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 14 

Abstract 15 

Associative memory formation and recall in the adult fruit fly Drosophila melanogaster is 16 

subserved by the mushroom body (MB). Upon arrival in the MB, sensory information undergoes 17 

a profound transformation. Olfactory projection neurons (PNs), the main MB input, exhibit 18 

broadly tuned, sustained, and stereotyped responses to odorants; in contrast, their postsynaptic 19 

targets in the MB, the Kenyon cells (KCs), are nonstereotyped, narrowly tuned, and only briefly 20 

responsive to odorants. Theory and experiment have suggested that this transformation is 21 

implemented by random connectivity between KCs and PNs. However, this hypothesis has been 22 

challenging to test, given the difficulty of mapping synaptic connections between large numbers 23 

of neurons to achieve a unified view of neuronal network structure. Here we used a recent 24 

whole-brain electron microscopy (EM) volume of the adult fruit fly to map large numbers of PN-25 

to-KC connections at synaptic resolution. Comparison of the observed connectome to precisely 26 

defined null models revealed unexpected network structure, in which a subset of food-responsive 27 
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PN types converge on individual downstream KCs more frequently than expected. The 28 

connectivity bias is consistent with the neurogeometry: axons of the overconvergent PNs tend to 29 

arborize near one another in the MB main calyx, making local KC dendrites more likely to 30 

receive input from those types. Computational modeling of the observed PN-to-KC network 31 

showed that input from the overconvergent PN types is better discriminated than input from 32 

other types. These results suggest an 'associative fovea' for olfaction, in that the MB is wired to 33 

better discriminate more frequently occurring and ethologically relevant combinations of food-34 

related odors.  35 

 36 

Introduction 37 

The cellular basis for associative memory formation and recall remains a central mystery of 38 

neurobiology. Connectomics, in which synaptic connections are traced between large numbers of 39 

neurons to map circuit wiring diagrams (Lichtman and Sanes, 2008), offers a new method by 40 

which to explore the topic. Given the current capabilities of electron microscopy (EM)-based 41 

connectomics technologies (Kornfeld and Denk, 2018), the adult fruit fly Drosophila 42 

melanogaster is arguably an ideal model system for investigating the neuronal networks 43 

underpinning learning and memory. Its brain is small enough to have been completely imaged at 44 

synaptic resolution by electron microscopy (Zheng et al., 2018); it is behaviorally sophisticated 45 

(DasGupta et al., 2014; Dickinson and Muijres, 2016; Ofstad et al., 2011; Owald and Waddell, 46 

2015); and the stereotyped morphology and physiology of its cell types allow ready integration 47 

of information across individuals (Costa et al., 2016; Nern et al., 2015). Each cell type normally 48 

consists of one or a handful of neurons (Aso et al., 2014; Meinertzhagen, 2010; Scheffer et al., 49 

2020), which may be individually addressed using genetic tools, allowing circuits to be 50 
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functionally imaged and perturbed in a highly specific fashion (Dana et al., 2016; Dionne et al., 51 

2018; Klapoetke et al., 2014; Venken et al., 2011).  52 

The exception to this norm is the mushroom body (MB; Figure 1A), a bilaterally symmetric 53 

structure for associative memory formation and recall (Groschner and Miesenbock, 2019; 54 

Guven-Ozkan and Davis, 2014; Heisenberg, 2003). The MB contains about 2,200 intrinsic 55 

neurons, called Kenyon cells (KCs), on each side of the fly brain (Aso et al., 2009; Bates et al., 56 

2020; Technau and Heisenberg, 1982). Kenyon cells can be divided into three main subtypes, γ, 57 

α’/β’, α/β (Crittenden et al., 1998; Lee et al., 1999; Tanaka et al., 2008), and the axons of each 58 

subtype project to the eponymous lobe where the KCs provide input to a relatively small number 59 

of MB output neurons (21 cell types comprising 34 neurons, Aso et al., 2014; Aso and Rubin, 60 

2020). Sensory afferents to KCs are dominated by ~150 olfactory projection neurons (PNs), 61 

which relay information from the 51 olfactory glomeruli of the antennal lobe (AL; Bates et al., 62 

2020; Jefferis et al., 2007; Stocker et al., 1990; Wong et al., 2002). Projection neuron 63 

morphology and odorant response profiles are highly stereotyped across individuals, and exhibit 64 

broad tuning and sustained responses to panels of odorants (Bhandawat et al., 2007; Costa et al., 65 

2016). Olfactory PNs project to the rear of the brain and collateralize in the MB main calyx, 66 

providing input to KC dendrites. Each KC dendrite terminates in specialized ‘claws’, each of 67 

which ensheathes a single PN axonal bouton (Figure 1B). Multiple KC claws commonly 68 

ensheath a given PN bouton, and each KC samples input from an average of ~6-8 PNs (Butcher 69 

et al., 2012; Caron et al., 2013; Leiss et al., 2009; Yasuyama et al., 2002). Multiple input PNs 70 

must be coactive in order to evoke an action potential in a given KC (Gruntman and Turner, 71 

2013), and widefield feedback inhibition is preponderant throughout the MB (Lin et al., 2014), 72 
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resulting in KC activity that is much sparser and more sharply tuned than PNs (Turner et al., 73 

2008). 74 

The PN-to-KC layer therefore implements a transformation of olfactory representation: broad, 75 

stereotyped, and sustained olfactory responses, in a small population of PNs, are converted to 76 

sparse, variable, and transient responses, distributed across a large population of KCs. This 77 

circuit architecture is an example of a ‘Marr motif’ (Litwin-Kumar et al., 2017; Stevens, 2015), 78 

after the theorist David Marr’s foundational work on cerebellar function (Albus, 1971; Marr, 79 

1969). The Marr motif is found in brain regions from different animal species, including 80 

cerebellum, hippocampus, and piriform cortex in vertebrates, and even the vertical lobe of the 81 

octopus (Cayco-Gajic and Silver, 2019; Farris, 2011; Shomrat et al., 2015; Stevens, 2015). In the 82 

fly, it is thought to permit efficient representation of arbitrary combinations of odorants – which 83 

may be thought of as points in a high-dimensional olfactory space – for downstream use as a 84 

conditioned stimulus during associative memory formation and recall (Cayco-Gajic and Silver, 85 

2019; Groschner and Miesenbock, 2019; Perisse et al., 2013). Theoretical analyses have argued 86 

that randomly mixing different input channels, when combined with a nonlinearity such as a 87 

spike threshold, increases the dimensionality, and, therefore, the linear separability of activity 88 

patterns, making them easier to discriminate (Babadi and Sompolinsky, 2014; Barak et al., 2013; 89 

Hansel and van Vreeswijk, 2012; Rigotti et al., 2013). Most models of the PN-to-KC network in 90 

the fly have therefore assumed that in the Marr motif, input neurons (PNs) connect to the 91 

intrinsic neurons (KCs) at random (Dasgupta et al., 2017; Eichler et al., 2017; Litwin-Kumar et 92 

al., 2017; Stevens, 2015; but see Koulakov et al., 2011; Pehlevan et al., 2017).  93 

Several substantial efforts to test the hypothesis of random PN-to-KC connectivity have been 94 

made. In the fruit fly larva, a complete PN-to-KC connectome was mapped using a whole-CNS 95 
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electron microscopy (EM) volume (Eichler et al., 2017). No evidence of network structure was 96 

found, although single claw KCs were found to occur more frequently than a gaussian 97 

distribution would predict. However, the larval MB is qualitatively and quantitatively different 98 

from that of the adult, in that it contains only about 100 KCs per hemisphere (all of which are of 99 

a single class γ;  Lee et al., 1999). In adult flies, single-cell retrograde labeling was used to 100 

identify the PN inputs to a single KC in each of 200 individual flies (Caron et al., 2013). About 101 

half the claws for each KC were successfully labeled. No evidence of network structure was 102 

found, although some PN types clearly had more downstream targets than others. Finally, 103 

electrophysiological recordings of 23 KCs across 27 adult fruit flies revealed highly diverse 104 

olfactory responses, with only two KCs exhibiting an identical response profile across 105 

individuals (Murthy et al., 2008). Overall, the relatively small sample sizes of the adult datasets 106 

have sufficed to exclude highly structured PN-to-KC connectivity graphs, but have not proved 107 

randomness.  108 

Indeed, several studies have hinted at the existence of PN-to-KC network structure. 109 

