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 47 

Abstract 48 

Cultivated bacterioplankton representatives from diverse lineages and locations are 49 

essential for microbiology, but the large majority of taxa either remain uncultivated or lack 50 

isolates from diverse geographic locales. We paired large scale dilution-to-extinction (DTE) 51 

cultivation with microbial community analysis and modeling to expand the phylogenetic and 52 

geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. 53 

Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 54 

three years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial 55 

community data of source waters indicated that we successfully isolated 5% of the observed 56 

bacterioplankton community throughout the study. 43% and 26% of our isolates matched 57 

operational taxonomic units and amplicon single nucleotide variants, respectively, within the top 58 

50 most abundant taxa. Isolates included those from previously uncultivated clades such as 59 

SAR11 LD12 and Actinobacteria acIV, as well as geographically novel members from other 60 

ecologically important groups like SAR11 subclade IIIa, SAR116, and others; providing the first 61 

isolates in eight putatively new genera and seven putatively new species. Using a newly 62 

developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance 63 

with cultivation success. The model i) revealed the minimum attempts required for successful 64 

isolation of taxa amenable to growth on our media, and ii) identified possible subpopulation 65 

viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By 66 

incorporating viability in experimental design, we can now statistically constrain the effort 67 

necessary for successful cultivation of specific taxa on a defined medium. 68 

 69 

 70 

Importance 71 

Even before the coining of the term “great plate count anomaly” in the 1980s, scientists 72 

had noted the discrepancy between the number of microorganisms observed under the 73 

microscope and the number of colonies that grew on traditional agar media. New cultivation 74 

approaches have reduced this disparity, resulting in the isolation of some of the “most wanted” 75 

bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, 76 

hampering progress towards answering fundamental biological questions about many important 77 

microorganisms. Furthermore, few studies have evaluated the underlying factors influencing 78 

cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use 79 

of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity 80 

of available axenic cultures. We also provide a new model of the DTE approach that uses 81 

cultivation results and natural abundance information to predict taxon-specific viability and 82 

iteratively constrain DTE experimental design to improve cultivation success.  83 

 84 
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Introduction 93 

Axenic cultures of environmentally important microorganisms are critical for 94 

fundamental microbiological investigation, including generating physiological information about 95 

environmental tolerances, determining organismal-specific metabolic and growth rates, testing 96 

hypotheses generated from in situ ‘omics observations, and experimentally examining microbial 97 

interactions. Research using important microbial isolates has been critical to a number of 98 

discoveries such as defining microorganisms involved in surface ocean methane saturation (1–3), 99 

the role of proteorhodopsin in maintaining cellular functions during states of carbon starvation 100 

(4, 5), the complete nitrification of ammonia within a single organism (6), and identifying novel 101 

metabolites and antibiotics (7–10). However, the vast majority of taxa remain uncultivated (11–102 

13), restricting valuable experimentation on such topics as genes of unknown function, the role 103 

of analogous gene substitutions in overcoming auxotrophy, and the multifaceted interactions 104 

occurring in the environment inferred from sequence data (11, 14–16).  105 

The quest to bring new microorganisms into culture, and the recognition that traditional 106 

agar-plate based approaches have limited success (17–19), have compelled numerous 107 

methodological advances spanning a wide variety of techniques like diffusion chambers, 108 

microdroplet encapsulation, and slow acclimatization of cells to artificial media (20–25). 109 

Dilution-to-extinction (DTE) cultivation using sterile seawater as the medium has also proven 110 

highly successful for isolating bacterioplankton (26–32). Pioneered by Don Button and 111 

colleagues for the cultivation of oligotrophic bacteria, this method essentially pre-isolates 112 

organisms after serial dilution by separating individual or small groups of cells into their own 113 

incubation vessel (32, 33). This prevents slow-growing, obligately oligotrophic bacterioplankton 114 

from being outcompeted by faster-growing organisms, as would occur in enrichment-based 115 

isolation methods like those that would target aerobic heterotrophs. It is also a practical method 116 

for taxa that cannot grow on solid media. Natural seawater media provide these taxa with the 117 

same chemical surroundings from which they are collected, reducing the burden of anticipating 118 

all the relevant compounds required for growth (33).  119 

Improvements to DTE cultivation in multiple labs have increased the number of 120 

inoculated wells and decreased the time needed to detect growth (26, 28, 34), thereby earning the 121 

moniker “high-throughput culturing” (26, 28). We (35) and others (30) have also adapted DTE 122 

culturing by incorporating artificial media in place of natural seawater media to successfully 123 

isolate abundant bacterioplankton. Thus far, DTE culturing has led to isolation of many 124 

numerically abundant marine and freshwater groups such as marine SAR11 Alphaproteobacteria 125 

(28, 29, 34–36), the freshwater SAR11 LD12 clade (29), SUP05/Arctic96BD-19 126 

Gammaproteobacteria (37–39), OM43 Betaproteobacteria (26, 27, 31, 40, 41), HIMB11-Type 127 

Roseobacter spp. (35, 42), numerous so-called Oligotrophic Marine Gammaproteobacteria (43), 128 

and acI Actinobacteria (44).  129 

Despite the success of DTE cultivation, many taxa continue to elude domestication (11–130 

13, 16). Explanations include a lack of required nutrients or growth factors in media (20, 45–49) 131 

and biological phenomena such as dormancy and/or phenotypic heterogeneity within populations 132 

(47, 48, 50–56). However, there have been few studies empirically examining the factors 133 

underlying isolation success in DTE cultivation experiments (34, 57, 58), restricting our ability 134 

to determine the relative importance of methodological vs. biological influences on cultivation 135 

reliability for any given organism. Moreover, even for those taxa that we have successfully 136 

cultivated, in many cases we lack geographically diverse strains, restricting comparisons of the 137 

phenotypic and genomic diversity that may influence taxon-specific cultivability. 138 
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We undertook a three-year cultivation effort in the coastal northern Gulf of Mexico 139 

(nGOM), from which we lack representatives of many common bacterioplankton groups, to 140 

provide new model organisms for investigating microbial function, ecology, biogeography, and 141 

evolution. Simultaneously, we paired our cultivation efforts with 16S rRNA gene amplicon 142 

analyses to compare cultivation results with the microbial communities in the source waters. We 143 

have previously reported on the success of our artificial media in obtaining abundant taxa over 144 

the course of the first seven experiments from this campaign (35). Here, we expand our report to 145 

include cultivation results from a total of seventeen experiments, and update the classic viability 146 

calculations of Button et al. (33) with a new model to estimate the viability of individual taxa 147 

using relative abundance information. New isolates belonged to cultivated groups in eight 148 

putatively novel genera and seven putatively novel species in previously cultivated genera and 149 

expanded cultured geographic representation for many important clades like SAR11. 150 

Additionally, using model-based predictions, we identified possible taxon-specific viability 151 

variation that can influence cultivation success. By incorporating these new viability estimates 152 

into the model, our method facilitates statistically-informed experimental design for targeting 153 

individual taxa, thereby reducing uncertainty for future culturing work (59). 154 

 155 

Material and Methods 156 

 157 

Sampling 158 

Surface water samples were collected at six different sites once a year for three years, except for 159 

Terrebonne Bay, which was collected twice. The sites sampled were Lake Borgne (LKB; Shell 160 

Beach, LA), Bay Pomme d'Or (JLB; Buras, LA), Terrebonne Bay (TBON; Cocodrie, LA), 161 

Atchafalaya River Delta (ARD; Franklin, LA), Freshwater City (FWC; Kaplan, LA), and 162 

Calcasieu Jetties (CJ; Cameron, LA) (lat/long coordinates provided in Table S1). Water 163 

collection for biogeochemical and biological analysis followed the protocol in (35). Briefly, we 164 

collected surface water in a sterile, acid-washed polycarbonate bottle. Duplicate 120 ml water 165 

samples were filtered serially through 2.7 µm Whatman GF/D (GE Healthcare, Little Chalfort, 166 

UK) and 0.22 µm Sterivex (Millipore, Massachusetts, USA) filters and placed on ice until 167 

transferred to -20˚C in the laboratory (maximum 3 hours on ice). The University of Washington 168 

Marine Chemistry Laboratory analyzed duplicate subsamples of 50 ml 0.22 µm-filtered water 169 

collected in sterile 50 ml falcon tubes (VWR, Pennsylvania, USA) for concentrations of SiO4, 170 

PO4
3-

, NH4
+
, NO3

-
, and NO2

-
. Samples for cell counts were filtered through a 2.7 µm GF/D filter, 171 

fixed with 10% formaldehyde, and stored on ice until enumeration (maximum 3 hours). 172 

Temperature, salinity, pH, and dissolved oxygen were measured using a handheld YSI 556 173 

multiprobe system (YSI Inc., Ohio, USA). All metadata is available in Table S1. 174 

