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 2 

Abstract  25 

The response of pathophysiological research to emerging epidemics often occurs 26 

after the epidemic and, as a consequence, has little to no impact on improving 27 

patient outcomes or on developing high-quality evidence to inform clinical 28 

management strategies during the epidemic. Rapid and informed guidance of 29 

epidemic (research) responses to severe infectious disease outbreaks requires quick 30 

compilation and integration of existing pathophysiological knowledge. As a case 31 

study we chose the Zika virus (ZIKV) outbreak that started in 2015 to develop a 32 

proof-of-concept knowledge repository. To extract data from available sources and 33 

build a computationally tractable and  comprehensive molecular interaction map we 34 

applied generic knowledge management software for literature mining, expert 35 

knowledge curation, data integration, reporting and visualisation. A multi-disciplinary 36 

team of experts, including clinicians, virologists, bioinformaticians and knowledge 37 

management specialists, followed a pre-defined workflow for rapid integration and 38 

evaluation of available evidence. While conventional approaches usually require 39 

months to comb through the existing literature, the initial ZIKV KnowledgeBase 40 

(ZIKA KB) was completed within a few weeks. Recently we updated the ZIKA KB 41 

with additional curated data from the large amount of literature published since 2016 42 

and made it publicly available through a web interface together with a step-by-step 43 

guide to ensure reproducibility of the described use case (S4). In addition, a detailed 44 

online user manual is provided to enable the ZIKV research community to generate 45 

hypotheses, share knowledge, identify knowledge gaps, and interactively explore 46 

and interpret data (S5). A workflow for rapid response during outbreaks was 47 

generated, validated and refined and is also made available. The process described 48 

here can be used for timely structuring of pathophysiological knowledge for future 49 
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threats. The resulting structured biological knowledge is a helpful tool for 50 

computational data analysis and generation of predictive models and opens new 51 

avenues for infectious disease research.  52 

 53 

Availability: www.zikaknowledgebase.eu 54 
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 59 

Author summary 60 

During the recent ZIKV outbreak there was little information about the interactions  61 

between Zika virus and the host, however, the massive research response lead to a 62 

steep increase in the number of relevant publications within a very short period of 63 

time. At the time, there was no structured and comprehensive database available for  64 

integrated molecular and physiological data and knowledge about ZIKV infection. 65 

Researchers had to manually review the literature (amounting to over 5000 articles 66 

on ZIKV during our last update of the ZIKA KB in September 2018) to extract 67 

information about host–pathogen interaction and affected molecular, cellular and 68 

organ pathways. We explored the use of automated literature analysis and a defined 69 

cooperative effort between experts from various scientific, biomedical and 70 

information-technology domains to rapidly compile existing pathophysiological 71 

knowledge as a potential tool to support investigations during an emergency. This 72 

tool is contrasted with conventional approaches that would take months to comb 73 
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through the massive amount of existing literature. In addition to providing 74 

background information for research, scientific publications can be processed to 75 

transform textual information into complex networks, which can be integrated with 76 

existing knowledge resources to suggest novel hypotheses that potentially contribute 77 

to innovative infectious disease research approaches. This study shows that the 78 

knowledge extraction and mapping process required to inform clinical and research 79 

responses to an emerging epidemic can be efficiently and effectively executed with a 80 

dedicated and trained group of experts, a validated process and the necessary tools. 81 

Our results further provide an overview of ZIKV biology, allow prediction of drug 82 

efficacy and indentify specific host factors and signalling pathways affected by ZIKV. 83 

 84 

 85 

Introduction 86 

The response to a (re-)emerging infectious disease (ID) epidemic requires a rapid 87 

compilation of existing pathophysiological knowledge to inform research priorities 88 

guiding basic and clinical research. Gaps in understanding of the underlying 89 

mechanisms make it difficult to design effective disease-modifying therapies. Hence, 90 

during an emerging ID outbreak, the available information at the time of its 91 

emergence and the subsequent rapid accumulation of scientific knowledge from 92 

various sources needs to be captured and analysed in a timely and comprehensive 93 

fashion. Responding to an ID outbreak therefore would benefit from the use of a 94 

knowledge repository that organizes the disease-related knowledge into pathway, 95 

molecular interaction and disease maps. Such maps are a relatively new concept 96 

that have been used in neurodegenerative and heart diseases (1,2), but which have 97 
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had limited application in the field of ID thus far (3–5). 98 

Molecular interaction and disease maps are dynamic computer-based knowledge 99 

repositories developed to integrate data and information across information sources, 100 

in a manner that is customized to the research domain of interest. Data types include 101 

interactions between molecular components, such as genes, pathogens, compounds 102 

and diseases. 103 

The Platform foR European Preparedness Against (Re-)emerging Epidemics 104 

(PREPARE) is an EU-funded research consortium and clinical research network with 105 

the aim to rapidly respond to severe ID outbreaks, generating real-time evidence to 106 

inform optimized clinical management of patients and public health response. The 107 

2015 ZIKV outbreak was considered as a test case in the context of the PREPARE 108 

network, as the pathogenesis of neurologic or immune disease induced by ZIKV is 109 

not fully understood. ZIKV is a flavivirus belonging to the Flaviviridae family and had 110 

only marginally been researched prior to the 2015 epidemic was minimal (6–8). 111 

