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ABSTRACT 

Knowledge of genomic features specific to the human lineage may provide insights into brain-related 

diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation 

identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly 

conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have 

been subject to human-specific purifying selection and are enriched for brain-specific elements. We 

find that CNCRs are depleted from protein-coding genes but enriched within lncRNAs. We demonstrate 

that per-SNP heritability of a range of brain-relevant phenotypes are enriched within CNCRs. We find 

that genes implicated in neurological diseases have high CNCR density, including APOE, highlighting 

an unannotated intron-3 retention event. Using human brain RNA-sequencing data, we show the intron-

3-retaining transcript/s to be more abundant in Alzheimer’s disease with more severe tau and amyloid 

pathological burden. Thus, we demonstrate the importance of human-lineage-specific sequences in 

brain development and neurological disease. We release our annotation through vizER 

(https://snca.atica.um.es/browser/app/vizER). 
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INTRODUCTION 
 

Humans are perceived to be particularly vulnerable to neurodegenerative disorders relative to other 

primates on both a pathological and phenotypic level1-5. This is exemplified in Alzheimer’s disease, in 

which a similar phenotype is not seen in ageing non-human primates, nor are the characteristic 

neurofibrillary tangles on pathological examination1,6. Likewise, Parkinson’s disease does not naturally 

occur in non-human primates, whose motor deficits do not respond to levodopa administration and a 

Lewy body pathological burden is not present5,7. This has led to the hypothesis that the same 

evolutionary changes driving encephalisation which have steered the development of characteristic 

human features may predispose to disorders that affect the brain2,5,6. In the case of Alzheimer’s disease, 

it is postulated that the accelerated evolution of intelligence, brain size and aging predispose to selective 

advantages, which in later life, have deleterious effects on cognition through the very same pathways8. 

Therefore, identifying the genomic changes unique to the human lineage may not only provide insights 

into the evolution of human-lineage-specific phenotypic features, but also into the pathophysiology 

underlying uniquely human diseases. 

 

Previous studies attempting to identify human-lineage-specific variation and functional elements in the 

human genome have focused on genomic conservation as calculated by aligning and comparing 

genomes across species. But, conservation measures alone do not fully identify regions with evidence 

of human-specific purifying selection. This is because a large part of the genome is evolving neutrally 

and sufficient phylogenetic distance is required to detect these changes9. Furthermore, alignment 

methods do not reliably detect substitutions that preserve function9. Conversely, some genes such as 

those implicated in immune system function may be subject to rapid evolutionary turnover even among 

closely-related species9.  For these reasons, analysing conservation alone has limited capacity to capture 

human-specific genomic elements9.  

 

The increasing availability of whole genome sequencing (WGS) has opened new opportunities to 

address this issue. Using intra-species whole-genome comparisons10,11, we are better able to appreciate 
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sequence differences between individuals of the same species, and identify genomic regions in humans 

containing significantly fewer genetic variants than expected by chance, designated as constrained 

genomic regions. This form of analysis, which is based on the assumption that most selection is negative 

or purifying (i.e., those which remove new deleterious mutations), has been crucial for classification of 

exonic variation and attribution of pathogenicity12. However, many genomic regions would be expected 

to be both constrained and conserved; such regions have been maintained by natural selection across 

species, including humans. This means that metrics reflecting constraint alone cannot identify human-

specific elements as the same regions could also be conserved in other species.  

 

This has led previous analyses to combine these metrics of sequence constraint and conservation to 

identify genomic regions with evidence for human-specific selection13,14. Ward and Kellis successfully 

applied this approach to demonstrate that a range of transcribed and regulatory non-conserved elements 

showed evidence of lineage-specific purifying selection14. However, this analysis was limited by the 

availability of WGS data and metrics on human genetic variation were derived from the 1000 Genomes 

pilot data, which sequenced with only two to six times coverage15. Advances in sequencing technology 

have increased the feasibility of deep sequencing of human populations leading to a much more detailed 

understanding of genetic variation between humans10. In fact, the recent sequencing of the genomes of 

10,545 human individuals at a coverage of 30 to 40 times identified 150 million single nucleotide 

variants of which 54.7% had not been reported in dbSNP16 or the most recent phase 3 of the 1000 

Genomes Project17. The availability of this information has already enabled more accurate identification 

of relatively constrained regions of the genome, which has led to the development of the context 

dependent tolerance score (CDTS)11. CDTS is derived from estimating how the observed genetic 

variation compares to the propensity of a nucleotide to vary depending on its surrounding context using 

the high-resolution profiles determined from deep sequencing data11. Yet, this information has not been 

combined directly with improved conservation data to identify regions with evidence for human-

specific selection. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.046441doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.046441


5 

 

In this study, we make full use of these resources to develop a novel, granular genomic annotation which 

efficiently captures information on intra-species constraint and inter-species conservation 

simultaneously and identifies constrained, non-conserved regions (CNCRs). We use this annotation to 

test the hypothesis that CNCRs are not only specific to the human lineage, but given the encephalisation 

of humans, that CNCRs will be enriched within brain-specific functional and regulatory elements as 

well as risk loci for neurological disease. We show that these regions are enriched for SNP-heritability 

for a range of neurological and psychiatric phenotypes. Furthermore, by calculating CNCR density 

within the boundaries of known genes, we develop a gene-based metric of human-specific constraint. 