 175 

Dilution-to-extinction culturing and propagation 176 

Isolation, propagation, and identification of isolates were completed as previously reported (29, 177 

35, 60). A subsample of 2.7 µm filtered surface water was stained with 1X SYBR Green (Lonza, 178 

Basal, Switzerland) using a repeat pipettor and disposal tip (Gilson, Wisconsin, USA), and 179 

enumerated using a Guava Easycyte 5HT HPL flow cytometer (Millipore, Massachusetts, USA) 180 

as described (60). After serial dilution to a predicted 1-3 cells·µl
-1

, 2 µl water was inoculated into 181 

five, 2 mL 96-well PTFE plates (Radleys, Essex, UK) containing 1.7 ml artificial seawater 182 

medium (Table S1) using a 20 uL multichannel pipet (Gilson, Wisconsin, USA) to achieve an 183 

estimated 1-3 cells·well
-1

 (Table 1). The salinity of the medium was chosen to match in situ 184 
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salinity after experiment JLB (January 2015) (Tables 1, S1). After year two, a second generation 185 

of media, designated MWH, was designed to incorporate additional important osmolytes, 186 

reduced sulfur compounds, and other constituents (Tables 1, S1) potentially necessary for in 187 

vitro growth of uncultivated clades (49, 61–67). The four corner wells of each plate were left 188 

uninoculated as negative controls for every experiment. Plates were covered using sterile, PTFE-189 

coated silicon 96-well plate mats (Thermo Scientific, Massachusetts, USA). Cultures were 190 

incubated at in situ temperatures (Table S1) in the dark for three to six weeks and evaluated for 191 

positive growth (> 10
4
 cells·ml

-1
) by flow cytometry. 200 µl from positive wells was transferred 192 

using a 200 µL single channel pipet (Gilson, Wisconsin, USA) to duplicate 125 ml 193 

polycarbonate flasks (Corning, New York, USA) containing 50 ml of medium (29, 35, 60). At 194 

FWC, FWC2, JLB2c, and JLB3, not all positive wells were transferred because of the large 195 

number of positive wells. At each site, 48/301, 60/403, 60/103, and 60/146 of the positive wells 196 

were transferred, respectively, selected using flow cytometry signatures with < 10
2
 green 197 

fluorescence and < 10
2
 side scatter that maximized our chances of isolating small 198 

microorganisms that encompass many of the most abundant and most wanted taxa, like SAR11, 199 

using our settings (60). 200 

 201 

Culture identification 202 

Cultures reaching ≥ 1 x 10
5
 cells·ml

-1
 had 35 ml of the 50 ml volume filtered for identification 203 

via 16S rRNA gene PCR onto 25 mm 0.22-µm polycarbonate filters (Millipore, Massachusetts, 204 

USA). DNA extractions were performed using the MoBio PowerWater DNA kit (QIAGEN, 205 

Massachusetts, USA) following the manufacturer’s instructions and eluted in sterile water. The 206 

16S rRNA gene was amplified as previously reported in Henson et al. 2016 (35) and sequenced 207 

at Michigan State University Research Technology Support Facility Genomics Core. Evaluation 208 

of Sanger sequence quality was performed with 4Peaks (v. 1.7.1) 209 

(http://nucleobytes.com/4peaks/) and forward and reverse complement sequences (converted via 210 

http://www.bioinformatics.org/sms/rev_comp.html) were assembled where overlap was 211 

sufficient using the CAP3 web server (http://doua.prabi.fr/software/cap3). 212 

 213 

Community iTag sequencing, operational taxonomic units, and single nucleotide variants 214 

Sequentially filtered (2.7µm, 0.22µm) duplicate samples were extracted and analyzed using our 215 

previously reported protocols and settings (35, 68). We sequenced the 2.7-0.22 µm fraction for 216 

this study because this fraction corresponded with the < 2.7 µm communities that were used for 217 

the DTE experiments. To avoid batch sequencing effects, DNA from the first seven collections 218 

reported in (35) was resequenced with the additional samples from this study (FWC2 and after- 219 

Table 1). We targeted the 16S rRNA gene V4 region with the 515F, 806RB primer set (that 220 

corrects for poor amplification of taxa like SAR11) (69, 70) using Illumina MiSeq 2 x 250bp 221 

paired-end sequencing at Argonne National Laboratories, resulting in 2,343,106 raw reads for 222 

the 2.7-0.22 µm fraction. Using Mothur v1.33.3 (71), we clustered 16S rRNA gene amplicons 223 

into distinctive OTUs with a 0.03 dissimilarity threshold (OTU0.03) and classified them according 224 

to the Silva v119 database (72, 73). After these steps, 55,256 distinct OTUs0.03 remained. We 225 

also used minimum entropy decomposition (MED) to partition reads into fine-scale amplicon 226 

single nucleotide variants (ASVs) (74). Reads were first analyzed using Mothur as described 227 

above up to the screen.seqs() command. The cleaned reads fasta file was converted to MED-228 

compatible headers with the ‘mothur2oligo’ tool renamer.pl from the functions in MicrobeMiseq 229 

(https://github.com/DenefLab/MicrobeMiseq) (75) using the fasta output from screen.seqs() and 230 
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the Mothur group file. These curated reads were analyzed using MED (v. 2.1) with the flags –M 231 

60, and -d 1. MED resulted in 2,813 refined ASVs. ASVs were classified in Mothur using 232 

classify.seqs(), the Silva v119 database, and a cutoff bootstrap value of 80% (76). After 233 

classification, we removed ASVs identified as “chloroplast”, “mitochondria”, or “unknown” 234 

from the dataset. 235 

 236 

Community analyses 237 

OTU (OTU0.03) and ASV abundances were analyzed within the R statistical environment v.3.2.1 238 

(77)  following previously published protocols (29, 35, 68). Using the package PhyloSeq (78), 239 

OTUs and ASVs were rarefied using the command rarefy_even_depth() and OTUs/ASVs 240 

without at least two reads in four of the 34 samples (2 sites; ~11%) were removed. This latter 241 

cutoff was used to remove potentially spurious OTUs/ASVs resulting from sequencing errors. 242 

Our modified PhyloSeq scripts are available on our GitHub repository https://github.com/thrash-243 

lab/Modified-Phyloseq. After filtering, the datasets contained 777 unique OTUs and 1,323 244 

unique ASVs (Table S1). For site-specific community comparisons, beta diversity between sites 245 

was examined using Bray-Curtis distances via ordination with non-metric multidimensional 246 

scaling (NMDS) (Table S1). The nutrient data were normalized using the R function scale which 247 

subtracts the mean and divides by the standard deviation for each column. The influence of the 248 

transformed environmental parameters on beta diversity was calculated in R with the envfit 249 

function. Relative abundances of an OTU or ASV from each sample were calculated as the 250 

number of reads over the sum of all the reads in that sample. The relative abundance was then 251 

averaged between biological duplicates for a given OTU or ASV. To determine the best 252 

matching OTU or ASV for a given LSUCC isolate, the OTU representative fasta file, provided 253 

by Mothur using get.oturep(), and the ASV fasta file were used to create a BLAST database 254 

(makeblastdb) against which the LSUCC isolate 16S rRNA genes could be searched via blastn 255 

(BLAST v 2.2.26) (“OTU_ASVrep_db” - Available as Supplemental Information at 256 

https://doi.org/10.6084/m9.figshare.12142098). We designated a LSUCC isolate 16S rRNA gene 257 

match with an OTU or ASV sequence based on ≥ 97% or ≥ 99% sequence identity, respectively, 258 

as well as a ≥ 247 bp alignment. 259 

 260 

16S rRNA gene phylogeny 261 

Taxa in the Alpha-, Beta-, and Gammaproteobacteria phylogenies from (35) served as the 262 

backbone for the trees in the current work. For places in these trees with poor representation near 263 

isolate sequences, additional taxa were selected by searching the 16S rRNA genes of LSUCC 264 

isolates against the NCBI nt database online with BLASTn (79) and selecting a variable number 265 

of best hits. The Bacteroidetes and Actinobacteria trees were composed entirely of non-266 

redundant top 100-300 MegaBLAST hits to a local version of the NCBI nt database, accessed 267 

August 2018. Sequences were aligned with MUSCLE v3.6 (80) using default settings, culled 268 

with TrimAl v1.4.rev22 (81) using the -automated1 flag, and the final alignment was inferred 269 

with IQ-TREE v1.6.11 (82) with default settings and -bb 1000 for ultrafast bootstrapping (83). 270 

Tips were edited with the nw_rename script within Newick Utilities v1.6 (84) and trees were 271 

visualized with Archaeopteryx (85). Fasta files for these trees and the naming keys are available 272 

as Supplemental Information at https://doi.org/10.6084/m9.figshare.12142098. 273 

 274 

Assessment of isolate novelty 275 
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We quantified taxonomic novelty using BLASTn of our isolate 16S rRNA genes to those of 276 

other known isolates collected in three databases: 1) The NCBI nt database (accessed August 277 

