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Abstract

Terraces in phylogenetic tree space are sets of trees with identical optimality scores for a1

given data set, arising from missing data. These were first described for multilocus2

phylogenetic data sets in the context of maximum parsimony inference and maximum3

likelihood inference under certain model assumptions. Here we show how the mathematical4

properties that lead to terraces extend to gene tree - species tree problems in which the5

gene trees are incomplete. Inference of species trees from either sets of gene family trees6

subject to duplication and loss, or allele trees subject to incomplete lineage sorting, can7

exhibit terraces in their solution space. First, we show conditions that lead to a new kind8

of terrace, which stems from subtree operations that appear in reconciliation problems for9

incomplete trees. Then we characterize when terraces of both types can occur when the10

optimality criterion for tree search is based on duplication, loss or deep coalescence scores.11

Finally, we examine the impact of assumptions about the causes of losses: whether they are12

due to imperfect sampling or true evolutionary deletion.13
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2 SANDERSON ET AL.

A long standing and still largely dominant paradigm in phylogenetic tree inference16

is based on optimization of some score derived from data over candidate tree solutions. In17

addition to familiar maximum parsimony, maximum likelihood, and (certain)18

distance-based methods like minimum evolution and Fitch-Margoliash (Felsenstein 2004),19

all commonly used to infer a tree from a sequence alignment, optimization methods also20

are employed in a diverse set of methods aimed at solving other tree inference problems,21

such as supertree construction, gene tree reconciliation, species tree inference using22

likelihood or pseudo-likelihood, and network reconstruction. Computational obstacles in23

optimization include the problem of multiple optima and regions where the solution space24

is flat, which can both impede algorithms to find optima and make circumscription of25

solutions more complex. One contributor to this problem in phylogenetics is missing data,26

and a particularly direct example of this is the phenomenon of “terraces”—regions of tree27

space having identical optimality scores purely due to certain patterns of missing data28

among the taxa sampled (Sanderson et al. 2011, 2015).29

The properties of terraces have been elucidated mostly in the context of large30

multilocus data sets, where the pattern of missing data can be described by the “taxon31

coverage” of data—which loci are sampled for which taxa. If a tree is inferred for a32

concatenated multilocus alignment by maximum parsimony, or by maximum likelihood33

with certain model assumptions, the pattern of taxon coverage alone can be used to infer34

the number and sizes of terraces having identical optimality scores. Surveys of empirical35

studies indicate that terraces can be astronomically large in large trees (Dobrin et al.36

2018), and they can degrade other aspects of phylogenetic inference aside from tree search,37

such as estimation of confidence intervals (Sanderson et al. 2015). They are likely to have38

an impact on comparative methods and other studies that employ statistical inference39

methods that depend on accurate evaluation of the confidence set of trees.40

The conditions required for terraces to be observed in phylogenetic inference41

problems are quite general (Steel 2016). In this paper we describe their impact on a large42
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TERRACES IN GENE TREE PROBLEMS 3

additional set of phylogenetic problems involving building species trees from gene trees43

using gene tree reconciliation methods. This includes methods that have been used to infer44

species trees from gene families that have undergone a history of gene duplication and45

deletion, as well as methods that have been used to infer species tree from allele trees in46

which population genetic processes lead to deep coalescence events. This area is47

undergoing active development in the phylogenomics community and our results pertain48

most directly to discrete parsimony-like methods arising from the reconciliation49

framework, but potential connections to model based approaches may exisit by analogy to50

previous findings with maximum likelihood in concatenation methods (Sanderson et al.51

2011). We find that terraces are not only expected in this new context, but that an52

additional type of terraces can be seen in certain versions of reconciliation problems.53

Trees, Subtrees, and Display54

We assume all trees, T , are rooted, binary, and have edges, E(T ) and nodes, V (T ),55

and root node, r(T ) ∈ V (T ). Nodes are partitioned into the set of internal nodes, V̇ (T )56