Anatomically, PN axonal arbors and KC dendritic arbors are known to occupy stereotyped 110 

positions within the MB calyx as a function of cellular subtype (Jefferis et al., 2007; Lin et al., 111 

2007; Tanaka et al., 2004; Zheng et al., 2018). Physiologically, calcium imaging has revealed 112 

that KC claws show more correlated responses than would be predicted by chance, and 113 

simultaneous optogenetic stimulation of three PN subtypes (comprising ~13 PNs in total) also 114 

showed greater-than-chance convergence (Gruntman and Turner, 2013).  115 

Whether the PN-to-KC network is fully random, or has some structure, therefore is an open 116 

question. To address it we surveyed a large number of PN-to-KC connections, using the 117 

previously described Female Adult Fly Brain (“FAFB”) EM volume (Zheng et al., 2018). The 118 
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resulting sample of this Marr motif had far greater statistical power than previously obtained 119 

datasets, allowing previously undetected network structure to be revealed. 120 

 121 

Results 122 

To map the PN-to-KC network, KCs were randomly selected for reconstruction from a cross-123 

section of the MB pedunculus, a tract where KC axons converge after their dendrites receive 124 

input in the MB main calyx (Figure 1A-B; Supplemental Figure 1A-C). The PN bouton 125 

innervating each KC claw was then retrogradely traced to the main PN axon trunk, and the PN 126 

type was identified, using previously published classifications of PNs in the FAFB dataset 127 

(Zheng et al., 2018). Initially, reconstructions were traced purely manually; later reconstructions 128 

leveraged an automated segmentation of the full FAFB dataset (Li et al., 2019). All olfactory PN 129 

input to 7,102 claws arising from 1,356 KCs was mapped and identified (~62% of all claws on 130 

the right side of the brain; 440 KCs were manually traced, and 916 were reconstructed using 131 

automated segmentation). Consistent with previous studies (Butcher et al., 2012; Caron et al., 132 

2013), each reconstructed KC was found to have 5.2 claws on average  (Supplemental Figure 133 

2A). The number of KCs postsynaptic to each PN subtype was also in excellent agreement with 134 

counts obtained from a recently released connectome of adult fly brain connectivity 135 

(Supplemental Figure 2B-C; Scheffer et al., 2020). The consistency of these metrics across 136 

datasets and methods indicates that the PN-to-KC network reconstructed in the present study is 137 

of high quality and therefore suitable for detailed analysis. 138 

If PN-to-KC connectivity were random, the probability that a KC receives input from one PN 139 

type is, by definition, independent from whether it gets input from any other type. To test 140 

whether these input probabilities are in fact independent, several null models were tested. In the 141 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


first, the "random bouton" model, a large number of randomized PN-to-KC maps were 142 

generated, wherein each claw of each reconstructed KC was assigned a PN bouton selected (with 143 

replacement) at random. For each KC, the expected distribution of the number of inputs from 144 

each PN type in the random bouton model was obtained. Then, a conditional input analysis was 145 

performed, to determine whether KCs are more or less likely than expected to get input from a 146 

particular PN type (Figure 1C, matrix columns), given input from another PN type (Figure 1C, 147 

matrix rows). Conditional probabilities were quantified as z-scores (the number of standard 148 

deviations of the observed value from the mean of the null distribution). 149 

Unsupervised clustering of conditional input probabilities revealed a distinctive ‘community’ of 150 

PN types which converge onto KCs at above-chance levels (Figure 1D, PN types in bold). The 151 

mean community z score was significantly higher (Supplemental Figure 3A; 5.7 ± 2.9) than non-152 

community PN combinations (Supplemental Figure 3C; -0.5 ± 1.5; Supplemental Figure 3A vs. 153 

3C, p < 1x10-8). Additional PN combinations also showed elevated z-scores, but mean z-score 154 

for these was significantly lower than the selected subset comprising the community 155 

(Supplemental Figure 3B; 2.3 ± 1.9; Supplemental Figure 3A vs. 3B, p < 1x10-8). Analysis of 156 

individual randomized maps of PN-to-KC connectivity revealed no such clustering 157 

(Supplemental Figure 3E). Similar results were obtained using covariance analysis 158 

(Supplemental Figure 4). 159 

Following identification of the overconvergent PN community, a literature review was conducted 160 

to determine the broad categories of odorants each PN type responds to. Strikingly, all PN types 161 

within the community were found to respond preferentially to food-related odorants (Figure 1D; 162 

Badel et al., 2016; Hallem and Carlson, 2006; Laissue and Vosshall, 2008; Mansourian and 163 

Stensmyr, 2015; Root et al., 2007; Schubert et al., 2014; Semmelhack and Wang, 2009), 164 
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suggesting that the observed PN-to-KC network structure might play a distinctive role in MB 165 

circuit function. Although the MB main calyx contains a great deal of recurrent circuitry 166 

(Butcher et al., 2012; Christiansen et al., 2011), with some cell types that are as yet little 167 

understood (Zheng et al., 2018), a simplifying feed-forward model of the PN-to-KC network has 168 

previously been used to study its performance on classification tasks (Eichler et al., 2017; 169 

Litwin-Kumar et al., 2017). When this model was modified to incorporate the observed PN-to-170 

KC network structure, increased activation of community PNs was found to improve 171 

classification performance (Figure 1E-F; Supplemental Figure 5). Increased activation of all 172 

food-preferring PNs, which includes PN types in addition to the overconvergent community PNs, 173 

also led to superior classification performance (Supplemental Figure 5A). 174 

To determine how over-convergence by community PNs is generated, the underlying neuronal 175 

network anatomy was further analyzed. Community PN boutons are ensheathed by many more 176 

KC claws than expected from the random bouton model (Figure 2A-B). Conversely, fewer KCs 177 

than predicted by the random bouton model receive input from the community PN types (Figure 178 

2C). This suggested that the observed network structure might result simply from more 179 

ensheathment of community PN boutons by KC claws. To test this hypothesis, a second null 180 

model was devised, in which each bouton selects a claw at random (without replacement), and 181 

the number of claws ensheathing each bouton is held equal to the observed value. In this 182 

“random claw” model, both the number of inputs to each KC and the number of outputs from 183 

each PN type are held constant. Clustering of z-scores of the observed PN-to-KC connectivity 184 

using the random claw null model revealed the same group of community PNs, albeit with lower 185 

variance (Figure 2D; Supplemental Figure 6A-B). Although the random claw model captured 186 
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more of the observed network structure, over-sampling of the community PNs by KCs (Figure 187 

2A) alone is therefore insufficient to explain the community cluster. 188 

In contrast, application of these analysis methods to an earlier sampling of PN-to-KC 189 

connectivity (Caron et al., 2013) failed to reveal the community of overconvergent PNs 190 

(Supplemental Figure 7A-C). However, that study mapped many fewer PN-to-KC connections 191 

(about half the claws in each of 200 KCs; 1 KC mapped per fly). When the data generated in the 192 

present study were randomly sub-sampled to match this lower number, minimal network 193 

structure was detected and the community could not be discerned (Supplemental Figure 7D). The 194 

sample size of the earlier study was therefore likely insufficient to detect the network structure 195 

described here.  196 

Both the random bouton and the random claw null models assume that the probability of a PN-197 

to-KC connection is independent of its location in the MB main calyx. However, both PN and 198 