This analysis highlights APOE and leads to the identification of an intron-3 retaining transcript of 

APOE, the usage of which is correlated with Alzheimer’s disease pathology and APOE-4 status. This 

approach provides direct support for the role of human-specific CNCRs in brain development and 

complex neurological phenotypes. 
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MATERIALS & METHODS 
 

GENERATION OF AN ANNOTATION FOR THE IDENTIFICATION OF CNCRS 

We generated a combined annotation to capture information on intra-species constraint and inter-

specifies conservation simultaneously, using CDTS together with phastCons20 scores (Figure 1). The 

previously-validated map of sequence constraint (http://www.hli-opendata.com/noncoding)  generated 

using 7,794 whole genome sequences11 was used to assign a single CDTS score to each non-overlapping 

10 base pair (bp) region throughout the genome (build GRCh38, 248,925,226 bins). The phastCons20 

score, which calculates the likelihood ratio of negative selection based on the total number of 

substitutions during evolution of an element between species18, was used as a measure of inter-species 

conservation (http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons20way/)18. PhastCons20 was 

used as it compares the human genome to the genomes of less divergent species (16 other primates and 

three mammals). For each 10bp bin labelled with a CDTS value, we assigned the corresponding mean 

phastCons20 score. Bins without a conservation score due to insufficient species in the alignment were 

not considered (0.218% of the genome). For the remaining 248,381,744 bins, we ranked both CDTS 

and mean phastCons20 scores across the whole genome such that the highest ranks represented the most 

constrained and conserved regions respectively. We calculated the log2 ratio of the rank of constraint 

to the rank of conservation for each 10bp bin (termed constrained, not conserved score, CNC score). 

This resulted in scores with a distribution centred at 0 signifying no fold change between the ranks of 

the two metrics (Supplementary Figure 1). Finally, we defined CNCRs as genomic regions that were 

among the 12.5% most constrained, with a CNC score of ≥ 1 (i.e. a two-fold higher ranking in constraint 

than conservation). We use this definition for CNCRs throughout this study.  

 

 

INVESTIGATING THE RELATIONSHIP BETWEEN CNCRS AND EXISTING ANNOTATION  
 

To investigate the relationship between CNC scores for genomic regions and genomic features, we 

calculated the distribution of CNC scores across genomic features defined by GENCODE v.5319 and 

Ensembl v.9220. We restricted our analysis to the 12.5% most constrained regions only (31,115,616 ten 
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bp bins) and segregated these regions into equally-sized deciles ranked on the basis of CNC scores such 

that the highest decile (90 – 100 decile) represented a high CNC score containing the most constrained 

and least conserved sequences. Each 10bp region was then assigned a single overlapping genomic 

feature. To avoid conflicts arising from overlapping GENCODE and Ensembl definitions, we 

preferentially assigned a single genomic feature to a given region by prioritising features as described 

in Supplementary Table 1.   

 

ENRICHMENT OF COMMON-SNP HERITABILITY IN BRAIN-RELATED PHENOTYPES 

FOR CNCRS 
 

Stratified linkage disequilibrium score regression (LDSC) was used to assess the enrichment of 

common-SNP heritability for a range of complex diseases and traits within our annotation21,22.  Stratified 

LDSC makes use of the increased likelihood of a causal relationship in a block of SNPs in linkage 

disequilibrium (LD) to correct for confounding biases that include cryptic relatedness and population 

stratification in a polygenic trait22. Using established protocols (https://github.com/bulik/ldsc/wiki), we 

tested whether SNPs located within our annotation contributed significantly to SNP-heritability after 

controlling for a range of other annotations described within the baseline mode (v.1.2). This analysis 

generates a coefficient z-score, from which we calculated a one-tailed coefficient p-value. Stratified 

LDSC regression analyses were also run to incorporate background SNPs defined as all SNPs in the 

genome that include a CDTS and phastCons20 annotation, to avoid over-estimation of the contribution 

to SNP-heritability. We assessed the annotation for SNP-heritability enrichment in complex brain-

related disorders and phenotypes of intelligence23, Alzheimer’s disease24, Parkinson’s disease 

(excluding 23&Me participants)25, schizophrenia26 and major depressive disorder (excluding 23&Me 

participants)27 (Supplementary Table 2). We considered SNPs within CNCRs and its two constituent 

groups (Figure 1) which fall either into constrained only or non-conserved only annotations as defined 

respectively by: (i) CNCRs annotation: SNPs with a given CNCR density; (ii) Constrained annotation: 

SNPs located within the 12.5% most constrained regions of the genome irrespective of conservation 

score; (iii) Non-conserved annotation: SNPs located within relatively non-conserved genomic regions 
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with a conservation rank determined by the rank of the first quartile phastCons20 score at a CNC score 

of 1 (rank ≤ 25,623,592) (irrespective of constraint score). We provide Bonferroni-corrected p-values, 

which account for the number of annotation categories and GWASs tested (total of 15 conditions).  

 

GENERATION OF A GENE-BASED METRIC FOR CNCRS AND GENE SET ENRICHMENT 

ANALYSIS 
 

To generate a metric of human-specific constraint, which could be applied to a gene rather than a 10bp 

region, we calculated the density of CNCRs within each gene, the length of which was defined by the 

transcription start and stop sites for that gene (GRCh38.v97). We used g:ProfileR (R Package)28 for 

gene set enrichment analysis. We used the three sets of tested annotations incorporating genes that fell 

into CNCRs, constrained regions and non-conserved regions in the gene set enrichment analysis as 

previously described for LDSC annotation and as defined in Figure 1. The background gene list in all 

analyses comprised 49,644 genes from all regions of the genome with a CDTS and phastCons20 

annotation. The correction method was set to g:SCS to account for multiple testing28. We used 

REViGO29 to summarise the significant GO terms, and to derive the term frequency, which is a measure 

of GO term specificity.  