(having outdegree two or more), and the set of leaves, L(T ) (having indegree one), each of57

which is labeled by a distinct element of the leaf set, X. If node v′ is an ancestor of v, we58

write v′ > v. The set of leaf labels descended from v is CT (v). The node of the most recent59

common ancestor of a set of leaves, A, is MRCAT (A).60

Given a rooted binary tree, T with leaf label set, X, and with Xg ⊆ X, we define61

two kinds of subtrees of T having leaf label set, Xg (Fig. 1):62

1. The “homomorphic subtree”, T |Xg , is the smallest subtree of T having leaf label63

set Xg and suppressing any interior nodes with outdegree one (“unary” nodes). When the64

context is clear, we abbreviate this to T |g.65

2. The “restriction subtree”, T ||Xg , is the smallest subtree having leaf label set Xg66

but keeping any unary nodes. When the context is clear, we abbreviate this to T ||g.67

A tree T displays a binary subtree g having leaf label set Xg ⊆ X if T |Xg = g (Steel68
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4 SANDERSON ET AL.

2016). [If g is not binary then this definition can be extended to allow T |g to be a69

refinement (resolution) of g.] This is the conventional definition of “display”, but it can be70

generalized to use the restriction subtree when appropriate (see below).71

A B C D E F

C F

a)

c)b)

DA C FDA

Fig. 1. Illustration of two subtree operations, retaining leaf label set Xg = {A,C,D, F}: a) Original species tree, T ;
b) homomorphic subtree, T |Xg ; c) restriction subtree, T ||Xg .

Spans and Terraces72

In general, given a sequence of rooted binary trees, T = (T1, ..., Tk), with leaf label73

sets Xi (X = ∪iXi), define the span, 〈T 〉, as the set of all rooted binary trees having label74

set X that display every tree in T (Fig. 2). The span may be empty.75

Consider the special case of a rooted binary parent tree, T , with leaf label set, X,76

along with a sequence of leaf label subsets, χ = (X1, ..., Xk), Xi ⊆ X. Label set Xi may be77

thought of as the set of leaves present in a subtree of T or as the set of leaves of T that78

have some kind of data present, say the sequence of the ith gene in a multigene multiple79

sequence alignment. Let T |χ = (T |X1 , ..., T |Xk), then 〈T |χ〉 is the span of this sequence of80

subtrees derived from the parent tree (Fig. 2). Clearly the size of this span is at least one81

since it contains T .82

A terrace is a span, 〈T |χ〉, in which all the trees have the same score. The83

properties of this score determine whether this is a possibility. Given some cost function,84
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TERRACES IN GENE TREE PROBLEMS 5

B C DA

B CA

B DA

B C DA

C B DA

D B CA

T1

T2

T
X1={A,B,C}

X2={A,B,D}

Fig. 2. Span of a set of subtrees. Original rooted parent tree is T having leaf label set, X = {A,B,C,D}. Subsets of
label sets, X1 and X2, induce a sequence of subtrees, T |χ = (T |X1 , T |X2) = (T1, T2). Each of the trees on X in the
shaded box displays both T1 and T2 and this set of three trees is the span of T |χ, 〈T |χ〉.

c(S, g) for a tree, T , with leaf label set, X, based on some data associated with “gene”, g,85

valid even if only a subset of leaves, Xg ⊆ X, have data present; and given some score86

function, s(c(T, g1), ..., c(T, gm)), that combines these costs across a set of genes,87

G = {g1, ..., gm}, the following two properties of c and s are sufficient to cause all trees in88

the span to have the same score (Sanderson et al. 2011; Steel 2016):89

Condition 1. The cost function is the same on the full tree as it is on the subtree90

pruned to those taxa that have data.91

c(T, g) = c(T |Xg , g). (1)

Condition 2. The score function, s, is a linear sum of costs for each gene:92

s(T,G) =
∑
i

c(T, gi). (2)

Theorem 1 (Terraces—Type I). If the score function, s, satisfies the two conditions93

described above, then every tree in the span, 〈T |χ〉, has the score, s(T,G).94
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6 SANDERSON ET AL.