KC neuronal arbors are known to occupy stereotyped and circumscribed positions within the 199 

calyx as a function of cell type (Jefferis et al., 2007; Lin et al., 2007; Tanaka et al., 2004; Zheng 200 

et al., 2018). This suggested that cell type-specific neurogeometry might contribute to the 201 

observed nonrandom network structure. Therefore a “local random bouton” null model was 202 

constructed, in which each KC claw selects an input at random from the five nearest boutons to it 203 

within the MB main calyx (Figure 3A).  204 

The local random bouton model was superior to the prior models, which lacked spatial 205 

constraints. In contrast to the random bouton model, it successfully recapitulated the greater 206 

number of claws ensheathing community PN boutons (Figure 3B). It also better recapitulated the 207 

overconvergence of community PNs onto KCs. In particular, in the observed PN-to-KC network, 208 

some KCs received 3-7 claws of input from community PNs, far more than predicted by chance 209 
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(Figure 3C, observed vs. random bouton models). Although the random claw model was 210 

constrained to preserve the out-degree of each PN type, it was less successful than the local 211 

random bouton model in reproducing the observed distribution of multi-claw convergent inputs 212 

from the PN community (Figure 3C, random claw vs. local random bouton models). When 213 

individual instances of the local random bouton model were compared to the random bouton 214 

model, z-score clustering largely recapitulated the observed PN community (Figure 3D); and z-215 

score clustering following comparison of the observed PN-to-KC network to the local random 216 

bouton model failed to reveal the PN community (Figure 3E-F). 217 

The success of the local random bouton model suggested that much of the observed non-random 218 

network structure arises from the specific neurogeometry of PNs and KCs. Direct visual 219 

examination of the community PN axonal arbors and postsynaptic KC dendrites bore out this 220 

interpretation. Community PN axons were tightly clustered in peripheral regions of the MB main 221 

calyx (Figure 4A-B), and the KCs with the most community input showed dendritic arbors 222 

localized to four clusters corresponding to these axonal territories (Figure 4C-E). The four 223 

clusters of KC dendrites are consistent with four MB neuroblasts (Ito et al., 1997; Lee et al., 224 

1999). Complete reconstruction of an arbitrarily selected bundle of KCs fasciculating tightly in 225 

the MB pedunculus (Supplemental Figure 8) also showed regional bias toward the dorsolateral 226 

quadrant of the MB main calyx (Figure 4F), where collaterals of the community PNs tended to 227 

ramify. Quantification of pairwise inter-bouton distances revealed that community PN boutons 228 

were significantly closer to one another than non-community PNs (Figure 4G). Finally, 229 

unsupervised hierarchical clustering divided the PN boutons into 4 distinct territories; one of 230 

these clusters was made up of nearly all (9 of 10) of the community PN subtypes (Figure 4F). 231 

Thus the community of super-convergent PN subtypes seems to be generated by neurogeometry, 232 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


as revealed by visual inspection and quantitative analysis of the relevant neuronal arbor 233 

structures. 234 

 235 

Discussion 236 

Our results show that the PN-to-KC network in the adult fruit fly has non-random structure. A 237 

community of food-responsive PN subtypes converges at above-chance levels onto downstream 238 

KCs (Figure 1D). This network structure is set up anatomically: the axons of participating PN 239 

subtypes arborize in restricted regions of the MB main calyx, and the dendrites of many 240 

postsynaptic KCs are similarly restricted to those regions (Figure 4). The community PN axonal 241 

arbor territories s are similar to those obtained in earlier studies based on light microscopy data 242 

(c.f. cluster 1 in Figure 4 C&D Jefferis et al., 2007; Seki et al., 2017; c.f. green cluster in Figure 243 

2 C,E Tanaka et al., 2004). This suggests that the observed PN-to-KC network structure is 244 

stereotyped across individuals. The developmental precision required to achieve this structure 245 

seems within reach of the fly nervous system, given the highly reproducible geometries of most 246 

cell types in the fly brain, including those innervating the MB main calyx (Aso et al., 2014; Lin 247 

et al., 2007; Zheng et al., 2018). The PN community we observe in MB is also nearly identical to 248 

an independently discovered food-related PN subnetwork formed by axo-axonic synapses 249 

between PNs in the lateral horn (c.f. Figure 3F in Bates et al., 2020), suggesting that clustered 250 

connectivity of this subset of food-responsive PN types is conserved between brain areas 251 

subserving innate (lateral horn) and learned (MB) behavior in the fly. 252 

Why was this structured network connectivity not been seen previously? The likeliest answer 253 

may be that past efforts lacked sufficient statistical power to detect the PN community. 254 
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Subsampling of current dataset to match the number of samples of the most thorough of previous 255 

efforts (Caron et al., 2013) renders the community of food-reponsive PNs undetectable 256 

(Supplemental Figure 7). Differences in results may also be due to the sampling methods used, 257 

but until statistical power is sufficient across all methods, it will be challenging to resolve this 258 

question. Furthermore, although our effort is the largest to date, additional network structure may 259 

be detected if and when the PN-to-KC network is mapped to completion ipsilaterally and 260 

contralaterally in the FAFB dataset. Forthcoming additional brain-spanning EM volumes of the 261 

adult fly will also be of interest in this regard (e.g. Scheffer et al., 2020). Alternative analysis 262 

methods (e.g. Athreya et al., 2017; Jonas and Kording, 2015; Sporns and Betzel, 2016) might 263 

also reveal additional networks structure. It will be of interest to learn whether this community 264 

is consistent across individuals, and whether it varies as a function of genetic background, 265 

neuronal activity levels, and environmental conditions during development (Kremer et al., 2010; 266 

Sugie et al., 2018). Even if the observed network structure is conserved across individuals, it is 267 

likely that synaptic output from food-responsive KCs is variable, given that MBON odorant 268 

responses are highly variable across individuals (Hige et al., 2015). 269 

What is the functional role of the observed network structure in MB circuit operation? 270 

Simplifying models have shown that random connectivity in the PN-to-KC network increases 271 

dimensionality and linear separability of neural representation (Litwin-Kumar et al., 2017; 272 

Stevens, 2015), indicating that randomly connected Marr motifs may support optimal stimulus 273 

classification. However, this assumes that all PNs are activated in a statistically identical fashion. 274 

A version of this model incorporating the observed over-convergence of food-responsive PNs 275 

onto KCs showed increased discrimination performance for PNs responding to food-related 276 

odorants, and decreased performance for the other PN types (Figure 5). This tradeoff calls to 277 
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mind the efficient coding hypothesis, which states that neuronal resources are allocated to match 278 

the distribution of natural stimuli, such that more frequently encountered stimuli are sampled 279 

more densely (Barlow, 2012; Laughlin, 1981). In a normal fly’s life, food-related odorant 280 

combinations are presumably encountered more frequently than combinations of arbitrary 281 

odorants (Mansourian and Stensmyr, 2015). The efficient coding hypothesis predicts that these 282 

more frequently encountered combinations of food-related odorants would be sampled more 283 

densely than combinations of arbitrary odorants; and indeed, this is what we observe in the 284 

Drosophila Marr motif. Conceptually, this may be thought of as a kind of ‘associational fovea’, 285 

in which more frequently encountered, ethologically relevant combinations of stimuli are 286 

sampled more densely (Supplemental Figure 9).  287 

Given the complexity of MB dynamics during learning and recall (Felsenberg et al., 2018; Inada 288 

et al., 2017; Owald and Waddell, 2015; Perisse et al., 2016), additional functional 289 

characterization of the MB during learning and recall will be needed to determine if the above 290 

speculation is correct. Recurrent local microcircuitry is abundant in the MB , including KC-KC 291 

synapses (Eichler et al., 2017; Leitch and Laurent, 1996; Liu et al., 2016; Schürmann, 1974), PN-292 

PN synapses (Bates et al., 2020), KC-to-PN synapses (Zheng et al., 2018), and extensive 293 

connectivity with local and extrinsic neurons (Amin et al., 2020; Butcher et al., 2012; 294 