2018) - “NCBIdb”; 2) a custom database comprised of sequences from DTE experiments in other 278 

labs - “DTEdb”; and 3) a database containing all of our isolate 16S rRNA genes - “LSUCCdb”. 279 

The DTEdb and LSUCCdb fasta files are available as Supplemental Information at 280 

https://doi.org/10.6084/m9.figshare.12142098. We compared our isolate sequences to these 281 

databases as follows: 282 

1) All representative sequences were searched against the nt database using BLASTn 283 

(BLAST+v. 2.7.1) with the flags -perc_identity 84, -evalue 1E-6, -task blastn, -outfmt “6 284 

qseqid sseqid pident length slen qlen mismatch evalue bitscore sscinames sblastnames 285 

stitle”, and -negative_gilist to remove uncultured and environmental sequences. The 286 

negative GI list was obtained by searching `“environmental samples”[organism] OR 287 

metagenomes[orgn]”` in the NCBI Nucleotide database (accessed September 12
th

, 2018) 288 

and hits were downloaded in GI list format. This negative GI list is available as 289 

Supplemental Information at https://doi.org/10.6084/m9.figshare.12142098. The resultant 290 

hits from the NCBIdb search were further manually curated to remove sequences 291 

classified as single cell genomes, clones, duplicates, and previously deposited LSUCC 292 

isolates. 293 

2) We observed that many known HTCC, IMCC, and HIMB isolates that had previously 294 

been described as matching our clades (Figs. S1-5) were missing from the resultant lists 295 

of nt hits, so we extracted isolate accession numbers from numerous DTE experiments 296 

(26–28, 31, 34, 37, 44, 86, 87) from the nt database via blastdbcmd and generated a 297 

separate DTEdb using makeblastdb. Duplicate accession numbers found in the NCBIdb 298 

were removed. The same BLASTn settings as in 1) were used to search our isolate 299 

sequences against DTEdb. Any match that fell below the lowest percent identity hit to the 300 

NCBIdb was removed from the DTEdb search since the match would not have been 301 

present in the first NCBIdb search. 302 

3) Finally, using the same BLASTn settings, we compared all pairwise identities of our 328 303 

LSUCC isolate 16S rRNA gene sequences via the LSUCCdb. 304 

The output from these searches is available in Table S1 under the “taxonomic novelty” tab. 305 

We placed our LSUCC isolates into 55 taxonomic groups based on sharing ≥ 94% 306 

identity and/or their occurrence in monophyletic groups within our 16S rRNA gene trees (Figs. 307 

S1-5, see above). For visualization purposes, in groups with multiple isolates we used our 308 

chronologically first cultivated isolate as the representative sequence for blastn searches, and 309 

these are the top point (100% identity to itself) in each group column of Figure 1. Sequences 310 

from the other DTE culture collections were labeled with the corresponding collection name, 311 

while all other hits were labeled as “Other”.  312 

Geographic novelty was assessed by manually screening the accession numbers from hits 313 

to LSUCC isolates with ≥ 99% 16S rRNA gene sequence identity for the latitude and longitude 314 

from a connected publication or location name (e.g. source, country, site) in the NCBI 315 

description. LSUCC isolates in the Janibacter sp., Micrococcus sp., Altererythrobacter sp., 316 

Pseudomonas sp., and Phycicoccus sp. groups (16 total isolates) were not assessed because of 317 

missing isolation source information and no traceable publication. Isolation locations were 318 

plotted for a subset of important taxa (Table S1 “Map_cultivars” tab) using the 319 

“LSUCC_cultivar_map.R” available at our GitHub repository https://github.com/thrash-320 

lab/Cultivar-novelty-map. 321 
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 322 

Modeling DTE cultivation via Monte Carlo simulations 323 

We developed a model using Monte Carlo simulation to estimate the median number of positive 324 

and pure wells (and associated 95% confidence intervals (CI)) expected from a DTE experiment 325 

for a given taxon at different inoculum sizes (λ), relative abundances (r), and viability (V) (Fig. 326 

5). For each bootstrap, the number of cells added to each well was simulated using a Poisson 327 

distribution at a mean inoculum size of λ cells per well across n wells. The number of cells added 328 

to each well that belonged to a specific taxon was then estimated using a binomial distribution 329 

where the number of trials was set as the number of cells in a well and the probability of a cell 330 

belonging to a specific taxon, r, was the relative abundance of its representative ASV in the 331 

community analysis. Wells that contained at least one cell of a specific taxon were designated 332 

‘positive’. Wells in which all the cells belonged to a specific taxon were designated as ‘pure’. 333 

Finally, the influence of taxon-specific viability on recovery of ‘pure’ wells was simulated using 334 

a second binomial distribution, where the number of cells within a ‘pure’ well was used as the 335 

number of trials and the probability of growth was a viability score ranging from 0 to 1. For each 336 

simulation, 9,999 bootstraps were performed. Code for the model and all simulations is available 337 

in the ‘viability_test.py’ at our GitHub repository https://github.com/thrash-lab/viability_test. 338 

 339 

Actual versus expected number of isolates 340 

For each taxon in each DTE experiment, the Monte Carlo simulation was used to evaluate 341 

whether the number of recovered pure wells for each taxon was within 95% CI of simulated 342 

estimates, assuming optimum growth conditions (i.e. V = 100%). For each of 9,999 bootstraps, 343 

460 wells were simulated with the inoculum size used for the experiment and the relative 344 

abundance of the ASV. For taxa where the number of expected wells fell outside the 95% CI of 345 

the model, a deviance score was calculated as the difference between the actual number of wells 346 

observed and median of the simulated dataset. The results of this output are presented in Table 347 

S1 under the “Expected vs actual” tab, and the R script for visualizing this output as Figure 7 is 348 

available at our GitHub repository https://github.com/thrash-lab/EvsA-visualization.  349 

 350 

Estimating viability in under-represented taxa 351 

For taxa where the observed number of positive wells was lower than the 95% CI lower limit 352 

within a given experiment, and because our analysis was restricted to only those organisms for 353 

which our media was sufficient for growth at least once, the deviance was assumed to be a 354 

function of a viability term, V, (ranging from 0 to 1) associated with suboptimal growth 355 

conditions, dormancy, persister cells, etc. To estimate a value of viability for a given taxon 356 

within a particular experiment, the Monte Carlo simulation was run using an experiment-357 

appropriate inoculum size, relative abundance, and number of wells (460 for each experiment). 358 

Taxon-specific viability was tested across a range of decreasing values from 99% to 1% until 359 

such time as the observed number of pure wells for a given taxon fell between the 95% CI 360 

bounds of the simulated data. At this point, the viability value is the maximum viability of the 361 

taxon that enables the observed number of pure wells for a given taxon to be explained by the 362 

model. The results of this output are presented in Table S1 under the “Expected vs actual” tab. 363 

 364 

Likelihood of recovering taxa at different relative abundances 365 

To estimate the number of wells required in a DTE experiment to have a significant chance of 366 

recovering a taxon with a relative abundance of r, assuming optimum growth conditions (V = 367 
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100%), the Monte Carlo model was used to simulate experiments from 92 wells to 9,200 wells 368 

per experiment across a range of relative abundances from 0 to 100% in 0.1% increments, and a 369 

range of inoculum sizes (cells per well of 1, 1.27, 1.96, 2, 3, 4 and 5). Each experiment was 370 

bootstrapped 999 times and the number of bootstraps in which the lower-bound of the 95% CI 371 

was ≥ 1 was recorded. 372 

 373 

Data accessibility 374 

All iTag sequences are available at the Short Read Archive with accession numbers 375 

SRR6235382-SRR6235415 (29). PCR-generated 16S rRNA gene sequences from this study are 376 

accessible on NCBI GenBank under the accession numbers MK603525-MK603769. Previously 377 

generated 16S rRNA genes sequences are accessible on NCBI GenBank under the accession 378 

numbers KU382357-KU38243 (35). Table S1 is available at 379 

https://doi.org/10.6084/m9.figshare.12142113. 380 

 381 

Results 382 

General cultivation campaign results 383 

We conducted a total of seventeen DTE cultivation experiments to isolate bacterioplankton (sub 384 

2.7 µm fraction), with paired microbial community characterization of source waters (0.22 µm - 385 

2.7 µm fraction), from six coastal Louisiana sites over a three-year period (Table S1). We 386 

inoculated 7,820 distinct cultivation wells (all experiments) with an estimated 1-3 cells·well
-1

 387 

using overlapping suites of artificial seawater media, JW (years 1 and 2, (35)) and MWH (year 388 

3), designed to match the natural environment (Table 1). The MWH suite of media was modified 389 

from the JW media to additionally include choline, glycerol, glycine betaine, cyanate, DMSO, 390 

DMSP, thiosulfate, and orthophosphate (Table S1). These compounds have been identified as 391 

important metabolites and osmolytes for marine and freshwater microorganisms and were absent 392 

in the first iteration (JW) of our media (88–94). A total of 1,463 wells were positive (> 10
4
 393 

cells·ml
-1

), and 738 of these were transferred to 125 mL polycarbonate flasks. For four 394 

experiments (FWC, FWC2, JLB2, and JLB3) we only transferred a subset of positives (48/301, 395 

60/403, 60/103, and 60/146) because the number of isolates exceeded our ability to maintain and 396 

identify them at that time (Table 1). The subset of positive wells for these four experiments was 397 

selected using flow cytometry signatures usually indicative of smaller oligotrophic cells like 398 

SAR11 strain HTCC1062 (49) using our settings. Of the 738 wells from which we transferred 399 

cells across all experiments, 328 of these yielded repeatably transferable isolates that we deemed 400 

as pure cultures based on 16S rRNA gene PCR and Sanger sequencing.  401 

 402 

Table 1. Cultivation statistics, including whole community viability estimates  403 

Site Date n z p λ V* (ASE) CV 

our model: 

estimated # 

wells with 1 

cell 

(bootstrapped 

median: (xx-xx) 

95% CI) if 

V==1 ** 

our 

model: 

Vest: min-

max 95% 

CI *** 

in situ 

salinity 

Medium 

salinity Medium Study 

CJ Sep 2014 460 15 0.033 1.27 2.6 (0.67) 0.259 164 (144-185) 1.5-4.2 24.6 34.8 

JWAMPF

e (35) 

ARD Nov 2014 460 1 0.002 1.5 0.1 (0.15) 1.451 154 (134-174) 0.1-0.7 1.72 34.8 JW1 (35) 

JLB Jan 2015 460 61 0.133 1.96 7.3 (0.93) 0.127 127 (109-146) 5.6-9.2 26.0 34.8 JW1 (35) 

FWC† Mar 2015 460 301 0.654 2 53.1 (3.2) 0.06 125 (106-143) 47.1-59.7 5.39 5.79 JW4 (35) 

LKB June 2015 460 15 0.033 1.8 1.8 (0.48) 0.266 137 (118-156) 1.1-3.0 2.87 5.79 JW4 (35) 

Tbon2 Aug 2015 460 41 0.089 1.56 6.0 (0.93) 0.156 151 (132-171) 4.3-8.1 14.2 11.6 JW3 (35) 
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CJ2 Oct 2015 460 61 0.133 2 7.1 (0.91) 0.128 125 (106-143) 5.6-9.1 22.2 23.2 JW2 (35) 

FWC2† Apr 2016 460 403 0.876 2 104.4 (6.2) 0.059 125 (106-143) >92.3 20.9 23.2 JW2 This study 

ARD2c Jun 2016 460 7 0.015 2 0.8 (0.29) 0.362 125 (106-143) 0.3-1.5 0.18 1.45 JW5 This study 

JLB2c† May 2016 460 103 0.224 2 12.7 (1.25) 0.099 125 (106-143) 10.3-15.4 6.89 5.79 JW4 This study 

LKB2 Jul 2016 460 39 0.085 2 4.4 (0.71) 0.161 125 (106-143) 3.2-6.0 2.39 1.45 JW5 This study 

Tbon3 Jul 2016 460 78 0.17 2 9.3 (1.05) 0.113 125 (106-143) 7.4-11.5 17.7 34.8 MWH1 This study 

CJ3 Sep 2016 460 69 0.15 2 8.1 (0.98) 0.121 125 (106-143) 6.4-10.2 23.7 23.2 MWH2 This study 

FWC3 Nov 2016 460 27 0.059 2 3.0 (0.58) 0.194 125 (106-143) 2.0-4.4 18.0 23.2 MWH2 This study 

ARD3 Dec 2016 460 58 0.126 2 6.7 (0.89) 0.132 125 (106-143) 5.2-8.6 3.72 1.45 MWH5 This study 

JLB3† Jan 2017 460 146 0.317 2 19.1 (1.59) 0.083 125 (106-143) 16.1-22.4 12.4 11.6 MWH3 This study 

LKB3 Feb 2017 460 38 0.083 2 4.3 (0.70) 0.163 125 (106-143) 3.1-5.8 3.55 1.45 MWH5 This study 

*Viability according to equation 1, below. Asymptotic Standard Error (ASE) is presented in parentheses. 404 
**Based on 9,999 bootstraps. 405 
***Based on 9,999 bootstraps tested at viability increments of 0.1%. 406 
†Experiments where a subset of positive wells were transferred. 407 
FWC2 shows the advantage of our method over equation 1 for extreme values. 408 

 409 

Phylogenetic and geographic novelty of our isolates 410 

The 328 isolates belonged to three Phyla: Proteobacteria (n = 319), Actinobacteria (n = 8), and 411 

Bacteroidetes (n = 1) (Figs. S1-S5). We placed these isolates into 55 groups based on their 412 

positions within 16S rRNA gene phylogenetic trees (Figs. S1-S5) and as a result of having ≥ 413 

94% 16S rRNA gene sequence identity to other isolates. We applied a nomenclature to each 414 

group based on previous 16S rRNA gene database designations and/or other cultured 415 

representatives (Fig. 1, Table S1). Isolates represented eight putatively novel genera with ≤ 416 

94.5% 16S rRNA gene identity to a previously cultured representative: the Actinobacteria acIV 417 

subclades A and B, and one other unnamed Actinobacteria group; an undescribed 418 

Acetobacteraceae clade (Alphaproteobacteria); the freshwater SAR11 LD12 (Candidatus 419 

Fonsibacter ubiquis (29)); the MWH-UniPo and an unnamed Burkholderaceae clade 420 

(Betaproteobacteria); and the OM241 Gammaproteobacteria (Fig. 1, Table S1). Seven 421 

additional putatively novel species in other genera were also isolated (between 94.6 and 96.9% 422 

16S rRNA gene sequence identity) in unnamed Commamonadaceae and Burkholderiales clades 423 

(Betaproteobacteria); the SAR92 clade and Pseudohonigella genus (Gammaproteobacteria); and 424 

unnamed Rhodobacteraceae and Bradyrhizobiaceae clades, as well as Maricaulis spp. 425 

(Alphaproteobacteria) (Fig. 1). LSUCC isolates belonging to the groups BAL58 426 

Betaproteobacteria (Fig. S4), OM252 Gammaproteobacteria, HIMB59 Alphaproteobacteria, 427 

and what we designated the LSUCC0101-type Gammaproteobacteria (Fig. S5) had close 16S 428 

rRNA gene matches to other isolates at the species level, however, none of those previously 429 

cultivated organisms have been formally described (Fig. 1). The OM252, BAL58, and MWH-430 

UniPo clades were the most frequently cultivated, with 124 of our 328 isolates belonging to these 431 

three groups (Table S1). In total, 73 and 10 of the 328 isolates belonged in putatively novel 432 

genera and novel species in previously cultivated genera, respectively. We estimated that at least 433 

310 of these isolates were geographically novel, being the first of their type cultivated from the 434 

nGOM (Fig. 2). This included isolates from cosmopolitan groups like SAR11 subclade IIIa, 435 

OM43 Betaproteobacteria, SAR116, and HIMB11-type “Roseobacter” spp. Cultivars from 436 

Vibrio sp. and Alteromonas sp. were the only two groups with close relatives (species level) 437 

isolated from the GOM.  438 

 439 

Natural abundance of isolates 440 

We matched LSUCC isolate 16S rRNA gene sequences with both operational taxonomic units 441 

(OTUs) and amplicon single nucleotide variants (ASVs) from bacterioplankton communities to 442 
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assess the relative abundances of our isolates in the coastal nGOM waters that served as inocula. 443 

While OTUs provide a broad group-level designation (97% sequence identity), this approach can 444 

artificially combine multiple ecologically distinct taxa (95). Due to higher stringency for 445 

defining a matching 16S rRNA gene, ASVs can increase the confidence that our isolates 446 

represent environmentally relevant organisms (74, 96). However, while many abundant 447 

oligotrophic bacterioplankton clades such as SAR11 (29, 97), OM43 (40, 41), SAR116 (98), and 448 

Sphingomonas spp. (99) have a single copy of the rRNA gene operon, other taxa can have 449 

multiple rRNA gene copies (97, 100), complicating ASV analyses. Since we could not a priori 450 

rule out multiple rRNA gene operons for novel groups with no genome sequenced 451 

representatives, we used both OTU and ASV approaches.  452 

In total, we obtained at least one isolate from 40 of the 777 OTUs and 71 of the 1,323 453 