Outbreaks of ZIKV disease have been recorded in Africa, the Americas, Asia and the 112 

Pacific. Acute ZIKV infections are mostly asymptomatic or associated with mild and 113 

self-limiting symptoms of fever, rash, conjunctivitis, headache or joint pain (9,10). 114 

However, the unexpected association of ZIKV infection with pregnancy and the 115 

subsequent severe neurodevelopmental problems in offspring and with the 116 

occurrence of neurological illnesses such as Guillain-Barre syndrome (GBS) or 117 

meningoencephalitis in acutely infected patients, led to widespread global concerns 118 

and a Public Health Emergency of International Concern (PHEIC) declaration by 119 

World Health Organisation (WHO) in 2016 (7).  120 

We used the ZIKV virus outbreak as a case study to develop and test the steps, 121 

tasks, protocols and tools necessary to rapidly gather and integrate existing and 122 
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emerging knowledge and to inform research priorities (Fig 1).  Based on the 123 

available data and information we aimed to obtain a general overview of 124 

pathophysiological knowledge on ZIKV infection and its associated clinical 125 

manifestations described in the public domain. Other neurotropic flaviviruses, such 126 

as Dengue virus (DENV), West Nile virus (WNV), Japanese Encephalitis virus (JEV) 127 

and Tick-borne Encephalitis virus (TBEV) also cause nervous system infections, in 128 

particular encephalitis, but no association with neurodevelopmental disorders or 129 

GBS have been reported (11). To see whether including these viruses would shed 130 

additional light on ZIKV pathogenesis we compared available ZIKV information to 131 

other neurotropic flaviviruses in terms of neurovirulence and disease severity.  132 

 133 

Fig 1. ZIKV KnowledgeBase generation process — Overview 134 

Based on the research objectives and knowledge provided by clinical/virology 135 

domain experts a six-step process was applied. In the first step a multidisciplinary 136 

expert team is assembled, in step 2, a semantic representation (“data model”) was 137 

designed by the knowledge management experts. This model includes details about 138 

the data sources for integration, how to transfer data into the system and how to 139 

report, visualize and export results, as well as the definition of the semantic context 140 

for objects, such as “gene”, “cell type” and “strain”. In a third step, a natural language 141 

processing algorithm was applied to the integrated PubMed literature source. In step 142 

4 the relevant data, including literature mining results, was imported into the system 143 

and semantically mapped to the data model. In step 5, queries, views and reports 144 

were formulated. In the last step a web-browser based user interface was 145 

implemented to enable clinical/virology experts to review, validate and refine the 146 
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integrated information. 147 

   148 

Methods 149 

Rapid response protocol 150 

Many procedures have been published to collect knowledge from literature and 151 

experts, including systematic literature reviews (12), clinical guideline consensus 152 

building (13) and literature mining (14). Based on these approaches we developed a 153 

dedicated six step protocol with a focus on rapid assembly of existing knowledge 154 

(see Fig 1 and S1 Fig):   155 

1.  Team organisation and process management 156 

A multidisciplinary team of clinicians, virologists, bioinformaticians and knowledge 157 

management specialists was formed to collaboratively extract existing ZIKV related 158 

knowledge from the literature and from public databases, integrate the available 159 

information into a consistent summary and further connect integrated data to 160 

molecular and pharmaceutical information. To enable an efficient and consolidated 161 

initial result, tasks were distributed between individuals and results were discussed 162 

and integrated in weekly online conferences. The detailed protocol for knowledge 163 

base generation was developed in this initial exercise and is presented in the results 164 

section. 165 

2. Knowledge Management 166 

For data organization, integration and development of molecular interaction and 167 

disease maps, a dedicated knowledge management tool is required. In this case, 168 

one of the PREPARE partners contributed the BioXM™ Knowledge Management 169 
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Environment, a generic platform for dynamic modelling, visualization and analysis of 170 

biological and biomedical networks (15). For knowledge representation we applied a 171 

semantic network approach as described previously (16,17). Briefly, the abstract 172 

concepts necessary to capture and represent essential ideas and physical objects 173 

relevant to the domain of knowledge were defined. Based on input from clinical and 174 

virology experts, the concepts required to represent existing pathophysiological 175 

knowledge of infectious diseases were modelled with objects, such as “genes”, 176 

“strains”, “is expressed in” or “interacts with”. For the ZIKV KB, we focused on 177 

concepts required to represent text-mining results and information from structured 178 

databases of protein–protein (PPI) and drug–protein interactions, namely genes, 179 

diseases, pathogens and drugs. Relationships between pathogens, genes, drugs 180 

and compounds extracted by text-mining were represented by three types of 181 

relations: up-regulation, down-regulation and regulation (for further details see S2 182 