Christiansen et al., 2011; Inada et al., 2017; Lin et al., 2014; Liu and Davis, 2009). It is also 295 

unknown whether the cell types involved fire exclusively in all-or-none fashion, or whether 296 

synaptic release can be evoked locally (Zhang et al., 2019). This question becomes especially 297 

pertinent given the near ubiquity of mixed input/output neurites in the fly brain (with the 298 

exception of the finest dendritic processes) are nearly ubiquitous in the fly brain (Bates et al., 299 

2020; Meinertzhagen, 2018; Olsen and Wilson, 2008; Takemura et al., 2017; our unpublished 300 
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observations). Downstream of the PN community, different KC subtypes may also play different 301 

roles, an aspect not investigated in the present study. Given these complexities, it may be that 302 

richer models will be required to fully describe the effect of the observed network structure 303 

(Litwin-Kumar and Turaga, 2019). 304 

The present work joins other studies in which unexpected structure is detected in neuronal 305 

networks through quantitative comparison of observed connectivity to null models of 306 

neurogeometry (e.g. Bopp et al., 2014; Brown and Hestrin, 2009; Egger et al., 2014; Kasthuri et 307 

al., 2015; Lee et al., 2016; Mishchenko et al., 2010). Because connectomics data sets offer the 308 

exact positions of all synaptic input and output sites on axonal and dendritic arbors, they provide 309 

the opportunity to construct unusually well constrained geometric null models. For many classes 310 

of neuronal circuit, connectomics data sets may therefore improve the discoverability of network 311 

structure compared to alternative methods. This strength among others illustrates how, although 312 

connectomics-style wiring diagrams are by themselves clearly insufficient to explain neuronal 313 

circuit function (Bargmann and Marder, 2013), they are a useful scaffolding for integrating data 314 

across modalities and generating experimentally testable predictions. 315 

 316 

Methods 317 

Neuron tracing 318 

Neurons were reconstructed from the whole brain EM dataset of an adult fly (Zheng et 319 

al., 2018). Skeleton tracing of neuronal arbors and criteria of synapse annotations are conducted 320 

as described previously (Zheng et al., 2018) with the CATMAID tracing environment 321 

(Schneider-Mizell et al., 2016). To briefly summarize, all the manually traced neurons were 322 

reconstructed with an iterative tracing method by at least two tracers, an initial tracer and a 323 
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subsequent proofreader. The initial tracer reconstructed arbors, followed by systematic review by 324 

a different proofreader. When either tracer was not confident about the identifications of a neural 325 

process or synapses, they cooperatively examined the image data to reach a consensus. All such 326 

sites were further reviewed and resolved by an expert tracer. A chemical synapse was identified 327 

if it met at least three of the four following features, with the first as an absolute requirement: 1) 328 

an active zone with vesicles; 2) presynaptic specializations such as a ribbon or T-bar with or 329 

without a platform; 3) synaptic clefts; and 4) postsynaptic membrane specializations such as 330 

postsynaptic densities (PSDs). 331 

Our tracing approach is biased to errors of omission rather than comission. This approach 332 

has been shown to have minimal impact on network connectivity in the fly larva (Schneider-333 

Mizell et al., 2016). In addition, the present study is focused on the connectivity between PNs 334 

and KCs at a distinctive structure called the microglomerulus, which contains a multitude of 335 

synapses between a given PN bouton and its postsynaptic KC claws (Butcher et al., 2012; Leiss 336 

et al., 2009; Yasuyama et al., 2002). It is therefore unlikely that the loss of any particular synapse 337 

during reconstruction qualitatively affected the analysis described here. 338 

As in Zheng et al. (2018), two reconstruction strategies were used: tracing to 339 

classification and tracing to completion. In tracing to classification, in general only backbones 340 

and not twigs (microtubule-containing, large diameter neurites, and microtubule-free, fine 341 

neurites, respecitvely; Schneider-Mizell et al., 2016) are reconstructed. Tracing is halted once the 342 

reconstructed neuronal morphology unambiguously recapitulates that observed by LM or 343 

previous EM reconstruction studies for a given cell class. In tracing to completion, all of a given 344 

neurite is reconstructed, along with all of its input and output synapses, unless ambiguities in the 345 

data make tracing impossible. In some cases tracing to completion is done only within a given 346 
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brain compartment; in the present study, for example, manually reconstructed KCs were traced 347 

to completion only within the MB main calyx (see below). 348 

 349 

Random sampling of KCs    350 

Kenyon cells were randomly sampled from within MB pedunculus ("Random Draw 351 

KCs") on the right side of the brain. The pedunculus is a tract of fasciculated KC axons 352 

projecting from the posterior of the brain, where KC dendrites ramify in the the MB calyx, to the 353 

lobes of the MB at the anterior of the brain, where synapses are made between KCs, MBONs and 354 

DANs (Technau and Heisenberg, 1982; Figure 1A). All neuronal processes in a transverse plane 355 

of pedunculus (section #4186 in the FAFB dataset) were labelled with seed nodes (2740 in total; 356 

Supplemental Figure 1). Seed nodes were randomly selected for reconstruction, which proceeded 357 

posteriorly (i.e. retrogradely, in the case of KCs) from the seed node plane. In addition to KCs, 358 

the anterior paired lateral (APL) neuron (a wide-field inhibitory neuron; Liu and Davis, 2009), 359 

and MB-CP1 (an MBON; Tanaka et al., 2008), were known to have neurites in the pedunculus 360 

(Zheng et al., 2018). Therefore tracing to classification was done to determine whether the 361 

neuron arising from a given seed node was a KC, using the following morphological criteria. 362 

Kenyon cell somata are posterior and slightly dorsal to the MB calyx; each KC makes a handful 363 

of dendritic specializations called “claws” within the calyx; and has a single axon projecting 364 

anteriorly, with few branches, in the pedunculus (Aso et al., 2014). The APL neuron (one within 365 

the MB on each side of the brain) has numerous, densely branching and fine neurites ramifying 366 

throughout the entire MB. The MB-CP1 neuron similarly branches densely in the pedunculus 367 

and calyx. Disambiguating between these neuron types was therefore relatively straightforward, 368 

and tracing was halted if the neuron arising from a seed node was determined not to be a KC. 369 
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The Random Draw KCs were reconstructed either manually (440 KCs) or by an automatic 370 

segmentation-assisted approach (916 KCs), described below. The total sample size of 1,356 KCs 371 

was constrained by the time and resources available for the effort; the overall goal was to obtain 372 

as large a sample as possible to maximize statistical power.  373 

 374 

Manual tracing of KCs 375 

 Each manually reconstructed KC was retrogradely traced to completion from at least 376 

section 4186 of the FAFB dataset to the posterior of the brain (some were traced to a greater 377 

extent). This spans the posterior ~1/3 of pedunculus and the entire MB calyx. In previous work 378 

(Zheng et al., 2018), the boutons of all PNs in calyx as well as the glomerular subtypes of all PNs 379 

were identified. Typically, each dendritic claw received input from a single bouton (Leiss et al., 380 

2009; Yasuyama et al., 2002). To facilitate downstream analysis (see below), “claw border” tags 381 

were applied to each KC at a node between the "arm" and distal fingers of each KC claw. The 382 

“claw border” tags therefore delineated KC claws post-synaptic to distinct PN boutons. 383 

Similarly, "bouton border" tags were applied to the PN arbors within MB main calyx. 384 

The majority of reconstructed KCs received olfactory inputs from PNs within MB main 385 

calyx. There are 3 main KC classes, γ, α’/β’, α/β, named according to which of the eponymous 386 

lobes at the anterior MB the KC axon projects (Aso et al., 2014; Crittenden et al., 1998; Lee et 387 

al., 1999; Tanaka et al., 2008). Two additional, numerically fewer types of KC (α/βp and γd) 388 

receive non-olfactory inputs such as visual, gustatory, and temperature information via dendritic 389 

arbors within MB accessory calyces (Yagi et al., 2016). These were excluded from analysis. All 390 