ASVs observed throughout the three-year dataset. 43% and 26% of LSUCC isolates matched the 454 

top 50 most abundant OTUs (median relative abundances, all sites, from 8.1-0.11%; Fig. S6A) 455 

and ASVs (mean relative abundances, all sites, from 3.8-0.11%; Fig. S6B), respectively, across 456 

all sites and samples. Microbial communities from all collected samples clustered into two 457 

groups corresponding to those inhabiting salinities below 7 and above 12, and salinity was the 458 

primary environmental driver distinguishing community beta diversity (OTU: R
2
=0.88, P=0.001, 459 

ASV: R
2
=0.89, P =0.001). As part of the cultivation strategy after the first five experiments, we 460 

used a suite of five media differing by salinity and matched the experiment with the medium that 461 

most closely resembled the salinity at the sample site. Consequently, our isolates matched 462 

abundant environmental groups from both high and low salinity regimes. At salinities above 463 

twelve, LSUCC isolates matched 13 and 14 of the 50 most abundant OTUs and ASVs, 464 

respectively (Figs. 3A, 4A; Table S1). These taxa included the abundant SAR11 subclade IIIa.1, 465 

HIMB59, HIMB11-type “Roseobacter”, and SAR116 Alphaproteobacteria; the OM43 466 

Betaproteobacteria; and the OM182 and LSUCC0101-type Gammaproteobacteria. At salinities 467 

below seven, 10 and 9 of the 50 most abundant OTUs and ASVs, respectively, were represented 468 

by LSUCC isolates, including one of most abundant taxa in both cluster sets, SAR11 LD12 469 

(Figs. 3B, 4B). Some taxa, such as SAR11 IIIa.1 and OM43, were among the top 15 most 470 

abundant taxa in both salinity regimes (Figs. 3, 4, Table S1), suggesting a euryhaline lifestyle. In 471 

fact, our cultured SAR11 IIIa.1 ASV7471 was the most abundant ASV in the aggregate dataset 472 

(Fig. S6).  473 

Overall, this effort isolated taxa representing 18 and 12 of the top 50 most abundant 474 

OTUs and ASVs, respectively (Table 2, Fig. S6). When looking at different median relative 475 

abundance categories of  > 1%, 0.1% - 1%, and < 0.1%, isolate OTUs were distributed across 476 

those categories in the following percentages: 15%, 20%, and 27%; isolate ASVs were 477 

distributed accordingly: 4%, 26%, and 37% (Table 2). Isolates with median relative abundances 478 

of < 0.1%, such as Pseudohongiella spp., Rhodobacter spp., and Bordetella spp., would 479 

canonically fall within the rare biosphere (101) (Table S1). A number of isolates did not match 480 

any identified OTUs or ASVs (38% and 33% of LSUCC isolates when compared to available 481 

OTUs and ASVs, respectively), either because their matching OTUs/ASVs were below our 482 

thresholds for inclusion (at least two reads from at least two sites), or because they were below 483 

the detection limit from our sequencing effort (Table 2). Thus, 43% and 30% of our isolates 484 

belonged to OTUs and ASVs, respectively, with median relative abundances > 0.1%. 485 

 486 

Table 2. Median relative abundances (r) of cultured OTUs and ASVs across all samples 487 
 In top 50 ranks r > 1%  1% - 0.1% r r < 0.1%  Not detected 

OTUs 18 (140 isolates) 50 isolates (15%) 90 isolates (27%) 65 isolates (20%) 123 isolates (38%) 
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ASVs 12 (84 isolates) 13 isolates (4%) 84 isolates (26%) 122 isolates (37%) 109 isolates (33%) 

 488 

Modeling DTE cultivation 489 

An enigma that became immediately apparent through a review of our data was the absence of an 490 

obvious relationship between the abundance of a given taxon in the inoculum and the frequency 491 

of obtaining an isolate of the same type from a DTE cultivation experiment (Figs. S7, S8). For 492 

example, although we could culture SAR11 LD12 over a range of media conditions (29), and the 493 

matching ASV had relative abundances of > 5% in six of our seventeen experiments (Fig. 5), we 494 

only isolated one representative (LSUCC0530). In an ideal DTE cultivation experiment where 495 

cells are randomly subsampled from a Poisson-distributed population, if the medium is sufficient 496 

for a given microorganism’s growth, then the number of isolates should correlate with that 497 

microorganism’s abundance in the inoculum. However, a qualitative examination of several 498 

abundant taxa that grew in our media, some of which we cultured on multiple occasions, 499 

revealed no clear pattern between abundance and isolation success (Fig. 5). Considering that 500 

medium composition was sufficient for cultivation of these organisms on at least some 501 

occasions, we hypothesized that cultivation frequency may reflect differences in the capacity for 502 

growth within populations of a given taxon. Thus, we decided to model cultivation frequency in 503 

relationship to estimated abundances in a way that could generate estimates of cellular viability, 504 

defined herein as meaning “presently able to grow in defined medium,” as opposed to a broader 505 

definition equating viability with being alive more generally, since we only evaluated growth 506 

capacity in this study. We hoped that modeling might also help us inform experimental design 507 

and make DTE cultivation efforts more predictable (59). 508 

 Previously, Don Button and colleagues developed a statistical model for viability (V) of 509 

cells in the entire population for a DTE experiment (33):  510 

 511 

(1) 𝑉 =  −
ln (1−𝑝)

𝜆
 512 

 513 

Where p is the proportion of wells or tubes, n, with growth, z, (𝑝 = 𝑧/𝑛) and λ is the estimated 514 

number of cells inoculated per well (the authors used X originally). The equation uses a Poisson 515 

distribution to account for the variability in cell distribution within the inoculum and therefore 516 

the variability in the number of wells or tubes receiving the expected number of cells. We and 517 

others have used this equation in the past (26, 28, 35) to evaluate the efficacy of our cultivation 518 

experiments in the context of commonly cited numbers for cultivability using agar-plate based 519 

methods (13, 17, 102).  520 

While Equation 1 was effective for its intended purpose, it has a number of drawbacks 521 

that limit its utility for taxon-specific application: 1) If p=1, i.e. all wells are positive, then the 522 

equation is invalid; 2) At high values of p and low values of λ, estimates of V can exceed 100% 523 

(Table 1); 3) Accuracy of viability, calculated by the asymptotic standard error, ASE, or the 524 

coefficient of variation, CVV, was shown to be non-uniform across a range of λ, with greatest 525 

accuracy when true viability was ~10% (33). Thus, low viability, low values of λ, and small 526 

values of n were found to produce unreliable results; 4) If p=0, i.e. no positive wells are 527 

observed, estimates of viability that could produce 0 positive wells cannot be calculated. In 528 

addition, 5) Button’s original model assumes that a well will only produce a pure culture if the 529 

inoculated well contains one cell. By contrast, in low diversity samples, samples dominated by a 530 

single taxon, or experiments evaluating viability from axenic cultures across different media, a 531 
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limitation that only wells with single cells are axenic will underestimate the expected number of 532 

pure wells.  533 

To overcome these limitations, we developed a Monte Carlo simulation model that 534 

facilitates the incorporation of relative abundance data from complementary community profiling 535 

data (e.g. 16S rRNA gene amplicons) to calculate the likelihood of positive wells, pure wells, 536 

and viability at a taxon-specific level, based on the observed number of wells for which we 537 

obtained an isolate of a particular taxon (Fig. 6). By employing a Monte Carlo approach, our 538 

model is robust across all values of p and n with uniform prediction accuracy, and we can 539 

estimate the accuracy of our prediction within 95% confidence intervals (CI). Furthermore, the 540 

width of 95% CI boundaries of viability, as well as the expected number of positive and pure 541 

wells, are entirely controllable and dependent only on available computational capacity for 542 

bootstrapping (i.e., these can be improved with more bootstrapping, but at greater computational 543 

cost). When zero positive wells are observed experimentally, our approach enables estimation of 544 

a maximum viability that could explain such an observation by identifying the range of 545 

variability values for which zero resides within the bootstrapped 95% CI. Finally, the ability to 546 

calculate the viability of the entire community, as in Equation 1, is retained simply by estimating 547 

viability using a relative abundance of one.  548 

 We compared our model to that of Button et al. for evaluating viability from whole 549 

community experimental results, similarly to previous reports (26, 28, 35) (Table 1). Our 550 

viability estimates (Vest) generally agreed with those using the Button et al. calculation, but we 551 

have now provided 95% CI to depict the maximum and minimum viability that would match the 552 

returned positive well distribution, as well as maximum and minimum values for the number of 553 

wells that ought to have contained a single cell. Maximum Vest ranged from 1.1% to > 92.3% 554 

depending on the experiment, with a median Vest across all our experiments of 8.6% (Table 1). In 555 

one case, the extremely high value (FWC2) was better handled by our model compared to 556 

equation 1, because it did not lead to a viability estimation greater than 100%. FWC and FWC2 557 

represent Vest outliers compared with the entire dataset (maximums of 59.7% and > 92.3%, 558 

respectively; Table 1). We believe these high numbers most likely resulted from underestimating 559 

the number of cells inoculated into each well (because of the use of microscopy, the presence of 560 

clumped cells, or possible pipet error- described in (35)), thus increasing the estimated viability.  561 