Proof. Following Steel (2016), if T ′ ∈ 〈T |χ〉, Then T ′|Xi = T |Xi for i = 1, ..., k, so95

s(T ′,G) =
∑
i

c(T ′, gi) =
∑
i

c(T ′|Xi , gi) =
∑
i

c(T |Xi , gi) =
∑
i

c(T, gi) = s(T,G) (3)

�96

This is most interesting if |〈T 〉| >> 1. In fact, the size of terraces can be97

astronomically large for some data sets for large parent trees (Sanderson et al. 2011;98

Dobrin et al. 2018) when there is a sizable amount of missing data.99

In Sanderson et al. (2011, 2015) and Steel (2016) the data set associated with gene100

g was taken to be a multiple sequence alignment over some block of sites, and the scores101

considered included maximum parsimony and maximum likelihood scores. The exact102

circumscription of “blocks” is relevant, but for simplicity we conceptualize it as data103

associated with a single gene in the genome (see Sanderson et al. 2015).104

Terraces—Type II105

We now show that terraces arise when using the restriction subtree operation,106

which will be relevant for discussion of gene tree reconciliation below.107

Define a “restriction span” by (i) using the restriction subtree in the above108

definition of “display”, and then (ii) letting T ||χ = (T ||X1 , ..., T ||Xk). The resulting span109

can be labeled 〈〈T ||χ〉〉 (see example in Fig. 3). [The double angle brackets reinforce the110

idea that the definition of “display” has changed]111

Theorem 2 (Terraces—Type II). If the score function, s, satisfies the second condition112

required for Theorem 1 (linear sum of costs), and the first condition is modified so that113

c(T, g) = c(T ||Xg , g), then every tree in the restriction span, 〈〈T |χ〉〉, has the score, s(T,G).114

Proof. The proof follows easily by substituting the restriction span and restriction subtree115

operations in the proof for Theorem 1 �116

The example in Fig. 3 shows that there can be more than one tree on this kind of117

terrace, as with the first type of terrace. The elements of 〈〈T ||χ〉〉 and 〈T |χ〉 are not118
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TERRACES IN GENE TREE PROBLEMS 7

A B C D E F

A B C F

A B D E

A B C E D F

A B C D E F

T1

T2

T

X1={A,B,C,F}

X2={A,B,D,E}

Fig. 3. Restriction span of a set of subtrees. Original rooted parent tree is T having leaf label set,
X = {A,B,C,D,E, F}. Subsets of label sets, X1, X2 ⊆ X, induce “restriction” subtrees (Fig. 1),
T ||χ = (T ||X1 , T ||X2) = (T1, T2). Each of the trees in the shaded box displays both T1 and T2, and this set of two
trees is the restriction span, 〈〈T ||χ〉〉.

necessarily the same. For example, in Fig. 3 there are 15 trees in 〈T |χ〉 but only two in119

〈〈T ||χ〉〉. In general, the former set of trees contains the latter, as we now state:120

Theorem 3. For any rooted binary parent tree, T , having leaf label set X, and given label121

sets χ = (X1, ..., Xk), Xi ⊆ X,122

〈〈T ||χ〉〉 ⊆ 〈T |χ〉. (4)

123

Proof. Suppose that T ′ ∈ 〈〈T ||χ〉〉 = 〈〈T ||X1 , . . . , T ||Xk〉〉. Then T ′||Xi = T ||Xi for all124

i = 1, . . . , k and so T ′|Xi = T |Xi for each i (since restriction display implies ordinary125

display) and thus T ′ ∈ 〈T |X1 , . . . , T |Xk〉 = 〈T |χ〉.126

�127

In parallel with the terminology for terraces, we refer to these two spans as “Type128

I” and “Type II” respectively.129
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8 SANDERSON ET AL.

Species Tree Inference by Reconciliation130

Different regions of the genome can have different phylogenetic histories, and these131

“gene trees” can also differ from the species tree in which they are imbedded (Bravo et al.132

2019; Liu et al. 2019). The framework of gene tree “reconciliation” provides an analytically133

rich and empirically powerful toolkit to understand this mosaic of histories and to infer134

species trees from discordant gene trees (Goodman et al. 1979; Page 1994). Here we extend135

our previous results on terraces to the reconciliation setting by discussing conditions under136

which reconciliation-based score functions lead to terraces when there are missing leaves in137

the gene trees.138

Reconciliation algorithms are based on costs that reflect (at least) four kinds of139

explicitly evolutionary processes in the phylogenetic history of a gene tree imbedded in a140

species tree, “speciation”, “duplication”, “deletion”, and “deep coalescence”. In addition,141

costs may reflect some aspect of sampling of leaves (Page 1994; Page and Charleston142