Random Draw KCs were traced to classification anteriorly to section 4186; subtype was assigned 391 

depending on which MB lobe the KC axon ramified within. 392 
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 393 

Automated segmentation-assisted tracing of KCs 394 

 During the KC reconstruction effort, a segmentation of the FAFB dataset became 395 

available (Li et al., 2019). A tracing workflow using this segmentation was therefore adopted. 396 

Automated segmentation-derived skeleton fragments were manually concatenated, and the entire 397 

resulting arbor was proofread as described above. KC claws were only partially reconstructed, 398 

sufficient to define which PN bouton was contained and to identify and annotate at least 3 399 

synapses from the bouton to the claw. Control experiments in which one tracing team manually 400 

reconstructed KCs to completion and another independently used the automated segmentation to 401 

map PN-to-KC connectivity demonstrated the consistency of results between both approaches in 402 

quantifying PN bouton/KC claw connection counts (data not shown).  403 

 404 

Conditional input analysis 405 

 To determine whether input to KCs from PNs was independent or conditional on PN 406 

type, a new method was devised which we termed "conditional input analysis." The result is a 407 

matrix for which a given cell indicates whether, given input from the row PN type, a KC is more 408 

or less likely than chance to get input from the column PN type. This approach also allows for 409 

detection of asymmetric conditional input (the case where e.g. KCs on average get more input 410 

from type C, given input from type A; but less input from type A, given input from type C). Each 411 

observed PN bouton-KC claw connection is treated as a single count. The observed number of 412 

counts for a given PN type is compared to the distribution of counts generated using a null 413 

model. Several null models were used in this study (see below). For each combination of PN 414 

types, a z-score is computed (i.e. how many standard deviations from the mean of the null 415 
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distribution the observed number of counts is). Unsupervised K-means clustering of the z-score 416 

matrix was used to group matrix entries.  417 

A summary of the steps in conditional input analysis follows; source code is available at 418 

https://github.com/bocklab/pn_kc. 419 

Projection neuron types are named after the glomerulus ('Glom') in the antennal lobe that 420 

PN's dendrites innervate. Consider types Glom A, B, C, and so on. For a given connectivity 421 

matrix, 422 

1. Select all KCs having at least one claw receiving input from a bouton of Glom A. 423 

2. The number of inputs to these KCs from Glom B, C, D, and so on are counted. This 424 

provides a count of the number of inputs to the KC cell population from Glom B-D, given input 425 

from Glom A. 426 

3. Repeat (1) – (2) for Glom B, C, D, and so on. 427 

4. For each null model (see below), repeat (1)-(3) above on 1,000 in silico 428 

randomizations of the observed PN-to-KC network. This generates the null distributions from 429 

which a z-score can be generated for observed connectivity for each PN type pair. A matrix of 430 

these z-scores is termed a “conditional input matrix”. 431 

7. Apply K-means clustering to the conditional input matrix. The K-means algorithm 432 

(MacQueen, 1967) clustered PN types into groups with equal variances and the cluster number 433 

of each PN type is used to re-order both the columns and rows of the z-score matrix. 434 

K-means clustering of the conditional input matrix groups glomeruli with similar z-scores 435 

together, and therefore reveals subsets of PNs that provide more (or less) input than predicted by 436 

a given null model. Over-convergence of inputs (red in our figures) is more strongly detected by 437 

this approach, since the random bouton null model (see below) can result in PN types having a 438 
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small number of boutons to have zero KC outputs. This, in turn, lowers the magnitude of 439 

negative z-scores (since the mean of the null model values is already low). 440 

 441 

Null models of PN-to-KC connectivity 442 

Three null models were used: (1) random bouton model, (2) random claw model, and (3) 443 

local random bouton model.  444 

In the random bouton model, each Random Draw KC claw is reassigned, with 445 

replacement, to a randomly selected PN bouton in the calyx. On average, therefore, the number 446 

of outputs provided by PN type (i.e. out-degree per PN type) will be proportional to the number 447 

of boutons that belong to that type. The number of claws for each KC (i.e. in-degree per KC) is 448 

also maintained. To apply conditional input analysis to the data of Caron et al. (2013) using this 449 

null model, the bouton counts per PN type obtained from the present work were used 450 

(Supplemental Figure 7), since bouton counts per PN type were not generated in that study. 451 

In the random claw model, each PN bouton is reassigned claws at random, without 452 

replacement. The number of claws so assigned is equal to the number of claws ensheathing that 453 

bouton in the observed PN-to-KC network. Thus in this randomization, the number of claws 454 

receiving input from a given PN type (i.e. out-degree per PN type) and the number of claws each 455 

KC has (i.e. in-degree per KC) are maintained. 456 

In the local random bouton model, each claw of each KC is randomly assigned to one of 457 

its five nearest boutons (including the one it ensheathed in the observed network), with 458 

replacement. Distances were measured between claw and bouton centroids. In this 459 

randomization, KC in-degree and geometric constraints on connectivity are preserved.  460 

 461 
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Covariance analysis of connectivity  462 

Covariance analysis (Newman, 2018) is a commonly used measure of whether two inputs 463 

occur more frequently than predicted by chance and as such is an alternative to the conditional 464 

input analysis described above. Its output is a matrix of p-values of input rates compared to the 465 

expected distribution arising from given null model. The procedure is summarized as follows. 466 

1. The covariance measure for each pair-wise combination of PN types was computed for 467 

the observed connectivity. 468 

2. The observed PN-to-KC connectivity was randomized 1,000 times using the random 469 

bouton model. For each randomization, a covariance matrix of PN types was computed. 470 

3. For each pairwise combination of PN types, a p value is estimated by counting how 471 

often the randomized covariance was great than or equal to the observed covariance. A p value 472 

of less than 0.05 (significance level) implies the probability of obtaining such a covariance in a 473 

random network is low, and the alternative hypothesis of seeing such an observed value in a null 474 

model is therefore rejected. The results are shown in a p-value matrix (Supplemental figure 4 A -475 

D) in which each cell represents a p value for a given pair of glomeruli indicated in the 476 

corresponding row and column labels. 477 

4. The p-value matrix was re-ordered either using the Fig 1D clustering order 478 

(Supplemental Figure 4 A, C) or using order given by K-means clustering (Supplemental Figure 479 

4 B, D). To cluster statistically significant but numerically small p values, K-means clustering 480 

was performed on a binary version of the p-value matrix wherein all p values less than 0.05 were 481 

set to 1, and otherwise to 0. 482 

For the analysis of synaptic connectivity (Supplemental Figure 4C, D), covariance 483 

measures were directly calculated from synapse counts, using only the manually reconstructed 484 
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Random Draw KCs (whose dendritic arbors in MB calyx were reconstructed to completion; see 485 

Manual Tracing of KCs, above). To generate the null model of synaptic connectivity, the bouton-486 

claw binary network is randomized and each bouton-claw connection is assigned a synapse count 487 

that was randomly drawn (with replacement) from the distribution of number of synapses per 488 

claw. 489 

 490 

Clustering analysis of PN boutons 491 

Each PN type was classified and each the bouton in MB calyx was annotated in previous 492 

work (Zheng et al., 2018). Using these annotations, skeleton reconstructions of each bouton were 493 

extracted. Pairwise NBLAST scores on the bouton skeletons were computed (Costa et al., 2016) 494 

and  clustered by Ward’s algorithm (Murtagh and Legendre, 2014). NBLAST is a similarity 495 

measure for both shape and position; in this case, because the skeletons within each bouton were 496 

small, clustering is likely based mostly on bouton position. The probability of bouton arbors 497 

being in a given location in calyx was estimated following the approach of Bates et al. (2020). In 498 

brief, the bouton skeletons were resampled evenly at 0.1 μm intervals. A Gaussian kernel density 499 

estimate (KDE) was used to fit the number of skeleton nodes per unit space (cubic µm-1) for each 500 

of the two projected dimensions (x,y or x,z). The density map therefore reflects the probability 501 