Fig). Where possible, each concept was referenced to unique entries from reference 183 

databases or ontologies such as ChEBI (18) for chemicals and ICD10 (19) for 184 

diseases. The defined semantic concepts become directly available in a natural-185 

language-like query and reporting language. This language can be used to address 186 

specific questions and to summarise and visualise available knowledge. For 187 

example, the query “is a drug which interacts with is a protein from organism human 188 

which is expressed by a gene which is associated with a organism Zika” retrieves the 189 

number of drugs that interact with a protein of interest and generates a visualisation 190 

which applies a color coding to genes that indicates to the number of associated 191 

drugs.  192 

3. Text mining 193 

The integrated text mining tool uses syntactic text parsing and dictionary-based 194 
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named-entity recognition to extract semantically typed associations (such as 195 

“inhibits”, “activates”) between the defined semantic concepts (such as “gene”, 196 

“strain”) (20). The initial task creates a defined text corpus, which includes uploaded 197 

relevant full text articles if applicable. In principle the textual materials for mining can 198 

be derived from PubMed abstracts, text from the WHO or other news feeds or any 199 

document in the portable document format (PDF), Mircorsoft Word or American 200 

Standard Code for Information Interchange (ASCII) formats. For the case study 201 

described here we used all ZIKV PubMed abstracts and publicly openly available full 202 

text articles. From these sources, relationships between genes, diseases, pathogens 203 

and drugs were extracted. The extracted associations consist of a subject, an object 204 

and the linking predicate  and are enriched by their supportive evidence and 205 

additional metadata. For example, one such relationship is “Zika virus (subject) 206 

causes (predicate) microcephaly (object)” (Fig 2). Genes, diseases, pathogens and 207 

drugs, can be used as subjects and as objects and the sum of all extracted 208 

associations form an initial knowledge network. Genes, diseases, pathogens and 209 

drugs were defined by dictionaries that we curated from public sources as described 210 

below. Each dictionary consists of a well-defined set of ontologies (including 211 

synonyms) or reference databases tailored to the research question of interest. For 212 

instance, the disease dictionary consists of Disease ontology entries (21) and 213 

relevant branches of the NCI Thesaurus (22), the organism dictionary of NCBI 214 

taxonomy entries (23), the compound dictionary of ChEBI entries (18), as well as of 215 

KEGG (24) and NCI Thesaurus compounds. The gene dictionary is based on genes 216 

derived from human and flavivirus genomes. Predicates are derived from a set of 217 

verbs, which can be modified. These predicates describe mainly molecular 218 

interactions but can also indicate causal associations between proteins or 219 
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compounds and diseases (for instance “activates”, “restricts”, “targets”). To optimise 220 

recall and specificity of the mining, we extended the dictionaries for viral names, 221 

acronyms and interaction predicates as well as defined a black-list of acronyms 222 

causing mostly false positives.  223 

 224 

Fig 2. Predicated text mining relationship 225 

A text mining relationship consists of a subject (ZIKV), an object (microcephaly) and 226 

a linking predicate (causes). Subject and object are defined by dictionaries 227 

consisting of ontologies or reference databases, whereas predicates are derived 228 

from a fixed set of verbs with assertions from integrated sources, such as Medline. 229 

The term "microcephaly" is a reusable scientific concept that participates not just in 230 

one "Subject-Predicate-Object" construct detected, but in all such constructs 231 

detected that mention " microcephaly". Supplementary information is associated with 232 

the "microcephaly" object, including, for example, information from the Disease 233 

ontology, and other integrated resources, such as Gene-Disease-Association data 234 

(DisGeNET).  This expandable set of relationships forms a large network of 235 

knowledge that enables new knowledge to be inferred by "reasoning" based on the 236 

logic encoded in those relationships. 237 

 238 

Finally, the extracted relationships can be curated to manually optimise quality and 239 

information content. A curation user interface was implemented to enable the expert 240 

team to support or refute the automatically generated relationships. At least two 241 

independent researchers (the “4-eye review mode”) manually evaluated the 242 

evidence for every extracted relationship. In the case that the evaluations from the 243 
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two researchers conflicted, the conflicts were either resolved during the weekly 244 

online conferences or were excluded, as our goal was to maximise specificity 245 

(correctness) rather than sensitivity (completeness) of the integrated information.  246 

In addition, experts could expand the network with any relevant supporting evidence 247 

from other integrated sources, such as public or proprietary databases and 248 

experimental data.  249 

4. Semantic mapping of experimental results, public data sources and 250 

ontologies 251 

Semantic mapping describes the process of identifying and linking concepts that are 252 

shared between two information sources. We integrated the databases listed in 253 

Table 1 using existing concepts such as genes, pathogens or diseases which were 254 

identified by ontological descriptors. Semantically identical objects are mapped to 255 

descriptive data from literature and databases to allow informed and efficient 256 

querying of the overall collected information (e.g. “Dengue disease” is mapped to the 257 

following synonyms: “Breakbone fever”, “Dengue disorder”, “Dengue fever” and 258 

“Dengue”) (25). To this end, mapping scripts are created to resolve a given input 259 

data format and match the provided entity identifiers or ontology terms. Experimental 260 

data from key publications is mapped by the same approach. While these data are 261 

henceforth available for search and reporting they are not yet displayed as part of 262 

any specific molecular interaction and disease map.  263 

Source 

database Information type 

Current 

statistics Level of curation 

Update 

frequency and 

version 
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ATC 

Anatomical Therapeutic 

Classification System 6064   2016 

BioGRID Protein-protein interaction 293022 

Manually curated from 

literature  

Different evidence codes  

Updated monthly 

vVersion 3.4.137  

BioGRID Protein-drug interaction 10722 

Manually curated from 

literature  

Different evidence codes  

Updated monthly 

Version 3.4.137  

ChEBI Compound information  161090 

Curated from different 

data sources  Updated weekly  

DisGeNET Gene-disease associations 429036 

Integrated from several 

public data sources and 

literature 

Score for ranking 

asscoiations 

Permanently 

updated 

Version 4.0.0.0 

Disease 

ontology 

Standardized ontology for 

human disease 15043 Manually curated Updated weekly  

DrugBank 

Drug and Drug Target 

database 8203 

Manually curated from 

literature Updated weekly  

EntrezGene 

Gene functional 

information  

>24 

million  

Curated information 

integrated from different 

databases, based on 

RefSeq genomes  Updated weekly  
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Human 

Phenotype 

Ontology 

standardized vocabulary of 

phenotypic abnormalities 

in human disease 11592   2016 

KEGG Pathways and reactions 273 

Manually curated from 

literature 2008 

NCI 

Thesaurus 

Controlled vocabulary of 

the National Cancer 

institute 118502 

Manually curated from 

literature Updated weekly  

OMIM Gene - disease relations  21395 Curated form literature Updated weekly  

PubMed Literature 

>24 

million  

Automatic collection 

with manual  

curation  Updated weekly  

Reactome Pathways and reactions 5334 

Manually curated from 

literature 

Updated quartely 

Aug 2016 

UniProtKB Protein sequences 

>65 

million Manually curated 

updated bi-

weekly  

VirHostNet 

Virus/Host molecular 

interactions 44310 

Manually curated from 

literature 2.0 (March 2016) 

Table 1. External data sources integrated into ZIKV KnowledgeBase 264 

 265 

5. Querying and visualization of integrated information in tables, networks and 266 

disease maps  267 

To help the expert team establish a specific molecular interaction and disease map 268 
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we defined a number of queries to explore the collective knowledge. These queries 269 

were used, for example, to find diseases and genes associated with a virus of 270 

interest to find diseases associated with genes prioritized according to experimental 271 

evidence.  272 

Based on these queries we developed a streamlined, wizard-based user interface to 273 

create disease maps by selecting the relevant relationships from the curated text 274 

mining from query results (S3 Fig). This basic network was further extended with 275 

interaction data (e.g. PPI & protein-drug interaction) by applying a network search 276 

algorithm based on genes extracted from text mining relationships. Finally, we 277 

defined queries to overlay additional information, such as literature evidence, 278 

experimental data, drug targets or host factors to obtain different perspectives of the 279 

same underlying molecular interaction or disease map. 280 

6. Deployment of an open access, web-based user interface 281 

To make the results of our internal test case generally available and to support ZIKV 282 

research, we provide and maintain a regularly updated ZIKA KB at the following URL 283 

www.zikaknowledgebase.eu. As we continue to extend this resource user 284 

registration for access will be implemented to ensure the knowledge base is used for 285 

research only.  286 

 287 

Results 288 

 289 

Semantic representation of ZIKV infection 290 

The data model implemented to provide a semantic representation of ZIKV infection 291 
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is described in detail in supplemental Figure S2. Briefly, the model focuses on 292 

genes, diseases, pathogens and drugs, and distinguishes between associations 293 

derived from literature mining and those provided by experimental data such as 294 

PPIs. 295 

Text mining results 296 

We searched PubMed with the terms “Zika virus”, “Dengue”, “West Nile virus”, 297 

“Japanese encephalitis virus”, “Tick-borne encephalitis virus”, “Microcephaly” and 298 

“Guillain Barre Syndrome” initially in December 2016 and most recently in 299 

September 2018. The recent search resulted in 4927 hits for “Zika virus” and 19974, 300 

7700, 5918, 5213, 14248 and 8615 hits for the other search terms, respectively. 301 

During the analysed time frame, literature on ZIKV increased substantially from 1414 302 

in 2016 to the current 4927 hits (250%), whereas for all other terms, the increase in 303 

publications was closer to 10%. Accordingly, the recent search identified additional 304 

disease phenotypes, including carditis and skin diseases, that were reported to be 305 

associated with ZIKV that were not present in the previous search. An additional set 306 

of 236 open access full text articles about ZIKV were included. A natural language 307 

processing algorithm was applied to these sets of documents to efficiently extract the 308 

fast growing information in the biomedical literature. The text mining extracted a total 309 

of 11916 relationships, which were manually evaluated to 2982 verified relationships 310 

(Table 2). The distribution of the curated relationships is depicted in Fig 3, indicating 311 

that the largest overlap was for ZIKV and DENV and for DENV and WNV. The 312 

curated set of relationships was used for further analyses, including generation of 313 

molecular interaction and disease maps and querying for virus-associated genes or 314 

diseases. 315 
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Text 

corpus Key word 

Number of 

documents 

Number of 

relationships 

 Curated 

relationships 

ZIKV virus 

FT Zika virus 4,927; 236 FTa  1,192    298   

Medline Dengue 19,974  5,868    1,277   

Medline West Nile virus 7,700  1,586    387   

Medline 

Japanese encephalitis 

virus 5,918  1,594    354   

Medline 

Tick-borne encephalitis 

virus 5,213  508    134   

Medline Microcephaly 6,896  749    314   

Medline Guillain Barre Syndrome 4,133  419    218   

Total  

 

 11,916    2,982   

Table 2. Text mining analyses. aFT: full text 316 

 317 

Fig 3. Distribution of text mining relationships. Numbers represent the sum of 318 

different types of relationships, such as gene-pathogen, gene-disease, gene-gene, 319 

gene-compound and pathogen-disease relations, found for each virus in total as well 320 

as in overlap with other viruses (A), or ZIKV in overlap with text mining analyses of 321 

Microcephaly and Guillain-Barre Syndrome (B). 322 

 323 

Integrated data 324 

Overall, the ZIKA KB contains a network of 337332 human and host-pathogen PPI 325 

integrated from BioGRID and VirHostNet, as well as 18905 protein-drug interactions 326 
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integrated from BioGRID and DrugBank, and 450431 gene-disease associations 327 

from DisGeNET (Table 1). Recently, a variety of ZIKV- and other flavivirus-related 328 

large-scale data sets, including microarray gene expression (26,27), RNAseq (28) as 329 

well as CRISPR/Cas data (29), have become publicly available and were integrated 330 

to identify host factors that are affected during viral infection. 331 

Molecular interaction and disease maps 332 

Curated text mining results were used to populate the initial ZIKV molecular 333 

interaction and disease map. In a second step the map was extended with 334 

interaction data (PPI & protein-drug interaction by applying, a network search to 335 

implement the breadth-first algorithm (30) which connected genes extracted from text 336 

mining relationships based on the overall network. This set of interaction data can be 337 

filtered and explored interactively. In a systems medicine approach, a 338 

multidisciplinary expert team systematically analysed literature, public databases and 339 

experimental resources to create a formal, structured model of molecular and cellular 340 

ZIKV–host interactions (“molecular interaction and disease map”) 341 

Publicly available ZIKA KB 342 

After an assessment period of internal use, a web-browser based user interface was 343 

implemented to make the PREPARE ZIKA KB available to all ZIKV researchers. By 344 

openly sharing the collected data and information, the ZIKA KB allows researchers to 345 

generate hypotheses, identify knowledge gaps and interactively explore and interpret 346 

data. All data are currently in the public domain. Upon request, data submission can 347 

be modified to allow registered users to specify that submitted data should not be 348 

publicly available 349 
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. 350 

Use of the ZIKA KB 351 

In the following we provide several example use cases. For instance, publicly 352 

available interaction data, such as the PPI and protein–drug interaction data can be 353 

used to visualize drug targets and host factors involved in ZIKV pathogenesis. 354 

Alternatively, users can filter for PPIs whose source or target is a drug or refine 355 

search results to include only proteins localized to a specific cellular compartment, 356 

such as the endoplasmic reticulum. The returned networks can be interrogated 357 

subsequently to identify host factors that are targeted by the virus and to search for 358 

drugs that interact with these host factors. and thus might contribute to drug 359 

repositioning for future treatment options for ZIKV infection. The maps can also be 360 

explored further by using integrated expression and knockout data.  361 

To explore the integrated literature knowledge for relevance or obtain an overview of 362 

drug targets or identify critical genes within the network consisting of gene-disease-363 

pathogen relationships, predefined perspectives were overlaid onto the default map. 364 

The association of ZIKV with microcephaly was reported most frequently across all 365 

ZIKV literature and this association is visualized by the thickness of the edges (Fig 366 

4A). Known drug targets interacting directly with ZIKV or microcephaly were 367 

highlighted in green for potential intervention evaluation (Fig 4B). Genes playing a 368 

role in ZIKV infected human neural progenitor cells (hNPCs) were also highlighted 369 

for comparative analyses of complementary experimental analyses (Fig 4C). 370 

 371 
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Fig 4. Different ZIKV molecular interaction and disease map perspectives. (A) 372 

The amount of literature evidence is depicted by relation strength. (B) Genes known 373 

to be drug targets are color coded: the gene is a target for one (green) or five or 374 

more (blue) drugs or no drugs (orange). (C) Genes (hNPCs challenged with ZIKV, 375 

Tang et al, 2016) are color coded to indicate up- (red) and down- (blue) regulation . 376 

 377 

Diseases associated with flaviviruses 378 

To further explore and validate the knowledge derived from the curated text mining 379 

analyses, diseases associated with a virus of interest were queried. The results are 380 

displayed in Fig 5. It was assumed that the disorders that were most frequently 381 

associated with a virus were the primary disorder for infection with the virus. 382 

Microcephaly and GBS, for instance, are the most frequently mentioned disorders 383 

associated with ZIKV infection. Dengue fever and hematopoietic system disorders 384 

(e.g. thrombocytopenia) are frequently listed for DENV, whereas encephalitis is the 385 

most frequently mentioned disease for WNV, JEV and TBEV. Each disease thus 386 

represents the corresponding primary manifestation of these viral infections. 387 

Encephalitis is equally frequently associated with ZIKV and DENV confirming that 388 

ZIKV is also an aetiological agent in encephalitis. 389 

 390 

Fig 5. Diseases associated with flaviviruses. The amount of literature evidence 391 

(y-axis) for each of the diseases (x-axis) is grouped for the five flaviviruses. Symbols 392 

highlight neurological diseases associated with more than one virus. Triangle: GBS, 393 

moon: Encephalitis, pie-chart: Peripheral nervous system disease, star: Neurologic 394 

manifestations 395 
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 396 

 397 

Potential inhibitors of ZIKV infection 398 

 399 

Currently there is no approved therapy to treat ZIKV infection. Barrows et al recently 400 

performed a screen of 774 FDA-approved drugs to identify agents that could 401 

potentially be repositioned as treatment options for ZIKV infection (31). Of these, 24 402 

potential inhibitors of ZIKV infection were identified and validated in human neural 403 

stem cells and primary amnion cells. In addition to their potential use for treatment, 404 

these compounds provide a resource to study ZIKV pathogenesis and can contribute 405 

to insights into the biology of ZIKV. To this end, the ZIKV molecular interaction and 406 

disease map described in Figure 4 was extended and filtered to include these 407 

potential “ZIKV effective drugs” which were connected to genes associated to ZIKV 408 

through PPIs (Fig 6). After this extension ten of the identified ZIKV effective drugs 409 

were  part of the new map which we then used to gain insight into potential drug 410 

mechanisms and ZIKV biology. One of the drugs, Bortezomib, is a known antiviral 411 

compound that inhibits replication of flaviviruses (32). Bortezomib is a proteasome 412 

inhibitor, suggesting that proteasome action is essential for ZIKV replication. This 413 

conclusion is in agreement with published CRISPR screen data (29) identifying 414 

genes associated with protein degradation required for ZIKV infectivity. Interestingly, 415 

four of the predicted ZIKV effective drugs (Mefloquine, Mebendazole, Sorafenib and 416 

Dactinomycin) are associated with genes which, through PPIs, are involved in ErbB 417 

signalling. ErbB is associated with the development of neurodegenerative diseases 418 

when inactivated (33). Four of these genes (MYC, GSK3B, BRAF and MAP2K2) are 419 

reported to be up-regulated in a published RNAseq analysis (28) performed in 420 
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human embryonic cortical neural progenitor cells (Fig 7). These genes can serve as 421 

an entry point to be tested in specific assays designed to unravel molecular 422 

mechanisms between of ZIKV involvement in microcephaly. 423 

Another predicted ZIKV effective drug is Sorafenib, a multi-target tyrosine kinase 424 

inhibitor. The ZIKV map was used to identify the effective target of Sorafenib:  425 

1. Sorafenib interacts with 4 target genes, FLT3, BRAF, VEGFR (also known as 426 

KDR) and PDGFR. The latter two genes are known to interact with additional drugs, 427 

such as Sunitinib, Pazopanib, Dasatinib and Imatinib. These additional drugs were 428 

among those which had no effect in the ZIKV infection assay. 429 

2. In ZIKV infection expression data, none of the genes producing protein products 430 

that interact with VEGFR and PDGFR through known PPI (orange edges) with ZIKV 431 

are differentially expressed (Fig 8). In contrast, BRAF and SOCS2, a FLT3 432 

interactor, were unregulated upon ZIKV infection.  433 

Based on the observations above drawn from the ZIKV map, we hypothesise that 434 

FLT3 or BRAF are the effective targets of Sorafenib in ZIKV infection, rather than 435 

VEGFR and PDGFR. This exemplifies how molecular interaction and disease maps 436 

can be used to provide further insight into ZIKV biology. 437 

 438 

Fig 6. ZIKV molecular interaction and disease map extended for ZIKV effective 439 

drugs. 440 

The following are the symbols used in the map. Orange circles: genes; green stars: 441 

ZIKV effective drugs; yellow rectangles: flaviviruses; pink rectangles: diseases; violet 442 

rectangles: GO processes or KEGG signalling pathways. The following edge colors 443 

are used in the map. Black edges: relationships derived from text mining; orange: 444 

protein-drug or PPIs. The latter were obtained by applying a network search 445 
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algorithm selecting the drug target of a ZIKV effective drug as start and STAT2 446 

(contained in a direct relation with ZIKV) as the end point.  447 

 448 

Fig 7. ZIKV molecular interaction and disease map extended for ZIKV effective 449 

drugs (enlarged perspective). 450 

Up- and down-regulated genes (hNPCs challenged with ZIKV, Tang et al, 2016) are 451 

highlighted by a color code ranging from red to blue from enlarged perspectives 452 

surrounded by dotted boxes in Figure 6. 453 

 454 

Fig 8. ZIKV molecular interaction and disease map extended for ZIKV effective 455 

drugs (enlarged perspective). 456 

Up- and down-regulated genes (hNPCs challenged with ZIKV, Tang et al, 2016) are 457 

highlighted by a color code ranging from red to blue from enlarged perspectives 458 

surrounded by dotted boxes in Figure 7. 459 

 460 

 461 

The network analysis described above could also be used to rank drugs according to 462 

their distance to known ZIKV associated genes, such as STAT2, to suggest a metric 463 

for priorisation in screening assays (34). The discussed extended ZIKV map contains 464 

429 target gene products that interact with FDA approved drugs. Evaluation of the 465 

distance between STAT2 and drug targets via experimentally proven PPIs revealed 466 

that targets of ZIKV effective drugs were on average more proximal to STAT2 467 

compared to other targets.  468 

Combining the proximity measure with additional knowledge, for example the “FDA 469 

pregnancy” label, reduces the number of drugs to be screened from 774 to 64. 470 
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 471 

 472 

Discussion 473 

 474 

In case of an emerging epidemic, public health as well as clinical and preclinical 475 

research responses are typically hampered by a lack of structured, curated and 476 

actionable knowledge. The results of this study describe an approach to knowledge 477 

extraction and mapping that can quickly provide an overview of existing and missing 478 

information if done by a dedicated and trained group of experts. The developed 479 

workflow does not follow formal expert consensus seeking processes, such as 480 

Delphi (13), systematic literature review processes such as Cochrane (35) and 481 

PRISMA (12), or medical guideline related processes (36,) as these processes are 482 

not compatible with the need for speed during emerging epidemics. Nevertheless, 483 

the workflow adopts several important aspects of good practice: it is systematic, 484 

independent and transparent, provides evidence for all integrated information and 485 

uses appropriate quality criteria. Combined with the software tools employed in the 486 

process, this pragmatic approach enabled much faster knowledge generation than 487 

more traditional methods. 488 

 489 

The tools employed in the process need to be able to semantically integrate 490 

disparate structured resources of heterogeneous data with ease. However, much of 491 

the knowledge that represents scientific research advancements is locked within the 492 

unstructured text of classical publications, such as journal articles, newsfeeds or 493 

free-form web publications (e.g. Zika-related clinical information at 494 

http://www.ovid.com/site/zika/resources.html). The sheer volume of this published 495 
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information grows constantly and exponentially and, for the most active areas of 496 

research, far exceeds the capacity of individual scientists and medical doctors to 497 

identify and read all relevant articles. Literature mining, a well-established technology 498 

to extract meaningful information from text, provides valuable assistance in 499 

structuring the massive amounts of text data and, therefore, is an indispensable tool 500 

in the process of guidance generation. Dynamic integration of objects and the 501 

relationships they participate in that are present in the literature through the use of 502 

structured resources and experimental data is a pre-requisite for analysis and 503 

distinguishes the ZIKA KB from text mining-only solutions, such as ContentMine 504 

(http://contentmine.org/) or databases dedicated to specific questions such as 505 

SncRNAs linking to disease symptoms ((http://zikadb.cpqrr.fiocruz.br/zika/). 506 

 507 

Beyond our initial analysis presented here, users can explore the ZIKA KB within a 508 

web-based user interface with the use of the online manual (S5) and the step-by-509 

step guide (S4) to reproduce the presented results. We will collect and highly 510 

appreciate any user feedback to optimise user experience for broad adoptation. In 511 

contrast to alternative useful resources such as the Virus Pathogen Resource 512 

(viprbrc.org), which focus on gene and protein sequences, the ZIKA KB integrates 513 

genetic, phenotypic and drug knowledge about ZIKV to facilitate the generation of 514 

hypotheses, define research priorities and enable better understanding of viral 515 

pathogenesis. In addition to interactive exploration, a corresponding ranking of 516 

connections in a network based on integration of multiple pieces of biological 517 

evidence can also be performed systematically and on a large scale, for example, by 518 

applying the ChainRank method (37), which we plan to integrate in the future. 519 

 520 
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Based on the text mining analyses performed here, disease profiles for the set of five 521 

neurotropic flaviviruses were confirmed. Common knowledge was retrieved along 522 

with underlying literature evidence and rare manifestations, such as encephalitis, 523 

associating with ZIKV and DENV.  524 

 525 

Using a molecular interaction and disease map based on ZIKV, Microcephaly, and 526 

GBS text mining analyses results, we showed that further exploration of the 527 

described map can provide insight into, for example, ZIKV biology, propose 528 

conclusions for research decisions, predict drug efficacy, as exemplified in the 529 

results section, as well as propose hypotheses on specific host factors and signalling 530 

pathways affected by ZIKV. The map can help to distinguish between multiple 531 

potential targets of a ZIKV effective drug. The integration of information about 532 

effectiveness of other drugs as well as their target genes and the information about 533 

genes whose expression is affected during ZIKV infection indicated that Sorafenib 534 

likely acts via its target genes, FLT3 and/or BRAF, but not via its alternative target 535 

genes VEGFR or PDGFR. In addition, the number of drugs to be screened was 536 

reduced from 774 to 64 by filtering potential drug candidates based on their network 537 

distance to ZIKV infection associated genes and additional phenotype relevant 538 

additional knowledge, such as contained in the “FDA pregnancy” label.  539 

 540 

The conclusions that can be drawn are limited by the initially low number of available 541 

publications and limited experimental data, a situation which is inherent to most 542 