1997). Additional evolutionary events, such as lateral transfer, have been studied to a143

lesser extent (Bansal et al. 2012) but are not considered here. Assume there is a rooted144

binary species tree, S, leaf labeled by LS, and an imbedded rooted binary gene tree, g,145

labeled by Lg ⊆ LS. In general, all reconciliation cost functions can be written as c(S, g),146

and these are generally combined additively across gene trees, so the score function s(T,G)147

discussed above extends easily in principle, even though the underlying sequence data are148

no longer relevant.149

Define a reconciliation of S and g, loosely, as an annotation of g that indicates the150

locations of speciation events, duplications and losses. [More formal definitions include151

defining a reconciled tree as an extension of g made by inserting “lost” subtrees so that the152

resulting tree is consistent with speciation and duplication alone (Chauve and El-Mabrouk153

2009).]154

Given a set of gene trees, G, the species tree inference problem is then to find a155
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TERRACES IN GENE TREE PROBLEMS 9

species tree, Ŝ, that minimizes156

s(S,G) =
∑
gi∈G

c(S, gi) (5)

over all S, for various choices of the cost function, c(S, gi).157

Incompleteness, missing data, absence, deletion and loss158

Let LS\g be the set of leaf labels of S missing from g. If LS\g 6= ∅, then g is159

incomplete. The concept of “missing data” in the original notion of terraces equates to160

incompleteness in one or more gene trees, and this can lead to terraces in the species tree161

inference problem.162

However, distinguishing between evolutionary events and sampling processes can be163

confounded in incomplete gene trees. In a gene tree having no leaves from species x, were164

these genes evolutionarily deleted, or was x never sampled? For x ∈ LS\g, by165

“incompleteness due to deletion”, we mean that the absence of x from g is considered166

positive evidence that no such leaves exist in g (x has been well studied and its absence is167

meaningful)—absence implies deletion. By “incompleteness due to sampling”, we mean x168

has not been studied, and we make no claim a priori about whether further study of x169

would reveal it has leaves in g—absence implies no more than failure to sample or bad lab170

technique (Bayzid and Warnow 2018).171

Page and Charleston (1997) pointed out that the loss cost could influence species172

tree inference under reconciliation and thereby raised the issue of how its interpretation173

could matter. Bayzid and Warnow (2018) showed, in fact, that the correct loss score of a174

gene tree reconciled with a species tree depends directly on this assumption about the175

meaning of loss. We therefore qualify the term “loss” by whichever mechanism is assumed176

to generate it.177
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10 SANDERSON ET AL.

Reconciliation Costs, Incompleteness and Spans178

When g is complete, it is well known that an optimal reconciliation exists that179

minimizes the number of duplications, losses, and duplications plus losses (Chauve and180

El-Mabrouk 2009). The solution can be found using the MRCA-mapping, M, from node u181

in g to a node in S: MS(u) = MRCAS(Cg(u)), which identifies the lowest node on the182

species tree that can have the subtree of g rooted at v imbedded within it (Fig. 4). Briefly,183

in this optimal reconciliation, a node u on g is annotated as a duplication if MS(u) maps184

to the same node of S that one of the child nodes of u does. The duplication cost, cdup, is185

the number of such duplications. Determining the location of, and the number of losses,186

closs, is just slightly more complicated, and depends on lengths of paths mapped onto S187

from g using MS(v). The duplication plus loss cost is then cD+L = cdup + closs. All of these188

computations have been described in detail elsewhere (e.g. Zhang 2011; Bayzid and189

Warnow 2018) and we omit them here.190

D E FA B C

D E A B F C

S

B B D D C

g
a)

b)

Fig. 4. Reconciliation of a gene tree, g, and species tree, S. Note the set of “missing leaves” on g, LS\g = {A,E, F}.
a) The MRCA mapping, M, is shown for all internal nodes of g. Nodes annotated as duplications on g indicated by
diamonds; nodes annotated as speciation indicated by dots. b) Imbedding of g in S. For clarity, only the
duplication nodes on g are shown as annotated.

There are multiple formulations of the deep coalescence cost (Zhang 2011; Steel191

2016), cDC , which is the number of “extra edges” of the gene tree imbedded within the192

species tree for this reconciliation. Any edge e = (u, v) ∈ E(g) is imbedded in kS(e) > 0193

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.04.17.047092doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047092
http://creativecommons.org/licenses/by-nd/4.0/


TERRACES IN GENE TREE PROBLEMS 11

edges of S where kS(e) is the number of edges in the path from MS(u) to MS(v), so the194

number of extra edges is,195 ∑
e∈E(g)

kS(e)− |E(S)| (6)

since there is minimally one edge in each edge of E(S).196

The computation of these reconciliation costs for incomplete gene trees depends in197

part on the interpretation of incompleteness.198

Incompleteness due to sampling.— The trees g and S|g have the same label sets199

and standard reconciliation algorithms can be used to compute c(S|g, g), but how do we200

compute c(S, g)? If the absence of a gene tree leaf for some species taxon is assumed to201

arise because of failure to sample it, we compute the cost, c(S, g), by “completing” the202

gene tree so it has the same label set as the species tree (Bayzid and Warnow 2018). A203

completion, g′, is the tree obtained from g by adding subtree(s) having all the leaves,204

x ∈ LS\g. An optimal completion, g∗, with respect to some cost function, c, is the205

completion that minimizes c over all g′. For example, the optimal completion with respect206

to the duplication cost would be that gene tree, g∗, that has smallest number of207

duplications among all possible completions. The optimal completion is a guess about208

unsampled leaves that disturbs the cost the least. From here on, when discussing optimal209

completions for incomplete gene trees, we use as shorthand, c(S, g), instead of c(S, g∗(g)).210

Bayzid and Warnow (2018) show that there are optimal completions for the211

duplication and loss scores, which have the same duplication and loss scores as that for212

c(S|g, g), so that:213

cdup(S, g) = cdup(S|g, g) = cdup(S||g, g), (7a)

closs(S, g) = closs(S|g, g), (7b)

which implies that the duplication plus loss cost, cD+L can be obtained simply by adding214

these together. Notice the subtree operation for the loss cost is the homomorphic subtree215
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12 SANDERSON ET AL.

operation.216

This can be shown by the following argument. Each unary node, u, of S||g217

corresponds to a binary node on S that has one pendant subtree, t, the leaves of which are218

all in LS\g (i.e., missing). If there are l edges of g passing through u, then we attach l219

replicate instances of t along their respective edges of g at new nodes vi, i = 1, ..., l, of g.220

For each vi, the mapping, M(vi) must be to a different node in S than either the parent of221

vi maps to, or any of its children map to, because the leaves of t are in LS\g. Thus there222

are no additional duplications inferred by this completion. This argument holds equally for223

both subtree operations, so cdup(S|g, g) = cdup(S||g, g).224

This completion also avoids adding l losses, by “imputing” just the right leaves to225

be present as subtrees of g (Fig. 5). The loss cost is computed on S|g but not S||g. The226

intuition for this is that adding these “ghost” subtrees, t, at edges of g passing through u227

allows us to pretend, with respect to losses, that node u was never there.228

D E FA B C

Fig. 5. Optimal completion under the duplication-loss costs. Trees are the same as in Fig. 4. Dashed border for
some species tree edges indicates parts of S that are missing from g because of absence of leaves A,E, F . Dashed
circles are unary nodes on the restriction subtree, S||g. Dashed edges of g represent the optimal completion of g
that allows leaves of g to be “present” at leaves of S, while adding as few duplications and losses as possible to the
reconciliation. Here, no duplications or losses are added by this completion. Note that for the unary node at left,
two edges of g traverse it and two subtrees are added, whereas for the unary node at right having one imbedded
edge, only one subtree need be added.

For the deep coalescence cost when incompleteness is assumed due to sampling we229

can also use the optimal completion approach (Bayzid and Warnow 2012, 2018)(Fig. 6).230

First note that the argument above regarding duplications remains true and no new231

duplications need be added by this completion. Now at each unary node, u, of S||g,232

however, we attach only one instance of t to the l > 1 edges of g passing through u. The233
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remaining l−1 edges split at u but immediately are lost (and the interpretation of loss does234

not matter). This guarantees that at most one edge of g will be present in t and therefore235

the DC cost will not increase relative to what it was with respect to S||g, which means236

cDC(S, g) = cDC(S||g, g), (8)

which, from Eq. 6, means

cDC(S, g) =
∑
e∈E(g)

kS||g(e)− |E(S||g)|.