(point density function, PDF) for boutons of a given PN type to be found at a given location in 502 

MB calyx. The PDF is normalized to the same scale (0 – 2.5 x 10-9) for each of the four groups. 503 

The boundaries of MB calyx were generated from an nc82 (synapse)-stained template brain 504 

aligned to the FAFB image volume as described in Zheng et al. (2018).  505 

 506 

Comparison of postsynaptic KC counts between FAFB and hemibrain datasets 507 
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During preparation of this manuscript, a segmentation of a portion of a second adult fly 508 

brain became available in preprint form (the 'hemibrain'; Scheffer et al., 2020). In the hemibrain 509 

dataset, all PNs and ~2,000 KCs on the right side of the brain were segmented as part of a large-510 

scale proofreading effort (50 person-years over ~2 calendar years). As of this writing, the 511 

publicly available hemibrain segmentation does not demarcate PN bouton and KC claw 512 

boundaries, preventing straightforward application of our analysis approach. We used the 513 

hemibrainr package (https://github.com/flyconnectome/hemibrainr) to download the connectivity 514 

matrix between all PNs and KCs from the dataset server (hemibrain v. 1.0.1, 515 

https://neuprint.janelia.org). The connectivity matrix is then binarized such that each unique pair 516 

of PN and KC with 3 or more synapses is defined as one connection and otherwise zero. For a 517 

PN, the number of connections is equivalent to the number of KCs postsynaptic to the PN. 518 

Connections for different PNs of a common type are summed and divided by the total number of 519 

connections in the entire binary connectivity matrix. The percentage of connections for each PN 520 

type is used to compare to the same number from FAFB (Supplemental Figure 2B-C). 521 

 522 

Modeling 523 

The PN-to-KC network model was a modification of earlier models used in the larval and 524 

adult fly (Eichler et al., 2017; Litwin-Kumar et al., 2017, respectively). In these models, 525 

simulated activities across all PNs are created for each stimulus odor. Each stimulus is randomly 526 

associated with one of two categories with equal probability. The PN activity (signal) is 527 

generated by drawing independently from a rectified unit Gaussian distribution corrupted by 528 

Gaussian noise (s.d. 0.2). To probe the effect of the observed overconvergence of community PN 529 

types (10 types comprising 16 individual PNs), for each stimulus,16 modeled PNs were activated 530 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


(i.e. Gaussian activity patterns were created). Within the 16 activated PNs, the fraction of 531 

community PNs was varied as follows: 0 (16 non-community PNs), 0.125 (2 community PNs, 14 532 

non-community PNs), 0.25 (4 community PNs, 12 non-community PNs), 0.375 (6 community 533 

PNs, 10 non-community PNs), 0.5 (8 community PNs, 8 non-community PNs), 0.625 (10 534 

community PNs, 6 non-community PNs), 0.75 (12 community PNs, 4 non-community PNs), 535 

0.875 (14 community PNs, 2 non-community PNs), 1 (all 16 community PNs). These fractional 536 

values comprise the x-axis of Figure 1F. For fractional values less than 1, activated PNs were 537 

randomly selected from the 16 community PNs. For all fractional values, non-community PNs 538 

were randomly selected from the population of 97 non-community PNs. Gaussian noise with 539 

standard deviation 0.2 was then added to the activity levels of all PNs. Kenyon cell activity is 540 

given by multiplying PN activity by the matrix of PN-to-KC connections 𝑚	 = 	𝛩	(ℎ − 𝜃), 541 

where 𝜃	is a threshold whose values are picked for each KC such that each KC is active with a 542 

probably of 𝑓(f = 0.05, also called coding level) for each stimulus. The 𝛩	is a rectification term. 543 

The ℎ represents input activity provided by each PNs multiplied by their corresponding number 544 

of synapses to the KC. KC activity patterns were used to train a maximum-margin classifier, and 545 

the goal is to predict the pre-assigned one of two categories. In the testing phase, the same set of 546 

PN activity patterns corrupted with different applications of Gaussian noise were used as input, 547 

and the resulting KC activity patterns were given to the trained classifier to predict which of the 548 

two categories each stimulus belongs to. Error rates of the prediction from 1,000 simulations 549 

were used to evaluate classifier performance. Because this is a two-alternative classification task, 550 

the expected error rate for chance performance is 50%. For reporting error rate results (Figure 551 

1F, Supplemental Figure 5A-B), standard errors of the mean (s.e.) are used as the goal is to 552 

compare mean error rate of different models. 553 
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The model requires synapse counts between each connected PN-KC cell pair. In Figure 554 

1F and Supplemental Figure 5A, the synaptic counts between PNs and manually reconstructed 555 

Random Draw KCs were used. In Supplemental Figure 5A, the same model is implemented 556 

except that 38 food PNs (Supplemental Table 1) are chosen to be activated. In the activated food-557 

PN datum (red dot), 38 food PNs are activated with simulated Gaussian activity patterns and all 558 

PNs, including the food PNs, are corrupted with Gaussian noises (s.d. 0.2). In the null model 559 

distribution (blue histogram in Supplemental Figure 5A), for each simulation (one count in the 560 

histogram), a random set of 38 PNs are picked to be activated and error rates of the classifier are 561 

computed to evaluate performance of the models. In Supplemental Figure 5B, each KC's 562 

connections to a given PN were randomly reassigned (with replacement) to different PN, and 16 563 

PNs, with varying proportion of community PNs, are activated using the same model 564 

implementation as in Figure 1F.  565 

 566 

Statistics 567 

 When comparing two or more distributions, if the data are categorical (e.g. Figure 2A, 568 

3C, Supplemental Figure 2C) a Chi-square test is used. When the data are continuous (e.g. 569 

Figure 4G, Supplemental Figure 3B-D, 6B), a Kolmogorov–Smirnov test (K-S test) is used. 570 

When a distribution is compared with a observed datum (i.e. a single data point), as in each cell 571 

of the conditional input matrices (e.g. Figure 1D, 2D, 3D-F, Supplemental Figure 3E, 6, 7A, C-572 

D), in Figure 2B, C, 3B, and in Supplemental Figure 5A, a z-score (see Conditional input 573 

analysis, above) is computed. 574 

 575 
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Figure legends 576 

Figure 1  577 

(A) Schematic of olfactory pathway. Odorants bind to olfactory receptor neurons (ORNs) in the 578 

fly antennae and activate a stereotyped subset of glomeruli in the antennal lobe (AL). ORNs in a 579 

specific glomerulus provide olfactory inputs to a given class of PNs and the PNs can be 580 

classified into ~51 types based on their originating antennal lobe glomeruli. In each hemisphere 581 

of a fly brain, ~150 PNs project to two higher brain regions, MB and lateral horn (LH). In the 582 

calyx of the MB, the PNs synapse onto ~2,200 KCs. The KCs then converge onto a small 583 

number of mushroom body output neurons (MBONS, ~34) at the medial and vertical lobes of the 584 

MB. Modification of synapses between KCs and MBONs likely underlies olfactory learning and 585 

memory in the fly (Barnstedt et al., 2016; Guven-Ozkan and Davis, 2014; Heisenberg, 2003). 586 

(B) Electron microscopy reconstruction of the dendrites of a KC and its olfactory input from PNs 587 

in the MB calyx. Kenyon cell dendrites terminate as claw-like elaborations; each claw receives a 588 

variable number of synapses (numbers in white) from a single ensheathed PN bouton. Each KC 589 

gives rise to a small number of claws (mean ± s.d., 5.2 ± 1.6; Supplemental figure 1). 590 

(C) Schematic of conditional input analysis of the PN-to-KC network. Each PN-to-KC 591 

connection is treated as binary: if a claw receives three or more synapses from a PN bouton, the 592 