 

To further characterise CNCR density within genes associated with disease, we first studied phenotype 

relationships of all Mendelian genes within the Online Mendelian Inheritance in Man (OMIM) 

catalogue (http://api.omim.org)30. We compared the CNCR density of all neurologically-relevant 

OMIM genes to all genes within CNCR annotation. Secondly, in order to investigate the CNCR density 

within genes associated with complex disorders, we used the Systematic Target OPportunity assessment 

by Genetic Association Predictions (STOPGAP) database, a catalogue of human genetic associations 

mapped to effector gene candidates derived from 4,684 GWASs31. We selected for genes associated 

with SNPs that surpassed a genome-wide significant p-value of 5×10-8 and which fulfilled medical 

subject heading for associated neurological/behavioural diseases. We used these sets to identify 

potential genes of interest associated with brain-related disorders which carry a high CNCR density.  
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SEQUENCING OF APOE TRANSCRIPTS IN HUMAN BRAIN  
 

Focussing on a human-specific event identified within APOE from the preceding analyses, we used 

Sanger sequencing of cDNA reverse transcribed from pooled human hippocampus poly-A-selected 

RNA (Takara/Clontech 636165) to support the presence of the human-specific intron-3 retention event 

identified within APOE (GRCh38: chr19:44907952-44908531). For the reverse transcription, we used 

500 ng of input RNA, with 10 mM dNTPs (NEB N0447S), VN primers and strand-switching primers 

(Oxford Nanopore Technologies SQK-DCS109), 40 units of RNaseOUT inhibitor (Life Technologies 

10777019) and 200 units of Maxima H Minus reverse transcriptase with 5X reverse transcription buffer 

(ThermoFisher EP0751). PCR amplification of the cDNA was performed using primer pairs designed 

to span across intron-2 to intron-3 (P1), intron-3 and exon 4 (P2-4) and intron-3 alone (P5) of APOE 

(ENST00000252486.9) (Supplementary Table 3). PCR was performed using Taq DNA polymerase 

with Q-solution (Qiagen) and enzymatic clean-up of PCR products was performed using Exonuclease 

I (ThermoScientific) and FastAP thermosensitive alkaline phosphatase (ThermoScientific). Sanger 

sequencing was performed using the BigDye terminator kit (Applied Biosystems) and sequence 

reactions were run on ABI PRISM 3730xl sequencing apparatus (Applied Biosystems). 

Electropherograms were viewed and sequences were exported using Sequencher 5.4.6 (Gene Codes). 

Sequences were aligned against the human genome (hg38) using BLAT and visually inspected for 

confirmation of validation. 

 

ANALYSIS OF PUBLIC RNA-SEQUENCING DATA  
 

We used publicly-available short read RNA-sequencing data from human brain post-mortem samples 

provided by Genotype-Tissue Expression Consortium (GTEx) v.7.132 and the Religious Orders Study 

and Memory and Aging Project (ROSMAP) Study33 and to quantify the human-specific intron-3 

retention event in APOE highlighted by our analysis. For GTEx data, we used pre-aligned files available 

from recount2 (https://jhubiostatistics.shinyapps.io/recount/)34. Both studies within ROSMAP are 

longitudinal clinicopathological cohort studies of aging and/or Alzheimer's disease. We downloaded 
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BAM files for ROSMAP bulk-RNA sequencing data from the Synapse repository 

(https://www.synapse.org/#!Synapse:syn4164376) for analysis. To quantify the intron-3 retention 

event, we calculated the coverage of intron-3 normalised for the coverage across the entire APOE gene, 

as defined by the transcription start and end sites. To quantify splicing of intron-3, we calculated the 

number of exon-3 to exon-4 junction reads (defined as reads mapping with a gapped alignment), 

normalised for all APOE junction reads detected and currently within annotation. We used a ratio of the 

normalised coverage to normalised junction count over intron-3 as an estimate of the proportional use 

of the intron-3-retaining transcript, such that a high ratio is associated with a higher usage of intron 

retention within both GTEx and ROSMAP data. Based on existing ROSMAP results35 and principal 

component analysis of fragments per kilobase million (FKPM) data, we incorporated covariates to 

account for the effect of batch, RNA integrity number (RIN), postmortem interval (PMI), study index, 

ethnicity, age at death and sex on estimates of intron-3-retaining transcript usage. Using the resulting 

mixed linear model, we compared the intron-3 retention normalised coverage to junction ratio across 

clinical disease states, pathological states and APOE status in 634 post-mortem brain samples.  

 

DATA AVAILABILITY 

We release our annotation of CNC score as an interactive visualisable track via online platform vizER: 

(https://snca.atica.um.es/browser/app/vizER) and provide a publicly-downloadable table of CNCR 

density for genes within our annotation. 
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RESULTS 
 

GENOMIC REGIONS WITH HIGH CONSTRAINT, BUT NOT CONSERVATION WERE 

ENRICHED FOR REGULATORY, NON-CODING GENOMIC FEATURES 
 

CNC scores, which combine information from CDTS and phastCons20, were used to capture evidence 

of disparity between constraint and conservation within a genomic region (Figure 1). We investigated 

the relationship between CNC scores and known genomic features within the most constrained portion 

of the genome (top 12.5%). This analysis demonstrated clear patterns of enhancement and depletion for 

genomic elements across CNC scores, which significantly differed from similar analyses performed 

using constraint metrics alone11 (Figure 2a). Among constrained genomic regions with the highest CNC 

scores (90-100 decile, signifying high constraint, but low conservation) we saw a depletion for coding 

elements of 27-fold relative to genomic regions with the lowest CNC scores. This contrasts with the 

pattern using constraint metrics alone where the most constrained genomic regions are highly enriched 

for coding exons11. On the other hand, promoter, promoter-flanking, and non-coding RNA features were 

over-represented in the highest compared to the lowest CNC deciles by 4.7, 1.9 and 1.5-fold 

respectively. Thus, genomic regions with high CNC scores are enriched for regulatory, non-coding 

genomic features.  

 

GENES WITH THE HIGHEST DENSITY OF CNCRS ARE ENRICHED FOR LONG NON-

CODING RNA 
 

Next, we applied a CNC score cut-off of ≥ 1 (signifying a two-fold higher ranking in constraint than 

conservation) to define a set of genomic regions which were constrained, but not conserved (termed 

CNCRs). Next, we wanted to investigate whether CNCRs could be used to identify specific genes of 

interest. With this in mind, we used CNCR density to identify gene sets which might be expected to 

contribute most to human-specific phenotypes. Consistent with the findings above, we found that as the 

CNCR density threshold was increased to define the gene sets of interest, there was a marked reduction 
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in the proportion of protein-coding genes (β-coefficient between proportion and CNCR density = -1.061 

and false discovery rate (FDR)-corrected p = 0.00162), and an increase in the proportion of long non-

coding RNA (lncRNA, β-coefficient 0.385 and FDR-corrected p = 0.0161), and microRNA-encoding 

genes (miRNA, β-coefficient 0.394 and FDR-corrected p = 0.00116) (Figure 2b). Interestingly, this 

relationship was not clearly observed when considering unprocessed snRNA and other RNAs (Figure 

2b). In order to determine whether the relationship between CNCR density and gene biotype was driven 

by sequence constraint or conservation, we also generated comparator gene lists based on constrained-

only and non-conserved regions alone. Importantly, lncRNA and protein-coding gene proportions do 

not follow the same directionality with increasing density when constraint or non-conservation alone is 

considered (Figure 2b). Thus, this analysis highlighted the specific importance of lncRNAs as 

compared to other classes of non-coding RNAs in driving human-specific patterns of gene expression. 

 

SIGNIFICANT ENRICHMENT OF HERITABILITY FOR NEUROLOGICALLY-RELEVANT 

PHENOTYPES 
 

Given the enrichment of regulatory features within genomic regions with a high CNC score, we 

postulated that such regions could also be enriched for disease risk.  In order to study this, we 

investigated CNCRs for evidence of enriched heritability for a range of complex neurologically-relevant 

phenotypes (Supplementary Table 4). After Bonferroni correction for multiple testing, we found that 

CNCRs exhibited significant enrichment in heritability for intelligence (coefficient p = 4.19×10-24); 

Parkinson’s disease (coefficient p = 4.65×10-5); major depressive disorder (coefficient p = 2.95×10-8) 

and schizophrenia (coefficient p = 5.26×10-19), but not for Alzheimer’s disease (Figure 3). While a 

significant enrichment in heritability for intelligence, major depressive disorder and schizophrenia were 

also observed in the constrained regions alone (and to a lesser extent, non-conserved regions), we note 

that the regression coefficient for CNCRs was at least two-fold larger for the CNCR annotation 

compared to the constrained annotation (Supplementary Table 4). Similarly, significant enrichment 

in heritability for Parkinson’s disease was only observed in CNCRs. Thus, by combining metrics for 

both constraint and conservation in our annotation, we derived an independent annotation that shows a 
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higher level of enrichment in heritability for neurologically-related phenotypes than annotations based 

on constraint or conservation alone.  

 

THE PROPORTION OF ENRICHED GENE SETS WITH NEUROLOGICALLY-RELATED GO 

TERMS INCREASES IN GENES WITH THE HIGHEST DENSITY OF CNCRS  
 

To investigate these findings further, we defined gene sets based on their CNCR density and analysed 

their GO term enrichment. We assessed gene sets defined across a range of CNCR densities (> 0.0 to ≥ 

0.5 at 0.1 increments). We found that the proportion of neurologically-associated GO terms with 

significant enrichments (g:SCS-corrected p < 0.05) increased among gene sets with increasing CNCR 

gene densities (Supplementary Figure 2). Importantly, a similar analysis of gene sets defined by 

constraint alone or non-conservation alone did not contain any neurologically-enriched GO terms 

(Figure 4).  We identified the gene set with the highest proportion of nervous system-related terms at a 

CNCR genic density of 0.3 (Supplementary Figure 2). The only GO terms specific to a tissue process 

were related to the nervous system (Figure 4, Supplementary Table 5) and spanned terms such as 

neuronal development (GO:0048663, corrected p = 5.46×10-7) and spinal cord differentiation 

(GO:0021515, corrected p = 3.64×10-7). The remaining significantly enriched GO terms related to 

ubiquitous processes including protein targeting (GO:0045047, p = 9.93×10-4) and DNA binding 

(GO:0043565, p = 4.81×10-4). Of note, analysis of gene sets defined on the basis of constraint alone 

revealed no enrichment of neurologically-associated terms, but instead significant enrichment of 

vascular system-related GO terms (GO:0048514 blood vessel morphogenesis, corrected p = 3.96×10-37 

and GO:0072358 cardiovascular system development, p = 8.53×10-36). As might be expected based on 

the rapid and potentially divergent evolutionary pressures, the analysis of gene sets defined on the basis 

of non-conservation alone demonstrated the significant enrichment of immune and skin-related GO 

terms (GO:0002250 adaptive immune response, p = 4.02×10-10 and GO:0043588 skin development, p 

= 2.33×10-4). Taken together, these results demonstrate that using CNCR density, genes important in 

nervous system development and implicated in neurological disease can be identified.  
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CNCR ANNOTATION HIGHLIGHTS AN INTRON-3 RETAINING TRANSCRIPT OF APOE 
 

Next, we investigated the distribution of CNCR density across Mendelian genes associated with a 

neurological phenotypes (as defined within OMIM30) and genes implicated in complex brain-relevant 

phenotypes (as defined within STOPGAP31). We noted that the median CNCR density was significantly 

higher in OMIM genes with a neurological phenotype compared to all other genes (median CNCR 

density of neurological OMIM genes = 0.0924, IQR = 0.0567 – 0.143; median CNCR density of all 

other genes =  0.083, IQR = 0.043 – 0.153; Wilcoxon rank sum test p = 1.8×10-6). While genes 

associated with complex brain-relevant phenotypes did not have a significantly higher CNCR density 

when compared to all other genes, we still identified 31 genes with a CNCR density of greater than 0.2 

and seven genes with a CNCR density of greater than 0.3 (APOE, PHOX2B, SSTR1, HCFC1, HAPLN4, 

CENPM and IQCF5).  Of these genes, APOE had the highest CNCR density with a value of 0.552.  

 

Given the high CNCR density of APOE, its importance as a disease locus for Alzheimer’s disease and 

other neurodegenerative diseases36 and the long-standing interest in the lineage specificity of APOE8,37 

(specifically the differences in the ɛ4 allele  between humans and non-human primates1), we chose to 

focus on this gene.  We tested whether intragenic analysis of APOE could identify specific exons or 

transcripts of interest. We compared CNCR density, constraint and conservation scores across the 

length of the gene showing that CNCRs provide a highly granular annotation (Figure 5). Using this 

approach, we identified a region of high CNCR density within intron-3 of APOE. Although no intron-

3 retaining transcript is currently annotated in Refseq and Ensembl, an intron-3 retention event has 

previously been reported and implicated in the regulation of APOE expression38,39. To validate the 

existence of this transcript, we performed Sanger sequencing of polyA-selected RNA derived from 

human hippocampal tissue. This demonstrated that no recursive splicing occurred as the full-length 

intron-3 sequence was retained and flanked by both exon-3 and exon-4 (Supplementary Figure 3). 

 

In order to obtain further insights into the biological significance of the intron-3 retaining APOE 

transcript, we leveraged publicly-available RNA-sequencing data covering 11 regions of the human 
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central nervous system provided by the GTEx v.732. Using an annotation-independent approach to 

identify genomic regions producing stable transcripts40,41, we identified a region of significant 

expression encompassing intron-3 of APOE and the flanking coding exons in all brain tissues (Figure 

6a). These data not only support the existence of an intron-3 retaining APOE transcript that is not 

entirely attributable to pre-mRNA transcripts or driven by background noise in sequencing, but also 

provide a means of estimating its usage across the human brain.  

 

Thus, in order to compare usage of this transcript across different CNS regions, we calculated the ratio 

of normalised intron-3 expression (a measure of intron-3 retaining transcripts) to the normalised 

expression of exon-3/exon-4 spanning reads (a measure of transcripts splicing out intron-3). We see 

that there is evidence of the usage of the intron-3 retaining APOE transcript in all central nervous system 

regions from GTEx data (Figure 6a). However, there are also significant differences among brain 

regions (Kruskal-Wallis p< 2.2e-16) with the usage of the intron-3 retaining event being highest in the 

spinal cord, substantia nigra and hippocampus (Figure 6a).  

 

In summary, we confirmed the existence of an unannotated human-specific non-coding transcript of 

APOE and identified differential usage of this transcript across the human brain. In this way, we 

demonstrate the utility of combining CNC scores with transcriptomic data, which we have made easier 

though the addition of a CNC score track within the platform vizER 

(https://snca.atica.um.es/browser/app/vizER). 

 

USAGE OF THE INTRON-3 RETAINING TRANSCRIPT OF APOE CORRELATES WITH 

ALZHEIMER’S DISEASE PATHOLOGY AND APOE GENOTYPE 
 

We noted that among the brain tissues with the highest usage of the intron-3 retaining transcript of 

APOE are those that show selective vulnerability for neurodegeneration, namely the hippocampus in 

the context of Alzheimer’s disease and the substantia nigra in the context of Parkinson’s disease. Given 

that APOE is one of the most important genetic risk factors for Alzheimer’s disease, we leveraged 
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publicly-available RNA-sequencing data from the ROSMAP studies to quantify the usage of the intron-

3 retaining transcript of APOE in post-mortem frontal cortex brain tissue derived from individuals with 

Alzheimer’s disease (n = 222), mild cognitive impairment (MCI) (n = 158) compared to control 

individuals (defined as the final clinical diagnosis blinded to pathological findings, n = 202). We found 

that the proportion of the intron-3-retaining transcript was higher (p < 2.2e-16) in frontal cortex tissue 

from individuals with clinically-diagnosed Alzheimer’s disease and MCI patients versus control 

participants. Partitioning this further on the basis of pathology, we see an increase in intron-3 retaining 

transcript usage with more severe Braak and Braak pathology for neurofibrillary tangles (adjusted r2 

0.678, p < 2.2e-16) (Figure 6b). Consistent with these findings, we also found a significant increase in 

transcript usage with lower CERAD stage, indicating higher amyloid plaque pathology (adjusted r2 

0.673, p < 2.2e-16). Finally, we investigated the relationship between presence of the 4 allele in APOE 

and usage of the intron-3 retaining transcript. We found a significant positive correlation between 4 

allele load and the proportion of intron-3 retaining transcript (adjusted r2 0.673, p < 2.2e-16) (Figure 6c). 

This association remained significant after partitioning APOE-4 status by disease and accounting for 

tau and amyloid burden, showing that this association is likely to be independent of disease state. Taken 

together, these findings suggest that usage of the intron-3 retaining transcript may be regulated by 

APOE-4 status and may be involved in mediating the effect of APOE genotype, supporting a role for 

the presence of this lncRNA in disease risk and progression. 
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DISCUSSION 
 

The core aim of this study was to test the hypothesis that capturing human lineage-specific regions of 

the genome could provide insights into neurological phenotypes and diseases in humans. We generate 

and use an annotation based on existing knowledge of sequence conservation and sequence constraint 

within humans, which we term CNCRs. We use this annotation to prioritise genomic regions, genes and 

transcripts based on a high density of human lineage-specific sequence as determined by our CNCR 

annotation. We demonstrate the utility of this approach by showing that: the genomic regions we 

identify are enriched for SNP-heritability for intelligence and brain-related disorders; the genes we 

identify are enriched for neurologically-relevant gene ontology terms and genes causing neurogenetic 

disorders; and the existence of an intron-3 retaining transcript of APOE, the usage of which is correlated 

with Alzheimer’s disease pathology and APOE-4 status. 

 

A major finding of this study is that CNCRs are enriched for regulatory, non-coding genomic regions. 

This is consistent with analyses performed by Ward and Kellis14, and highlights the potential functional 

importance of non-conserved and thus evolutionarily-recent non-coding regions subject to constraint. 

Furthermore, these findings suggest that CNCRs could provide a means of prioritising and potentially 

aiding the assessment of non-coding variants, an area of significant interest given that 88% of GWAS-

derived disease-associated variants reside in non-coding regions of the genome42. We found evidence 

to support this view through heritability analyses for intelligence, Parkinson’s disease, major depressive 

disorder and schizophrenia with SNP-heritability not only enriched within CNCRs, but to a greater 

extent than would be expected using either conservation or constraint annotations alone. Considering 

heritability for intelligence, this phenotype is already known to also be enriched within annotations of 

brain-specific tissue expression and among several regulatory biological gene sets23, including 

neurogenesis, central nervous system neuron differentiation and regulation of synapse structure or 

activity42. These findings support our hypothesis that CNCRs identify genomic regions of functional 

importance with relevance to human brain phenotypes.  
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Our analyses of CNCR density within genes are consistent with these findings, highlighting both non-

coding genes and those implicated in neurologically-relevant processes and diseases. Interestingly, 

CNCR annotation specifically highlighted lncRNAs as opposed to other non-coding RNAs. In 

particular, we observed a proportional increase in lncRNA enrichment with higher genic CNCR density, 

which could not be replicated using measures of sequence constraint or conservation alone. This 

observation is in keeping with previous studies that have shown most lncRNAs are tissue-specific with 

the highest proportion being specific to brain43.  Similarly, the enrichment for nervous system-related 

pathways within CNCRs, which is representative of recent purifying selection, is in keeping with the 

lowest proportion of positively-selected genes being present in brain tissues from previous studies of 

mammalian organ development44. We also find enrichment of spinal cord-associated genes that may 

relate to the uniquely human monosynaptic corticomotoneuronal pathways implicated in human-

specific dexterity and digital motor control45,46, the disruption of which may lead to amyotrophic lateral 

sclerosis47.  

 

We noted that APOE was among the genes with the highest CNCR density across the genome and 

carried the highest CNCR density of all genes implicated in complex brain-relevant phenotypes (defined 

within the STOPGAP database31). Given that genetic variation within this gene and specifically APOE-

4 status is not only the principal genetic risk factor for Alzheimer’s disease48 but also associated with 

risk for other neurodegenerative disorders, stroke and reduced lifespan36, this finding provides evidence 

for the value of CNCR annotation. Furthermore, within APOE, the CNCR annotation highlighted an 

intron-3 retention event not currently within annotation but which has been previously reported38,39. 

Using Sanger sequencing of cDNA derived from control human hippocampal tissue, we confirm the 

presence of an intron-3 retaining APOE transcript. We estimate the usage of the transcript from short 

read RNA-sequencing data and find variable levels across different brain tissues within GTEx32 with 

the highest usage in the spinal cord, substantia nigra and hippocampus, reflecting the brain regions most 

susceptible to selective vulnerability in disease. Using human frontal cortex RNA-sequencing data, we 

find that the intron retention event is significantly more abundant in patients with Alzheimer’s disease 

than controls and in those with more severe Braak and Braak pathology and amyloid burden as 
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characterised by CERAD pathology. Furthermore, we see a dosage-dependent increase in the intron 

retention event with the APOE-4 allele that is independent of disease status. We propose that this novel 

transcript may be a means of regulating APOE in a disease state. 