Note that this is not necessarily an optimal completion for losses, as it is fine to add237

losses in order to keep deep coalescences to a minimum.238

D E FA B C

Fig. 6. Optimal completion under the deep coalescence cost. Layout is the same as in Fig. 5. Here the optimal
completion must add as few “extra edges” as possible (i.e., over and above one edge of g per edge of S), regardless
of how many losses are then required. Note the loss of one edge of g immediately after its split within the unary
node of S at lower left. Contrast with Fig. 5.

Incompleteness due to deletion.— Here the absence of a gene tree leaf is assumed239

to be caused by evolutionary deletion of that gene somewhere in the tree. With this240

assumption, we still have241

c−dup(S, g) = c−dup(S|g, g) = c−dup(S||g, g), (9)

(Chauve et al. 2008; Górecki and Tiuryn 2006; Bayzid and Warnow 2018), where we add242

the superscript (−) to c to refer to the deletion interpretation of absence. Duplications are243

unaffected by the choice of subtree operations, because M does not map nodes of g to244

unary nodes of S, and these nodes are the only difference between S|g and S||g.245
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14 SANDERSON ET AL.

But the same is not true for the loss cost (Bayzid and Warnow 2018). The correct246

count of losses when incompleteness is due to deletion is computed by substituting S for247

S|g in Theorem 3 of Bayzid and Warnow (2018). This computation uses lengths of paths248

on S that run from some node MS(u) to MS(v), where u, v is a child and parent node on249

g. Together, all paths in S of this type comprise the tree, S||g, which means250

c−loss(S, g) = c−loss(S||g, g). (10)

So, unlike the duplication cost, the loss cost is not necessarily the same under the two251

interpretations of incompleteness. In fact, they differ exactly by which kind of subtree252

operation is appropriate. Bayzid and Warnow (2018, Thm. 4) give an example in which253

these different interpretations of loss lead to different optimal species trees when using the254

loss cost.255

Bayzid and Warnow (2018) also discussed the special case in which missing leaves256

are distributed on the gene tree in a way that might imply a gene is absent from the root257

of the species tree (Fig. 7). This is not a problem when incompleteness is assumed to arise258

from sampling, but if it is assumed to arise from deletion, it is necessary to make an259

assumption about whether genes are present at the root. Let u∗ =MS(r(g)) be the260

location on S of the root of g. If r(S) > u∗, should we assume the gene is present at r(S)?261

In the above treatment, the definition of S||g solves the loss problem under the assumption262

that a gene is unambiguously present only in the subtree of S having u∗ as its root. To263

make the stronger assumption that it is present at r(S), we can define yet another subtree264

operator, S||rg, which is the smallest subtree of S containing r(S) and the leaf labels of g.265

The original restriction operator, S||g, can be interpreted in this problematic boundary266

case to imply losses are due to deletion in the subtree of S having u∗ as its root, and losses267

are due to sampling elsewhere. We do not pursue this further here, but see Bayzid and268

Warnow (2018).269

The deep coalescence cost when incompleteness is assumed to arise from deletions270

parallels the case for incompleteness due to sampling. On S||g, any unary node, u, has271
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A B EC D

A B C D E

S

A B B C

g
a)

b)

Fig. 7. Special case in which presence of gene at the root of the species tree is ambiguous for incompleteness due to
deletion. a) Incomplete gene tree and species tree with MRCA mapping (M) from root of g shown. b) Imbedding of
g in S leaving uncertainty toward the root of S. Dashed lines represent presence of gene if it is forced present at
root of S and location of two losses entailed as a consequence.

l > 1 edges of g passing through it. To explain the missing leaves present in the pendant272

subtree, t, of u that is present on S but not S||g, each of these l lineages must branch at u273

and end in a deletion somewhere in t. Moreover, at most one edge of g can persist in t, else274

there is a deep coalescence and the DC cost is increased. This lineage must end in a275

deletion before reaching a leaf node of S, and in fact it can be deleted immediately after276

splitting without changing the DC score, because if an edge of S has no imbedded edges of277

g, its DC score is still zero. In this respect the final form of g can differ from the optimal278

completion under sampling, but the net result is the same. All missing leaves can be279

accounted for without adding to the DC cost (though perhaps adding to the number of280

losses), and thus the DC cost is the same as for incompleteness due to sampling:281

c−DC(S, g) = c−DC(S||g, g) = cDC(S||g, g) (11)

Reconciliation and Terraces282

Based on the reconciliation costs for incomplete gene trees in Eqs. 7-11 above and283

Theorem 2, we can summarize which combinations of costs and interpretations of losses284

can lead to terraces (Table 1). First, recall that, from Theorem 3, for a given input, the285
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16 SANDERSON ET AL.

Type II span of trees is a subset of the Type I span. This implies that if a given286

reconciliation setting induces Type I terraces (so that scores are the same for all trees in its287

span), then all trees in the corresponding Type II span will also have the same score and288

be a Type II terrace. The reverse is not necessarily true.289

In view of this, all four of the reconciliation costs can lead to Type II terraces and290

some, in addition, lead to Type I terraces. The duplication cost can lead to both kinds of291

terraces regardless of the interpretation of incompleteness. In contrast, the DC cost can292

only lead to Type II terraces (also regardless of the interpretation of incompleteness). For293

the loss cost, the nature of the assumption about incompleteness determines which type of294

terrace is possible.295

Discussion296

Terraces in tree space can have several deleterious impacts on phylogenetic297

inference (reviewed in Sanderson et al. 2015), and the basic finding that terraces can arise298

in tree inference problems under very general conditions (Steel 2016) suggests some care is299

warranted. Loosely speaking, these conditions involve missing data and an optimality score300

that is decomposable into additive contributions from different subsets of the data.301

Originally, terraces were shown to arise in multilocus sequence alignments using maximum302

parsimony or maximum likelihood optimization scores (Sanderson et al. 2011). In the303

latter, certain subsets of models lead to terraces and others do not (Sanderson et al. 2011,304

2015). Theory (Sanderson et al. 2010) predicted that terraces in these contexts are most305

likely for data sets with many taxa and few loci. A recent meta-analysis (Dobrin et al.306

2018) confirms this expectation and indicates the number of trees on terraces can be very307

large.308

It is no surprise that other classes of data sets and optimality criteria used in309

phylogenetics that also give rise to terraces. In this paper we explored how terraces can310

arise in gene tree reconciliation approaches to species tree inference. Here the gene trees311
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take the place of the multiple sequence alignments of individual loci studied in our earlier312

work (Sanderson et al. 2011), and the optimality scores are additive functions of313

reconciliation costs that depend on the processes assumed to connect gene trees and314

species trees. These vary depending on whether processes of gene duplication, loss or315

incomplete lineage sorting are assumed to occur.316

In considering these divergent biological processes, we found a variant of our317

original phylogenetic terrace that is relevant to some but not all of these processes. For318

example, under the deep coalescence score, there can be terraces of the second type, but319

not of the original type described in Sanderson et al. (2011). The composition of trees on a320

terrace—the “span”—is determined by the pattern of missing data in the input. The span321

of the trees on a terrace for the deep coalescence score is a subset of the span for the322

original type of terrace (which would be a terrace for a different optimality score), and323

therefore the size of this kind of terrace is always less than or equal to terraces of the first324

type. This implies that the “problem” of terraces should be less for the deep coalescence325

score than the duplication score, for example.326

The phylogenomics literature contains relatively few studies that infer species trees327

from gene trees subject to duplication and loss (Sanderson and McMahon 2007; Burleigh328

et al. 2011), compared to those that infer species trees in the context of deep coalescence329

(e.g. Copetti et al. 2017). For the latter, however, there are a variety of model based and330

discrete algorithm approaches to inference (Liu et al. 2019), whereas our results are most331

directly relevant to the simple method of minimizing the deep coalescence score (Maddison332

1997; Ma et al. 2001; Zhang 2011; Nakhleh 2013). However, we expect that the general333

idea of terraces will likely extend to certain model based methods of species tree inference334

by analogy with how it extends to likelihood based inference from multi-locus sequence335

alignments (Sanderson et al. 2011, 2015). It remains to be seen whether the ultimate336

impact of this on species tree inference methods is as dramatic as it is for many large but337

sparse multiple sequence alignments (Dobrin et al. 2018).338
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Table 1. Reconciliation Costs and Possible Terrace Types

Cost/Interpretation of loss Sufficient Conditions for Terraces of Type

Duplication/Sampling I,II
Duplication/Deletion I,II
Loss/Sampling/ I,II
Loss/Deletion II
D+L/Sampling I,II
D+L/Deletion II
DC/Sampling II
DC/Deletion II
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