KC is considered as receiving one input from that PN type; otherwise it is treated as zero. Input 593 

counts across all KCs are then compared to a randomized null model. In the example, given input 594 

from PN type 'A', KCs are more likely to receive input from PN type 'C' and less likely to receive 595 

input from PN type 'B'. A matrix is used to represent the population of these conditional input 596 

probabilities. Each row in the matrix represents the probability that, given input from the PN 597 
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type for that row, KCs are more (red) or less (blue) likely to get input from the PN types in the 598 

columns. Re-ordering of the matrix by K-means clustering helps illustrate these relationships. 599 

The color scale for each cell in the matrix indicates the z-score, i.e. the number of standard 600 

deviations (s.d.) between the observed number of inputs and the mean number of inputs arising 601 

from the null model. 602 

(D) Structured PN-to-KC connectivity against the random bouton null model. Conditional input 603 

analysis was applied to 1,356 randomly sampled KCs on the right side of the fly brain. A specific 604 

group of PNs (‘community’ PNs, type names in bold) were found to provide above-chance levels 605 

of convergent input to downstream KCs. Olfactory PN types are color-coded according to the 606 

category of odorants to which they respond. All community PNs have been reported to primarily 607 

encode food-related odors (Supplemental Table 1). 608 

(E) Schematic of PN-to-KC network model. In the PN input layer, an olfactory response is 609 

represented as a signaling response within a subset of PNs, mixed with Gaussian noise across all 610 

PNs. Each of these activity patterns is then assigned a positive or negative valence. Kenyon cell 611 

activity is the product of the observed PN-to-KC connectivity matrix and simulated PN activity, 612 

subject to a sparseness constraint such that only 5% of KCs are active at any time. The classifier 613 

learns to predict the pre-assigned valence based on a readout of KC activity. Performance is 614 

quantified by calculating the error rates of the classifier prediction. 615 

(F) Using the observed PN-to-KC connectivity, discrimination of inputs from community PNs is 616 

superior to that of inputs from non-community PNs. Error bars are standard errors (s.e.) of the 617 

mean across 1,000 simulations. For each simulation, a randomly selected subset of PNs are 618 

activated. A larger number of activated community PNs leads to better discrimination 619 

performance. 620 
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   621 

Figure 2 622 

(A) Biased sampling of PN inputs by KCs. Each bar in the x-axis represents a PN and the y-axis 623 

shows the number of claws that receive input from each PN in the random bouton null model 624 

(blue) and in the observed network (orange). PNs are grouped by type (i.e. glomerular class) and 625 

colored by behavioral significance (as in Figure 1D). Community PN types are underlined. In the 626 

observed network, community PNs are usually presynaptic to more KCs than predicted by the 627 

random bouton null model (error bars, s.d. of 1,000 random networks; Chi-square test p < 628 

1×10−10). 629 

(B) Kenyon cells over-sample inputs from community PNs. The observed number of claws 630 

receiving input from community PNs (red dot) was greater than the mean of the random bouton 631 

null model (distribution of 1,000 random networks; random bouton null model, mean ± s.d., 632 

1412.5 ± 34.0; observed, 1901; z-score, 14.3). 633 

(C) Community PNs provide convergent input onto postsynaptic KCs. The observed number of 634 

KCs receiving one or more inputs from community PNs (red dot) was lower than the mean of the 635 

random bouton null model (distribution from 1,000 random networks; random bouton null 636 

model: mean ± s.d., 903.4 ± 17.3; observed, 844; z-score, 3.4). 637 

(D) Overconvergent PN-to-KC connectivity contributes to the PN community. Conditional input 638 

analysis was applied to the observed PN-to-KC connectivity using the random claw null model, 639 

in which PN-to-KC connections are randomized while holding constant both the number of KC 640 

claws postsynaptic to each PN type and the number of input PN boutons to each KC. The PN 641 
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community still emerges, despite the fact that the random claw model incorporates the greater-642 

than-chance output from community PN types (Figure 2A). 643 

 644 

Figure 3  645 

(A) Schematic for the local random bouton null model. Each claw of each KC is randomly 646 

assigned to one of the five nearest PN boutons. In observed PN-to-KC network (upper), one claw 647 

from the KC receives input from a PN bouton (purple). The claw is randomly assigned to a 648 

different neighboring PN bouton (green). 649 

(B) The local random bouton model recapitulates the greater output of community PNs. The 650 

observed number of claws receiving inputs from community PNs (red dot) was compared to the 651 

number of claws with community inputs in the random bouton model (green histogram) and the 652 

local random bouton model (blue histogram). Each distribution represents 1,000 random 653 

networks from the null models. Observed (1901) vs. random bouton model (mean ± s.d., 1412.5 654 

± 34.0), z-scores 14.3. N.b. the random claw null model is constrained to have the observed 655 

number of claws postsynaptic to community PNs, and therefore is not considered here. 656 

(C) Individual KCs have multiple claws postsynaptic to community PNs boutons. Distributions 657 

are shown for the observed network, as well as the means of the random bouton, random claw, 658 

and local random bouton null models (error bars, ± s.d.; observed vs. random bouton null model, 659 

Chi-square test p < 1×10−10; observed vs. random claw null model, Chi-square test p < 1×10−10; 660 

observed vs. local random bouton null model, Chi-square test p < 0.028). 661 

(D) The local random bouton model recapitulates some of the PN community. Conditional input 662 

analysis was applied to a representative instance of the local random bouton model, with the 663 
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random bouton model as the null model. The local random bouton model captures predominantly 664 

the same cluster of community PNs (except one PN class, DM5). Community PN types are in 665 

bold, and all PN types are color-coded by their response categories as in Figure 1D. 666 

(E) Conditional input analysis of the observed connectivity using the local random bouton model 667 

as the null model shows no connectivity structure contributed by the community PNs. The 668 

remaining network structure is due to biased sampling of other PN types (see Figure 2A). 669 

(F) The same matrix shown in (E) but with columns and rows ordered as in Figure 1D. The 670 

cluster of community PNs, as seen in Figure 1D, is not seen here, as the community PN network 671 

structure is largely recapitulated by the local random bouton null model. 672 

  673 

Figure 4  674 

(A) Reconstructed PNs project from AL to two higher brain centers, MB and LH. Community 675 

PNs (green) have regionalized projection patterns in MB and LH compared to non-community 676 

PNs (white/purple). 677 

(B) Frontal view of MB calyx showing reconstructed PN axon arbors; colors as in (A). 678 

(C) Same as (B), with the addition of the 6 manually reconstructed KCs receiving 6 or more 679 

bouton inputs from community PNs. The dendritic arbors of these KCs (red) overlap with the 680 

community PN axon territories (green). 681 

(D) Posterior view of MB calyx showing 46 reconstructed KCs that receive 5 or more inputs 682 

from community PNs. The dendrites and soma of the KCs, respectively, are segregated into 4 683 

clusters (assigned 4 arbitrary colors) that may correspond to the 4 different neuroblasts of KCs in 684 

development (Ito et al., 1997; Lee et al., 1999).  685 
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(E) Dorsal view of calyx shows 4 different clusters of the same set of KCs as shown and 686 

colorized in (D). The cluster axonal bundles also fasciculate in the pedunculus (bottom of 687 

figure). 688 

(F) Frontal view of calyx shows PN collaterals (colors as in A) and reconstructions of all KCs 689 

from a single bundle (“bundle KCs”). The bundle KC dendrites ramify in the dorsal-lateral 690 

quarter of the calyx, overlapping extensively with the community PN axonal arbor territory. 691 

(G) Community PN boutons are closer to each other than non-community PN boutons. Each 692 

count represents the distance between a bouton and its nearest same-type bouton (blue: 693 

community PN bouton pairs; green: non-community PN bouton pairs; K-S test p < 1×10−10) 694 