 

Given that we use existing measures of constraint and conservation to identify CNCRs, this analysis is 

fundamentally limited by the quality of these data. While the constraint metrics we used were derived 

from high depth sequencing, this is still restricted given the relatively high number of private genetic 

variants we each carry. In addition, analysis was limited to the high-confidence regions covering 

approximately 84% of the genome, so a significant proportion remained unannotated with CDTS 

metrics11. Similarly, our study of the relationship between CNCRs and known genomic features is 

limited by the annotation quality in existing databases. We have endeavoured to overcome some of 

these problems by creating a more detailed annotation combining both GENCODE and Ensembl data. 

The SNP-heritability estimates using stratified-LDSC analysis are limited by the quality of LD 

information underpinning the heritability calculations21.  

 

Despite these limitations, we have been able to demonstrate the utility of CNCRs specifically in the 

identification of functionally important non-coding regions of the genome, genes and transcripts. We 

find that CNCRs across all forms of analyses highlight the significance of human lineage-specific 

sequences in the central nervous system and in the context of neurological phenotypes and diseases. We 

release our annotation of CNC scores via the online platform vizER 

(https://snca.atica.um.es/browser/app/vizER). Thus, the CNCR annotation we generate has the potential 

to provide additional disease insights beyond those explored within this study and as we anticipate the 

release of increasing quantities of WGS data in humans, will only improve in quality and value.  
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TITLES AND LEGENDS 

 

FIGURES 

Figure 1. Workflow of study and schematic demonstration of annotation groups. The workflow 

depicts the processes involved in creation of the annotation with set parameters for each of the three 

groups of annotations generated and the processes involved in hypothesis-testing. CNC scores = 

constrained, non-conserved scores; CNCRs = constrained, non-conserved regions, CDTS = context-

dependent tolerance score. Minus CDTS score is used as a lower score of CDTS corresponds to a more 

constrained region.  

Figure 2. Composition of the constrained genome, partitioned by constrained, non-conserved 

(CNC) scores (a) and proportion of biotypes of genes in our annotation (CNCRs) and in the 

comparator annotations (constrained and non-conserved regions) (b). The description for each 

genomic feature is shown in Supplementary Table 1. The barplot in Panel a shows the genomic features 

for the 12.5% most constrained regions with CNC scores portioned by decile, such that the highest 

decile (90 – 100) represents the most constrained and least conserved regions. Description of gene 

biotypes in Panel b are taken from Ensembl20. The heatmap demonstrates the proportion of genes of a 

certain biotype within the three separate annotations within each genic CNCR density cut-off. Protein 

coding is defined by a gene that contains an open reading frame. The subclassified components of long 

non-coding RNA (lncRNA) found in the annotations are: Antisense – has transcripts that overlap the 

genomic span (i.e. exon or introns) of a protein-coding locus on the opposite strand; lincRNA (long 

interspersed ncRNA) – has transcripts that are long intergenic non-coding RNA locus with a length 

>200bp; non-coding RNA is further subclassified into miRNA (microRNA); siRNA (small interfering 

RNA); snRNA (small nuclear RNA) and miscellaneous RNA (includes snoRNA (small nucleolar 

RNA), tRNA (transfer RNA)). Pseudogenes are similar to known proteins but contain a frameshift 

and/or stop codon(s) which disrupts the open reading frame. These can be classified into processed 

pseudogene – a pseudogene that lacks introns and is thought to arise from reverse transcription of 
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mRNA followed by reinsertion of DNA into the genome and unprocessed pseudogene – a pseudogene 

that can contain introns since produced by gene duplication.  

Figure 3. Stratified-LDSC analysis across five traits comparing CNCRs with its constituent 

constrained and non-conserved annotations. Panel a shows the regression coefficient. Panel b shows 

the regression coefficient -log(p-value) with the dotted line showing the Bonferroni-corrected p-value 

of 0.00333. GWASs were as follows: Intelligence2019 = intelligence GWAS, AD2018 = Alzheimer’s 

disease GWAS, PD2019.ex23&Me = Parkinson’s disease GWAS without 23 and Me data, MDD2018 

= Major depressive disorders GWAS and SCZ2018 = schizophrenia GWAS (Supplementary Table 

2).  

Figure 4. Summarised enriched gene sets for terms specific for neurological gene sets, other 

tissues and all tissues (non-neurological) as defined by Gene Ontology (GO). Plot comparing 

annotation of interest (CNCRs) and comparator annotations which only use constraint or non-conserved 

metrics. Frequency, derived from REViGO29, the percentage of human proteins in UniProt which were 

annotated with a GO term, i.e. a higher frequency denotes a more general term.  

Figure 5. Annotation with CNCRs is highly granular and shows APOE to have a high density of 

CNCRs throughout its length especially in association with an intron-3 retention event in the 

human hippocampus. The first track represents the genomic location of APOE within Chromosome 

19. The second track shows the known transcripts, currently within annotation in Ensembl v.92. The 

mean coverage (log10 scale) in the hippocampus shown here is greater than zero (denoted by the grey 

shaded area) across intron-3 highlighting a potential novel expressed region. In the last track, CNC 

scores above the black dashed line and shaded in red fulfil criteria for a CNCR.  

Figure 6.  Quantification of intron retention usage by its normalised coverage to junction ratio 

across brain tissues within GTEx (a). Normalised coverage to junction ratio of the APOE intron-

3 retention event in bulk RNA sequencing data of post-mortem frontal cortex tissue samples from 

634 individuals recruited within ROSMAP studies across Braak and Braak staging (b) and APOE 

ɛ4 allele status (c).  In Panel a: red dashed horizontal line presents the median normalised intron 
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retention coverage to junction ratio within central nervous system tissues in GTEx. Number of samples 

within each of the tissue groups were as follows: amygdala – 72; anterior cingulate cortex – 84; caudate 

– 117, cerebellar hemisphere – 105; frontal cortex – 108; hippocampus – 94; hypothalamus – 96; 

nucleus accumbens – 113; putamen – 97; spinal cord – 71; substantia nigra – 63. In panels b and c, the 

blue line represents the linear regression fit with the grey shaded area representing +/- 95% confidence 

interval. Braak and Braak staging is a measure of severity of neurofibrillary tangle based on location. 

To improve the power of the study, we merged Braak and Braak stages I and II to “Braak mild stage”, 

Braak and Braak stages III and IV to “Braak moderate” and Braak and Braak stages V and VI to indicate 

“Braak severe” stage.  For number of APOE ɛ4 alleles, a heterozygous state is represented by “1” and 

homozygous state by “2”. 
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SUPPLEMENTAL DATA 

 

Supplementary Data Figure Titles and Legends 

 

Supplementary Figure 1. Kernal density plots of annotation metrics. Panel a depicts density plot 

of constraint (context dependent tolerance score (CDTS): a lower CDTS represents more constrained 

data). Panel b shows the density distribution of the mean phastCons20 scores per 10bp bin. Panel c 

shows the distribution of log2 ratio (CNC score),  of the reverse ranked CDTS (so a higher rank pertains 

to higher constraint but lower CDTS) and ranked phastCons20 scores, partitioned by regions of exon, 

intron and intergenic as defined by Ensembl v.92.  

Supplementary Figure 2.  Proportion of enriched neurologically-related GO terms in the gene set 

analysis compared between the annotation of interest (CNCRs) and the comparator annotation 

sets (a). Proportion of neurologically-related GO terms at CNCR density of 0.3 and above (b). 

Supplementary Figure 3. Sanger sequencing of human hippocampus cDNA using targeted 

primers within APOE, aligned to hg38. Primers as listed in Supplementary Table 3.  
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Supplementary Tables 

Supplementary Table 1. Annotation priority order for genomic feature. Genomic features are based 

on both Gencode and Ensembl. A priority order for annotation with a genomic feature is assigned to 

avoid conflict with overlapping features. The number of 10bp bins across the genome is also shown in 

the table. 

Supplementary Table 2. Genome-wide association studies used in the stratified LDSC analysis. 

The GWAS for Parkinson’s disease and major depressive disorder do not incorporate 23&Me data.  

Supplementary Table 3. Primer positions and sequences used to validate the APOE intron-3 

retention event.  

Supplementary Table 4. Results for heritability, enrichment, and regression coefficient from 

stratified LDSC analysis. The coefficient p-values are one-sided p-values calculated from the 

coefficient Z-score.  

Supplementary Table 5. Significantly enriched nervous system-related GO terms for CNCRs at 

density of 0.3. P-value relates to the p-value for enrichment calculated using g:Profiler and its own 

g:SCS correction method28.  
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FIGURES 
 

 

Figure 1. Workflow of study and schematic demonstration of annotation group 
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Figure 2. Composition of the constrained genome, partitioned by constrained, non-conserved 

(CNC) scores (a) and proportion of biotypes of genes in our annotation (CNCRs) and in the 

comparator annotations (constrained and non-conserved regions) (b). 

a 

b 
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Figure 3. Stratified-LDSC analysis across five traits comparing CNCRs with its constituent 

constrained and non-conserved annotations.  
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Figure 4. Summarised enriched gene sets for terms specific for neurological gene sets, other 

tissues and all tissues (non-neurological) as defined by Gene Ontology (GO).  
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Figure 5. Annotation with CNCRs is highly granular and shows APOE to have a high density of 

CNCRs throughout its length especially in association with an intron-3 retention event in the 

human hippocampus.  
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Figure 6.  Quantification of intron retention usage by its normalised coverage to junction ratio 

across brain tissues within GTEx (a). Normalised coverage to junction ratio of the APOE intron-

3 retention event in bulk RNA sequencing data of post-mortem frontal cortex tissue samples from 

634 individuals recruited within ROSMAP studies across Braak and Braak staging (b) and APOE 

ɛ4 allele status (c).   

 

 

a 
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WEB RESOURCES 
 

Description URL 

CDTS metrics  http://www.hli-opendata.com/noncoding 

phastCons20 metrics http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons20way/  

LDSC https://github.com/bulik/ldsc/wiki 

OMIM genes http://api.omim.org 

STOPGAP database https://github.com/StatGenPRD/STOPGAP/blob/master/STOPGAP_data/ 

stopgap.bestld.RData 

Recount2 https://jhubiostatistics.shinyapps.io/recount/ 

Synapse https://www.synapse.org/#!Synapse:syn4164376 

VizER https://snca.atica.um.es/browser/app/vizER 
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