emerging epidemics. Nevertheless, the work presented shows that the use of a 543 

knowledge integrating system can provide guidance for clinical and research 544 

responses, such as follow-up studies regarding the association between ZIKV, 545 
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microcephaly and epilepsy, the validation of candidate drugs for ZIKV treatment, and 546 

the validation of candidate genes in specific functional assays to better understand 547 

molecular ZIKV infection mechanisms. or to complement existing functional genomic 548 

approaches with proteomics studies, such as the integrated proteomics approach 549 

identifying cellular targets of ZIKV proteins (38,39). These studies allow additional 550 

comparative analyses between ZIKV and other flavivirus family members in terms of 551 

virulence and pathogenic traits.  552 

Another limitation of the system is the restricted types of information which can be 553 

retrieved by text mining. While qualitative associations between genes/proteins, 554 

drugs, diseases and organisms are readily amendable to automatic approaches, it is 555 

currently almost impossible to extract, for example, clinical study designs, detailed 556 

quantitative information or complex treatment plans. 557 

Finally, the ZIKA KB in its current stage enables exploration of the integrated 558 

information, as well as generation and curation of text-mining analysis but is not a 559 

public tool for molecular interaction and disease map generation. The functions 560 

required for these tasks will need further refinement before they can be made 561 

available in a general way.  562 

 563 

In summary, this approach in our opinion, provides a feasible way to collect and 564 

integrate existing knowledge to better understand the molecular mechanisms of an 565 

emerging pathogen. In addition our approach helps to identify gaps in knowledge 566 

and, together with the other features, guides rapid and effective responses to future 567 

epidemics. We have made the specific outcome of our approach, the Zika 568 

KnowledgeBase, publicly available as a hopefully valuable resource to the ZIKV 569 

research community. 570 
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In the light of the current COVID-19 pandemic we now apply the described workflow 571 

to SARS-CoV-2 and other coronaviruses and will make the developed resource 572 

available as described. 573 

 574 
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 709 

Supporting Information 710 

 711 

S1 Fig. Molecular interaction and disease map generation protocol 712 

 713 

S2 Fig. ZIKV KnowledgeBase Data Model 714 

 715 

Based on input from clinical and virology experts the concepts required to represent 716 

existing pathophysiological knowledge of infectious diseases were modelled using 717 

the BioXM Knowledge management environment. To this end objects (as nodes) 718 

and relations (as edges) are defined on an abstract level such as “gene”, “disease” 719 

or “interacts with”. For the ZIKV KB we focused on concepts required to represent 720 

text mining results and information from structured databases of protein-protein and 721 

drug – protein interaction, namely genes, diseases, pathogens and drugs. 722 

Pathogens are displayed as yellow nodes and were uniquely identified by using the 723 
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NCBI Taxonomy ontology. Compounds (white nodes) were referenced to entries of 724 

the ChEBI ontology. Diseases (violet nodes) and genes (orange nodes) can 725 

reference one or multiple sources such as ICD10, Entrez or Ensembl. Relationships 726 

between pathogens, genes, drugs and compounds were defined by three types of 727 

text mining relations, upregulation (green edges), downregulation (red edges) and 728 

regulation (black edges). Associated information, not represented as object or 729 

relation, is being stored as so called “annotation” basically a note that can be 730 

assigned to any semantic concept. The annotation form “Textmining information 731 

evidence”, for example, stores information, such as the sentence containing the 732 

extracted statement (field “Reference”) or the predicate (field “Interaction type”) and 733 

links directly to the PubMed entry (represented as BioRS entry: MEDLINE). To 734 

enable experts to support or contradict extracted text mining relationships the 735 

annotation form “Textmining Validation” was introduced to generate a configurable 736 

curation workflow. Molecular interaction and disease maps are modelled using the 737 

“context” object type to group specific sub-networks (interactions between genes, 738 

diseases, pathogens and drugs) within the global semantic network. PPI and drug-739 

protein interactions are represented by the “Interaction” relation (orange edges) with 740 

supportive evidence stored in two annotation forms (“BioGRID Interaction Evidence” 741 

and “Interaction Information” storing information from the VirHostNet database), and 742 

can be added as additional sub-networks to a disease map.  743 

Based on the data model dynamic visualisation can be generated, for example drug 744 

targets or differentially expressed genes based on configurable queries and views. 745 

The data model is automatically transformed into a natural language like query and 746 

reporting language. This language can be used to e.g. define a query retrieving the 747 

number of drugs that interact with a protein of interest, and generating a view which 748 
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applies a colour code to a gene according to the number of interacting drugs.  749 

 750 

S3 Fig. Molecular interaction and disease map wizard. (i) A text mining analysis 751 

result (or multiple ones) can be chosen from to start populating the map. (ii) Based 752 

on the genes extracted from text mining relationships (highlighted in orange, top left) 753 

a network search algorithm is applied to extend the map with PPI & protein-drug 754 

interactions. (iii) Upon selection of wanted interaction data the final map is 755 

automatically rendered in different perspectives, displaying literature evidence, 756 

experimental data or drug targets (shown from left to right, bottom). 757 

 758 

S4 Step-by-step guide to reproduce the results in the web interface 759 

 760 

S5 Manual for web interface 761 

 762 
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