(H) Unsupervised clustering reveals community PN boutons are spatially colocated in the MB 695 

calyx. (upper) Hierarchical clustering based on bouton arbor NBLAST score divides the PNs into 696 

four different groups. Nine out of ten community PNs belong to the same group. The y axis of 697 

the dendrogram represents Euclidean distances and is cut at 1.5 to divide different PN subtypes 698 

into 4 clusters. (lower) Bouton density maps of the four different groups. Colors correspond to 699 

the four groups shown in the dendrogram. Color intensity represents density of bouton arbors in 700 

a unit space (cubic μm-1) and is based on normalized point density function (PDF, Methods). 701 

 702 

Supplemental Figure 1 703 

(A) Schematic of MB anatomy, as in Figure 1A. Kenyon cell axons fasciculate and project 704 

anteriorly in parallel within the pedunculus. The blue line in the pedunculus indicates the 705 

location of the transverse plane where KCs were randomly sampled for reconstruction (B - C). 706 
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(B) Subarea of a frontal section from the whole-brain EM volume, showing the cross-section 707 

through pedunculus (blue false color) used for random sampling (C).  708 

(C) Randomly sampled KCs in the pedunculus. The cross-section of each randomly sampled KC 709 

axon is annotated with a magenta dot. All neurite cross-sections within the pedunculus were 710 

initially annotated (not shown); if a neurite was randomly sampled for reconstruction that turned 711 

out not to be a KC, it was discarded from further analysis. N.b. a discrete region in the middle of 712 

the pedunculus is occupied by other cell classes such as APL and non-olfactory KCs from 713 

accessory calyces (i.e. KC-α/βp and KC-γd), hence there are no magenta points in this region. 714 

 715 

Supplemental Figure 2 716 

(A) Distribution of number of claws per KC for all randomly sampled KCs (mean ± s.d., 5.2 ± 717 

1.6). 718 

(B) The number of postsynaptic KCs per PN type is consistent between the current study and the 719 

connectome deriving from the recent 'Hemibrain' dataset (v. 1.0.1; Scheffer et al., 2020). Each 720 

point represents a PN type; three or more synapses between a unique PN-KC pair is counted as 721 

an individual PN-KC connection. Since the two datasets have different numbers of reconstructed 722 

KCs, output from each PN type is represented as a percentage. There is a tight correlation across 723 

the two datasets (r2=0.83; blue-gray, 95% confidence interval along the regression line). 724 

(C) The same data as in (B), with PN types identified.  725 

 726 

Supplemental Figure 3 727 
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(A) Figure 1D, with colored boundaries delineating the matrix subregions for which z-score 728 

distributions are shown in (B-D). The distributions are significantly different (B, green; C, 729 

yellow; D, blue). 730 

(B) Distribution of z-scores for community PN types (green area in panel A). 731 

(C) Distribution of z-scores for PN types weakly clustering with the community PNs (yellow 732 

area in panel A). It is significantly different from the community PN distribution (K-S test p < 733 

1×10−10). 734 

(D) Distribution of z-scores for remaining PN types (blue area in panel A). It is significantly 735 

different from the community PN distribution (B, above; K-S test p < 1×10−10) and the weakly 736 

clustering PN types (C, above; K-S test p < 1×10−10). 737 

(E) Conditional input analysis of a single representative network from the random bouton model, 738 

shows no clustered structure in the z-score matrix. The random bouton model was also used as 739 

the null model. Any connectivity structure that deviates from the null model will manifest as 740 

clusters of high or low z-scores (2 s.d. or more as compared to the mean of the null model) in the 741 

matrix. No discernible cluster is seen after re-clustering of the z-score matrix, showing that the 742 

observed clustering is unlikely to be an artifactual result from an expected distribution of random 743 

values. 744 

 745 

Supplemental Figure 4 746 

 747 

(A) Co-variance analysis (Methods) of the observed PN-to-KC connectivity. This approach 748 

generates a symmetric matrix of p-values for PN type combinations. The lower the p-value, the 749 
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less likely the observed convergence of the PN type pair onto postsynaptic KCs is expected to 750 

occur by chance. Values < 0.05 are color coded in yellow; others are black. The column-row 751 

ordering of PN types is the same as in Figure 1D. The PN community is discernible as a mostly 752 

yellow square at the top left. PN type response categories are color coded as in Figure 1D.  753 

(B) As in (A), except the covariance matrix is reordered using unsupervised K-means clustering 754 

on p-values. The PN community (type names in bold) is reconstituted following this re-755 

clustering. Two weaker clusters of PN types (red and blue squares, overlaid) are discernible. 756 

(C) As in (A), except covariance between synapse counts between each PN and KC pair was 757 

quantified. The PN community is still discernible. 758 

(D) As in (B), except covariance between synapse counts between each PN and KC pair was 759 

quantified. As with (A-C), the PN community types comprise the dominant cluster, confirming 760 

that the main finding is robust to different analysis methods.  761 

(E) The z-score matrix from the conditional input analysis (Figure 1D) is re-ordered with the 762 

order given by K-means clustering of the co-variance matrix as shown in (B). The re-ordering 763 

reveals the same two weaker clusters of PNs as seen in (B). 764 

(F) Anterior view of MB calyx shows axon collaterals of reconstructed PNs of the types shown 765 

in the top left weak cluster in (B), demarcated by a red square. The PN collaterals occupy a 766 

conscribed territory within the MB main calyx. 767 

(G) As in (F), except the PN types are from the second weak cluster in (B), demarcated by a blue 768 

square. 769 

 770 

Supplemental Figure 5 771 
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(A) In a model using the observed PN-to-KC network, stimulus discrimination by food odorant-772 

responsive PNs is superior to discrimination by other PN types. The classifier seeks to 773 

discriminate different sets of PN activity patterns based on the KC responses, which are 774 

integrated via the observed PN-to-KC connectivity (for schematic see Figure 1D). In each set of 775 

PN activity patterns, 38 PNs are activated. The red dot (x=0.03) indicates average performance 776 

from 1,000 simulations of the model with activation of all food-responsive PNs (38 in total, 777 

including PN types that are not part of the community identified in Figure 1D). The distribution 778 

(mean 0.057, s.e. 0.007) shows error rates from 1,000 sets of 38 non-food PNs that are activated. 779 

Each data point represents the average error rate for a set of 38 PNs randomly selected from all 780 

non-food PNs. The number of non-food PNs that are activated (38) is kept consistent with the 781 

total number of food PNs. Observed vs. blue histogram, z-score - 4.0, p < 1×10−4. 782 

(B) With a randomized PN-to-KC network, activating varying fractions of community PNs 783 

results in unchanging classification performance. Each KC claw is randomly assigned to a PN 784 

with equal probability for each PN, and each PN-claw pair is assigned a number of synapses 785 

randomly drawn from the distribution of synaptic counts for all manually reconstructed claws. 786 

For each plotted data point, the same number of PNs (16) is activated, but with a varying 787 

fractions of community PNs (indicated in x-axis). Each data point is the average of 1,000 788 

simulations, each of which represents a combination of randomly selected community PNs and 789 

non-community PNs according to the indicated fractions (e.g. in the case of 0.5, 8 randomly 790 

selected community PNs and 8 randomly selected non-community PNs).  791 

 792 

Supplemental Figure 6 793 
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(A) Conditional input analysis was applied to a representative instance of the local random 794 

bouton model, with the random bouton model as the null model.Conditional input analysis was 795 

applied to a representative instance of the random claw model, with the random claw model as 796 

the null model. No cluster of high or low z-scores (2 s.d. or more as compared to the mean of the 797 

null model) is seen after K-means re-clustering of the z-score matrix. 798 

(B) Distribution of z-scores from conditional input analysis using random bouton null model (z-799 

scores in Figure 1D; i.e. observed vs. random bouton model, mean -0.044, s.d. 2.11) and analysis 800 

using the random claw null model (z-scores in Figure 2D; i.e. observed vs. random claw model, 801 

mean -0.058, s.d. 1.47). Blue vs. orange distributions, K-S test p < 1×10−10. