34 -0.19
Qp̄m 1.68 1.68 -0.77 -0.78 -0.24 0.34
Qp̄ 0.61 0.61 -0.27 -0.29 0.95 0.98

strong 2σ 0.35 0.35 -0.3 -0.30 1.42 1.72
Qp̄m

0.64 0.64 -0.04 -0.05 0.90 1.47
Qp̄ 0.18 0.18 -0.93 -0.95 2.89 3.12

144 uniform 2σ 1.32 – -0.25 – 0.27 –
Qp̄m 0.93 – -0.28 – 0.88 –
Qp̄ -1.06 – 0.28 – 1.53 –

weak 2σ 0.49 0.49 -0.33 -0.33 0.41 0.50
Qp̄m

1.31 1.31 -0.47 -0.48 -0.39 -0.21
Qp̄ 0.64 0.64 -0.24 -0.25 0.44 0.47

strong 2σ 0..07 0.70 -0.25 -0.25 0.8 1.01
Qp̄m 0.14 0.14 0.15 0.14 0.32 0.58
Qp̄ 1.35 1.35 -0.31 -0.32 0.32 0.47

irregular 49 uniform Qp̄m 1.78 – -0.15 – 0.62 –
Qp̄ 2.27 – -1.84 – 8.34 –

weak Qp̄m
1.15 1.15 -0.27 -0.22 0.07 2.74

Qp̄ -1.51 -1.51 -1.11 -1.07 9.93 9.89
strong Qp̄m

2.29 2.29 -1.03 -1.01 2.4 9.02
Qp̄ 1.18 1.18 -0.27 -0.32 5.8 6.17

100 uniform Qp̄m 0.74 – -0.18 – 0.83 –
Qp̄ 1.42 – -0.77 – 2.11 –

weak Qp̄m
-0.09 -0.09 0.09 0.08 0.34 1.04

Qp̄ 0.97 0.97 -0.48 -0.49 1.82 1.89
strong Qp̄m

1.97 1.97 -0.56 -0.59 -0.44 1.34
Qp̄ 1.07 1.07 -0.46 -0.49 0.93 1.4

144 uniform Qp̄m 0.53 – 0.00 – 0.75 –
Qp̄ 0.72 – 0.08 – -0.27 –

weak Qp̄m
0.03 0.03 0.05 0.04 0.07 0.43

Qp̄ 0.61 0.61 -0.20 -0.20 0.5 0.51
strong Qp̄m

1.74 1.74 -0.55 -0.57 -0.22 0.69
Qp̄ -0.13 -0.13 0.21 0.19 0.33 0.66
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Figure legends416

Figure 1417

Simulation structure. Here we show all possible trap locations overlaid on the uniform418

landscape for the regular (top) and irregular (bottom) study area geometries alongside a419

single realization of two (weak: middle, strong: right) of the three (uniform not shown)420

landscape covariates. For the regular geometry, we tested 9 designs each. For the irregular421

geometry, we tested 6 designs each. This makes for a total of 45 scenarios.422

Figure 2423

Irregular study area with designs generated using our new framework with both SCR-424

intuitive, model-based criteria (Qp̄ and Qp̄m), under three levels of effort. 144 traps represents425

the same number of traps as used to generate a full 2σ grid in a regular study area of the426

same area. 100 traps is nearly two-thirds as many traps, and 49 is nearly one-third as many427

traps. Each pixel of the state-space is colored according to the probability of capture, p, for428

an individual with an activity centers at the centroid of the pixel.429

Figure 3430

Percent relative bias (%RB) of estimates of total abundance from the three tested431

sampling designs under three levels of effort on three density surfaces within two geometries,432

where estimates are the result of one of two SCR models: density invariant (d·, open shapes)433

or density-varying (ds, closed shapes). The three designs – 2σ, Qp̄, Qp̄m – are represented by434

the three shapes: circles, triangles, and squares, respectively. To illustrate estimator accuracy,435

vertical lines are 50% confidence intervals, noting that the 50% intervals are proportional to436

95% intervals but offer a visual balance of bias and associated variance. The thick horizontal437

line represents no bias in estimates, with the thin horizontal lines representing an allowable438

amount of bias (± 5%).439
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Figure 1

20

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.16.045740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.16.045740


Figure 2
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Figure 3
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