 562 

Isolate-specific viability estimates 563 

Our new model also facilitates taxon-specific viability estimates. Cultivation efficacy was 564 

evaluated for 71 cultured taxa matching ASVs within our detection limits (219 isolates) across 565 

17 sites (1,207 pairwise combinations) by comparing the number of observed pure wells to those 566 

predicted by the Monte Carlo simulation using 9,999 bootstraps, 460 wells per experiment, and 567 

an assumption that all cells were viable (i.e. V = 100%). In total, for 1,158 out of 1,207 pairwise 568 

combinations (95.9%) the observed number of pure wells fell within the 95% CI of data 569 

simulated at matching relative abundance and inoculum size, suggesting that these two 570 

parameters alone could explain the observed cultivation success for most taxa (Table S1). 1,059 571 

out of these 1,158 combinations (91%) recorded zero observed wells, but with a maximum 572 

relative abundance of 2.8% within these combinations, a score of zero fell within predicted 95% 573 

CI of simulations with 460 wells. Sensitivity analysis showed that with 460 wells per 574 

experiment, an observation of zero pure wells falls below the 95% confidence intervals lower-575 

bound (and is thus significantly depleted to enable viability to be estimated) for taxa with relative 576 

abundances of 2.3%, 2.9% and 4.5% for inoculum sizes of one, two and three cells per well, 577 
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respectively (Fig. S9). In fact, modeling DTE experiments from 92 wells to 9,200 wells per 578 

experiment showed that for taxa comprising ~1% of a microbial community 1,104 wells (or 12 579 

plates at 92 wells per plate), 1,380 wells (15 plates) and 2,576 wells (28 plates) were required to 580 

be statistically likely to recover at least one positive, pure well using inocula of one, two or three 581 

cells per well, respectively, with V = 100% (Fig. S9). 582 

A small, but taxonomically relevant minority (49 out of 1,207) of pairwise combinations 583 

had a number of observed pure wells that fell outside of the simulated 95% CI with V = 100% 584 

(Fig. 7). Of these, 28 had either one, two, or three more observed pure wells than the upper 95% 585 

CI (Table S1), suggesting cultivability higher than expected based purely a model capturing the 586 

interaction between a Poisson-distributed inoculum and a binomially-distributed relative 587 

abundance, with V = 100%. However, the deviance from the expected number of positive wells 588 

for those above the 95% CI was limited to three or fewer wells, meaning that we only obtained 589 

1-3 more isolates than expected (Table S1). On the other hand, those organisms that we isolated 590 

less frequently than expected showed greater deviance. 21 out of the 49 outliers had lower than 591 

expected cultivability (Fig. 7). These taxa had relative abundances ranging from 2.7% to 14.5%, 592 

but recorded only 0, 1, or 2 isolates. In the most extreme case, ASV7629 (SAR11 LD12) at Site 593 

ARD2c comprised 14.5% of the community but recorded no observed pure wells, compared to 594 

expected number of 13-30 isolates (95% CI) predicted by the Monte Carlo simulation. All the 595 

examples of taxa that were isolated less frequently than expected given the assumption of V = 596 

100% belonged to either SAR11 LD12, SAR11 IIIa.1, or one particular OM43 ASV (7241) (Fig. 597 

6).  598 

We used our model to calculate estimated viability (Vest) for these organisms based on 599 

their cultivation frequency at sites where the assumption of V = 100% appeared violated (Table 600 

3). Using the extreme example of SAR11 LD12 ASV7629 at Site ARD2c, simulations across a 601 

range of V indicated that a result of zero positive wells fell within 95% of simulated values when 602 

the associated taxon Vest ≤ 15%. When considering all anomalous cultivation results, LD12 had 603 

estimated maximum viabilities that ranged up to 55% (Table 3). OM43 (ASV7241) estimated 604 

maximum viabilities ranged from 52-80%, depending on the site, and similarly, SAR11 IIIa.1 605 

ranged between 22-82% maximum viability (Table 3). 606 

 607 

Table 3. Estimated viabilities for taxa cultivated less frequently than expected 608 

ASV Group Site r* n z λ 

Estimated # wells with 

1 cell (bootstrapped 

median: (xx-xx) 95% 

CI) if V==1 ** 

Vest: min-max 95% 

CI based on 

cultivation results*** 

7241 OM43  ARD3 0.03 460 0 2 4 (1-9) 0.1-80 

7241 OM43  FWC† 0.04 460 0 2 5 (1-9) 0.1-77 

7241 OM43  JLB 0.05 460 0 1.96 7 (2-12) 0.1-52 

7471 SAR11 IIIa.1 ARD3 0.11 460 0 2 15 (8-23) 0.1-22 

7471 SAR11 IIIa.1 CJ 0.03 460 0 1.27 4 (1-9) 0.1-82 

7471 SAR11 IIIa.1 FWC3 0.07 460 2 2 9 (4-15) 2.5-80 

7471 SAR11 IIIa.1 JLB 0.05 460 0 1.96 6 (2-11) 0.1-59 

7471 SAR11 IIIa.1 JLB2c† 0.08 460 0 2 11 (5-18) 0.1-31 

7471 SAR11 IIIa.1 JLB3† 0.04 460 0 2 5 (1-9) 0.1-74 

7471 SAR11 IIIa.1 LKB 0.05 460 0 1.8 6 (2-12) 0.1-55 

7471 SAR11 IIIa.1 LKB2 0.04 460 0 2 5 (1-9) 0.1-77 

7471 SAR11 IIIa.1 LKB3 0.09 460 0 2 11 (6-19) 0.1-30 

7471 SAR11 IIIa.1 TBON2 0.04 460 0 1.56 6 (2-12) 0.1-56 

7471 SAR11 IIIa.1 TBON3 0.04 460 0 2 5 (1-10) 0.1-73 

7629 SAR11 LD12  ARD 0.11 460 0 1.5 18 (10-27) 0.1-20 

7629 SAR11 LD12  ARD2c 0.15 460 0 2 21 (13-30) 0.1-15 

7629 SAR11 LD12  ARD3 0.05 460 0 2 7 (2-12) 0.1-53 

7629 SAR11 LD12  FWC† 0.09 460 0 2 12 (6-19) 0.1-28 
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7629 SAR11 LD12  LKB 0.05 460 0 1.8 7 (2-13) 0.1-51 

7629 SAR11 LD12  LKB2 0.08 460 1 2 11 (5-18) 0.3-49 

7629 SAR11 LD12  LKB3 0.06 460 0 2 7 (3-13) 0.1-48 

*Fractional relative abundance 609 
**Based on 9,999 bootstraps. 610 
***Based on 9,999 bootstraps tested at viability increments of 0.1%. 611 
†Experiments where a subset of positive wells were transferred. 612 

 613 

Discussion 614 

This work paired 17 DTE cultivation experiments with cultivation-independent assessments of 615 

microbial community structure in source waters to evaluate cultivation efficacy. We generated 616 

328 new bacterial isolates representing 40 of the 777 OTUs and 71 of the 1,323 ASVs observed 617 

across all samples from which we inoculated DTE experiments. Stated another way, we 618 

successfully cultivated 5% of the total three year bacterioplankton community observed via 619 

either OTU or ASV analyses. A large fraction of our isolates (43% of cultured OTUs, 30% of 620 

cultured ASVs) represented taxa present at median relative abundances > 0.1%, with 15% and 621 

4% of cultured OTUs and ASVs, respectively, at median abundances > 1%. 140 of our isolates 622 

matched the top 50 most abundant OTUs, and 84 isolates matched the top 50 most abundant 623 

ASVs.  624 

This campaign led to the first isolations of the abundant SAR11 LD12 and Actinobacteria 625 

acIV; the second isolate of the HIMB59 Alphaproteobacteria; and new genera within the 626 

Acetobacteraceae, Burkholderiaceae, OM241 and LSUCC0101-type Gammaproteobacteria, and 627 

MWH-UniPo Betaproteobacteria; thereby demonstrating again that continued DTE 628 

experimentation leads to isolation of previously uncultured organisms with value for aquatic 629 

microbiology. We have also added a considerable collection of isolates to previously cultured 630 

groups like OM252 Gammaproteobacteria, BAL58 Betaproteobacteria, and HIMB11-type 631 

“Roseobacter” spp., and the majority of our isolates represent the first versions of these types of 632 

taxa from the Gulf of Mexico, adding comparative biogeographic value to these cultures.  633 

Our viability model improved upon the statistical equation developed by Button and 634 

colleagues (33) to extend viability estimates to individual taxa within a mixed community and 635 

provide 95% CI constraining those viability estimates. We cultured several groups of organisms 636 

abundant enough to evaluate viability with 460 wells (Figs. 7, S9). The fact that these organisms 637 

were successfully cultured at least once meant that we could reasonably assume that the medium 638 

was sufficient for growth. Some taxa were cultivated more frequently than expected (Fig. 7). We 639 

explore two possible explanations for this phenomenon- errors in quantification and variation in 640 

microbial cell organization. Any systematic error that led to underestimating the abundance of an 641 

organism would have correspondingly resulted in our underestimating the number of wells in 642 

which we would expect to find a pure culture of that organism. Such underestimations could 643 

come from primer biases associated with amplicon sequencing (69, 70, 103), but we do not know 644 

if those protocols specifically underestimate the OM252, MWH-UniPo, and HIMB11-type taxa 645 

cultured more frequently than expected (Fig. 7). However, due the low number of expected 646 

isolates in these groups, and the small deviances in actual isolates from those expected numbers 647 

(within 1-3 isolates compared to expected values), the biases inherent in the relative abundance 648 

estimations for these taxa were probably small. Furthermore, one of the microorganisms isolated 649 

more frequently than expected matched the OM43 ASV1389 (Fig. S6), whereas another OM43 650 

ASV (7241) was cultivated less frequently than expected (see below), meaning that if primer 651 

bias were the cause of this discrepancy, it would have to be operating differently on very closely 652 

related organisms. 653 
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One possible biological explanation for why some isolates might have been cultured 654 

more frequently than expected is clumped cells. If cells of any given taxon in nature grew in 655 

small clusters, then the number of cells we added to a well would have been greater than 656 

expected based on a Poisson distribution. Furthermore, the model assumes that each cell is 657 

independent, and that the composition of a subset of cells is only a function of the relative 658 

abundance of the taxon in the community. Within a cluster of cells, this assumption is violated as 659 

the probability of cells being from the same taxon is higher. Thus, the model will underestimate 660 

the probability of a well being pure and therefore underestimate the number of pure wells likely 661 

to be observed within an experiment, leading to a greater number of isolates than expected. 662 

Future microscopy work could examine whether microorganisms such as OM252 and MWH-663 

UniPo form small clusters in situ and/or in pure culture, and whether this phenomenon may be 664 

different for different ASVs of OM43, or if clumping may be a transient phenotype. 665 

We also identified three taxa- SAR11 LD12, SAR11 subclade IIIa.1, and the 666 

aforementioned OM43 ASV7241- that were isolated much less frequently than expected based 667 

on their abundances (Fig. 7, Table 3). This could mean that our assumption of V = 100% was 668 

incorrect, or that, in contrast to the taxa that were cultured more frequently than expected 669 

(above), our methods had biases that overestimated the abundance of these organisms, thereby 670 

over-inflating the expected number of isolates. We used the modified 515/806RB primers that 671 

have been shown to be much more accurate in quantifying SAR11 compared to FISH than the 672 

original 515/806 primers (within 6% ± 4% SD), and this protocol almost always underestimates 673 

SAR11 abundance (69). This suggests that our expected number of isolates may have actually 674 

been underestimated, our cultivation success poorer than we measured, and therefore we may be 675 

overestimating viability for the SAR11 taxa in this study. Other sources of systematic error that 676 

might impinge on successful transfers, and thereby reduce our recovery, include sensitivity to 677 

pipette tip and/or flask material. However, the fact that these taxa were sometimes successfully 678 

isolated means that if these mechanisms were impacting successful transfers, then their activity 679 

was less than 100% efficient, which implies variations in subpopulation vulnerability that would 680 

be very similar conceptually to variations in subpopulation viability. 681 

Another possible source of error that could have resulted in lower than expected numbers 682 

of isolates was the subset of experiments for which we did not transfer all positive wells due to 683 

limitations in available personnel time (Tables 1 & 3). However, our selection criteria for the 684 

subset of wells to transfer was based on flow cytometric signatures that would have encompassed 685 

small cells like SAR11 (see Results), and in any case, there were many examples of lower than 686 

expected recovery from other experiments where we transferred all positive wells (Table 3). 687 

Thus, we believe that these four experiments were unlikely to contribute major errors biasing our 688 

estimates of viability for SAR11 LD12, SAR11 IIIa.1, and other small cells like OM43. 689 

If we instead explore biological reasons for the lower than expected numbers of positive 690 

wells in DTE experiments, a plausible explanation supported by the literature is simply that a 691 

large fraction of the population is in some state of inactivity or at least not actively dividing 692 

(104). Studies using uptake of a variety of radiolabelled carbon and sulfur sources have 693 

demonstrated substantial fractions of SAR11 cells may be inactive depending on the population 694 

(105–108). SAR11 cells in the northwest Atlantic and Mediterranean showed variable uptake of 695 

labelled leucine (30-50% (105, 106); ~25-55% (108, 109)) and amino acids (34-61% (105, 106); 696 

34-66% (105, 106)). Taken in reverse, this means that up to 75% of the SAR11 population may 697 

be dormant at any given time. In another study focused on brackish communities, less than 10% 698 

of SAR11 LD12 cells took up labelled leucine and/or thymidine (107). While this was likely not 699 
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the ideal habitat for LD12 based on salinities above six (29, 107), this study supports the others 700 

above that show substantial proportions of inactive SAR11 cells, the fraction of which may 701 

depend on environmental conditions and other unknown factors. Bi-orthagonal non-canonical 702 

amino acid tagging (BONCAT) shows similar trends for SAR11 (110). These results also match 703 

general data indicating prevalent inactivity among aquatic bacterioplankton (104, 111–113). 704 

Although labelled uptake methods do not directly measure rates of cell division, the 705 

incorporation of these compounds requires active DNA replication or translation, which 706 

represent an even more fundamental level of activity than cell division (114). 707 

Why might selection favor high percentages of subpopulation dormancy? One possibility 708 

is as an effective defense mechanism against abundant viruses. Viruses infecting SAR11 have 709 

been shown to be extremely abundant in both marine (115, 116) and freshwater (117) systems. 710 

Indeed, the paradox of high viral abundances and high host abundances in SAR11 has led to a 711 

refining of negative density dependent selection through Lokta-Volterra predator-prey dynamics 712 

(118) to include heterogeneous susceptibility at the strain level (119, 120) and positive density 713 

dependent selection through intraspecific proliferation of defense mechanisms (121). Activity of 714 

lytic viruses infecting SAR11 in situ demonstrated that phages infecting SAR11 have lower 715 

ratios of viral transcripts to host cells compared to other abundant taxa, and that observed abrupt 716 

changes in these ratios suggest co-existence of several SAR11 strains with different life 717 

strategies and phage susceptibility (122).  Phenotypic stochasticity of phage receptor expression 718 

has been shown to maintain a small proportion of phage-insensitive hosts within a population, 719 

enabling coexistence of predator and prey without extinction (123). Phages adsorb to a vast array 720 

of receptor proteins on their hosts, with many well-characterised receptors (e.g. OmpC, TonB, 721 

BtuB, LamB)  associated with nutrient uptake or osmoregulation (124).  Selection therefore 722 

favours phenotypes that limit receptor expression, with an associated fitness cost, particularly in 723 

nutrient-limited environments.  724 

However, an alternative mechanism is possible if a population of cells comprised a small 725 

number of susceptible cells, and a large number of either resistant or dormant cells where 726 

presentation of receptor proteins is retained. The majority of host-virus encounters would occur 727 

with resistant or dormant cells, and constrain viral propagation through inefficient or failed 728 

infection, effectively acting as a sink for infectious particles. Prevalent lysogeny in SAR11 729 

populations would provide a mechanism for establishing resistant cells via superinfection 730 

immunity (125, 126), where integration of a temperate phage prevents infection by other closely 731 

related viruses. There is growing evidence that many viruses infecting SAR11 are temperate 732 

(127, 128) and that reversion to virulence can be triggered through nutrient limitation (128) in 733 

contrast to other systems where lysogeny is favoured in nutrient-poor conditions (129). Viral 734 

infection may also trigger host dormancy, lowering cellular metabolism to minimise energy 735 

requirements under nutrient limited conditions (130). Such cells would be selected against during 736 

cultivation experiments, potentially explaining the rarity of SAR11 isolate genomes found to 737 

contain prophages. Dormancy and/or lysogeny would also enable long-term co-stability between 738 

abundant phages and their hosts (131) and resolve the apparent paradox of high host and virus 739 

abundances (126). 740 

Detailed measurements of dormancy in SAR11 and what types of cellular functions 741 

become inactivated are part of our ongoing work. In the meantime, it is prudent to examine the 742 

implications of a substantial proportion of non-dividing cells for our understanding of basic 743 

growth dynamics. Studies attempting to measure SAR11 growth rates in nature have yielded a 744 

wide range of results, ranging from 0.03-1.8 day
-1

 (97, 105, 108, 132–134). These span wider 745 
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growth rates than observed for axenic cultures of SAR11 (0.4-1.2 day
-1

), but isolate-specific 746 

growth ranges within that spread are much more constrained (29, 36, 49, 135, 136). Conversion 747 

factors for determining production from 
3
H-leucine incorporation (137) are accurate for at least 748 

some Ia subclade members of SAR11 (138), so variations in growth rate estimates from 749 

microradiography experiments likely have other explanations. It is possible that different strains 750 

of SAR11 simply have variations in growth rate not captured by existing isolates. Another, not 751 

mutually exclusive, possibility is that the differences in in situ growth rate estimates also reflect 752 

variations in the proportion of actively dividing cells within the population. A simple model of 753 

cell division with binary fission where only a subset of cells divide and non-dividing cells 754 

persist, rather than die, can still yield logarithmic growth curves (Fig. S10) like those observed 755 

for SAR11 in pure culture (29, 49, 139). However, this subpopulation variability means that the 756 

division rate for the subset of cells that are actively dividing is much higher than calculated when 757 

assuming 100% dividing cells in the population. Based on our estimated viability for SAR11 758 

LD12 of 15-55%, to obtain our previously calculated maximum division rate (0.5 day
-1

) for the 759 

whole culture (29), the per-cell division rate for only a subpopulation would span 2.48-0.79 day
-1

 760 

(Fig. S10, Supplemental Text). Verifying the proportion of SAR11 cells actively dividing in a 761 

culture may be challenging. Time-lapse microscopy (140) offers an elegant solution if SAR11 762 

can be maintained for the requisite time periods for accurate measurements in a microfluidic 763 

device. 764 

In addition to identifying taxa whose isolation success suggested deviations from 765 

biological assumptions of single planktonic cells with 100% viability, the model also revealed 766 

the limitations of DTE cultivation in assessing viability depending on relative abundance (Fig. 767 

S9). We cannot ascertain whether any given taxon may violate an assumption of V = 100% 768 

unless we have enough wells to demonstrate that it grew in fewer wells than expected. For 769 

example, taxa at 1% of the microbial community require more than 1,000 wells before the lack 770 

of a cultured organism represents a significant negative event, rather than a taxon simply lacking 771 

sufficient abundance to ensure inclusion in a well within 95% CI. In our 460 well experiments, 772 

we could not resolve whether taxa may have had viabilities below 100% if they were less than 773 

3% of the community for any given experiment (Fig. S9). Modeling DTE experiments showed 774 

that for experiments targeting rare taxa, lower inoculum sizes are favoured where selective media 775 

for enrichment is either unknown or undesirable. The exponential increase in the number of 776 

required wells with respect to the inoculum size is a function of a pure well requiring all cells 777 

within it to belong to the same taxon, assuming all cells are equally and optimally viable. 778 

By providing taxon-specific predictions of viability from cultivation data, our model now 779 

facilitates an iterative process to improve experimental design and make cultivation more 780 

reliable. First, we use the cultivation success rates to determine for which taxa the assumption of 781 

100% viability was violated. Second, we use the model to estimate viability for those organisms. 782 

Third, we use the viability and relative abundance data to determine, within 95% CI, the 783 

appropriate number of inoculation attempts required to isolate a new version of that organism. 784 

Using SAR11 LD12 as an example, given a relative abundance of 10%, and a viability of 15%, 785 

800 DTE wells should yield four pure, positive wells (1-8 95% CI). This means that, for 786 

microorganisms that we know successfully grow in our media, we can now statistically constrain 787 

the appropriate number of wells required to culture a given taxon again. For organisms that were 788 

not abundant enough to estimate viability using the model, we can use a conservative viability 789 

assumption (e.g., 50% (111)) with which to base our cultivation strategy, thereby still reducing 790 

uncertainty about the experimental effort necessary to re-isolate one of these microorganisms.  791 
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 792 

Conclusions 793 

This work has provided hundreds of new cultures for microbiological research, many among the 794 

most abundant members of the nGOM coastal bacterioplankton community. It also provides 795 

another demonstration of the effectiveness of sustained cultivation efforts for bringing previously 796 

uncultivated strains into culture. Our modeled cultivation results have generated compelling 797 

evidence for low viability within subpopulations of SAR11 LD12 and IIIa.1, as well as OM43 798 

Betaproteobacteria. The prevalence of, and controls on, dormancy in these clades deserves 799 

further study. We anticipate that future work with larger DTE experiments will yield similar 800 

viability data about other groups of taxa with lower abundance, highlighting a valuable 801 

diagnostic application of DTE cultivation/modeling beyond the primary role in isolating new 802 

microorganisms. The integration of cultivation results, natural abundance data from inoculum 803 

communities, and DTE modeling represents an important step forward in quantifying the risk 804 

associated with DTE efforts to isolate valuable taxa from new sources, or repeating isolation 805 

from the same locations. We hope variations of this approach will be incorporated into wider 806 

community efforts to invest in culturing the uncultured. 807 
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Figures 838 

 839 

Figure 1. Percent identity of LSUCC isolate 16S rRNA genes compared with those from other 840 

isolates in NCBI (“Other”, gray dots) or from the DTE culture collections IMCC (gold dots), 841 

HTCC (blue dots), and HIMB (green dots). Each dot represents a pairwise 16S rRNA gene 842 

comparison (via BLASTn). X-axis categories are groups designated according to ≥ 94% 843 

sequence identity and phylogenetic placement (see Figs S1-S4). Above the graph is the 16S 844 

rRNA gene sequence percent identity to the closest non-LSUCC isolate within a column. Groups 845 

colored in red indicate those where LSUCC isolates represent putatively novel genera, whereas 846 

orange indicates putatively novel species. 847 

 848 

Figure 2. A global map of the isolation location of isolates from selected important aquatic 849 

bacterioplankton clades. All depicted taxa were isolated from surface water (< 1-20m), or the 850 

depth of sample was not reported (see Table S1 for details). Circles represent LSUCC isolates, 851 

while triangles are non-LSUCC isolates. Inset: a zoomed view of the coastal Louisiana region 852 

where LSUCC bacterioplankton originated.  853 

 854 

Figure 3. Rank abundances of the 50 most abundant OTUs from all sites based on median 855 

relative abundance at salinities less than seven (A) and greater than twelve (B). The boxes 856 

indicate the interquartile range (IQR) of the data, with vertical lines indicating the upper and 857 

lower extremes according to 1.5 x IQR. Horizontal lines within each box indicate the median. 858 

The data points comprising the distribution are plotted on top of the boxplots. The shade of the 859 

dot represents the salinity at the sample site (red-blue :: lower-higher), while the color of the box 860 

indicates broad taxonomic identity. LSUCC labels indicate OTUs with at least one cultivated 861 

representative. 862 

 863 

Figure 4. Rank abundances of the 50 most abundant ASVs from all sites based on median 864 

relative abundance at salinities less than seven (A) and greater than twelve (B). The boxes 865 

indicate the interquartile range (IQR) of the data, with vertical lines indicating the upper and 866 

lower extremes according to 1.5 x IQR. Horizontal lines within each box indicate the median. 867 

The data points comprising the distribution are plotted on top of the boxplots. The shade of the 868 

dot represents the salinity at the sample site (red-blue :: lower-higher), while the color of the box 869 

indicates broad taxonomic identity. LSUCC labels indicate ASVs with at least one cultivated 870 

representative. 871 

 872 

Figure 5. Relative abundance of ASVs within key taxonomic groups compared with salinity. 873 

ASV types are colored independently, and triangle points indicate experiments for which at least 874 

one isolate was obtained. Non-linear regression lines are provided as a visual aid for abundance 875 

trends. 876 

 877 

Figure 6. Graphical depiction of the viability model. 878 

 879 

Figure 7. Actual vs. expected numbers of isolates. Each point represents the actual number of 880 

isolates for every ASV/experiment pair compared to the expected number of isolates based on 881 

our model assuming 100% viability. Colors represent the relationship to the model predictions: 882 

green- isolates within the 95% CI for expected frequency, orange- actual isolates > maximum 883 
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95% CI for expected isolates; blue- actual isolates < minimum 95% CI for expected isolates. 884 

Circle size is proportional to the deviation of the number of actual isolates from the maximum 885 

(for orange) or minimum (for blue) 95% CI for expected isolates. The dotted line is the 1:1 ratio. 886 

Notable taxa on the extremities of the actual and expected values are labeled. All datapoints 887 

provided in Table S1. 888 
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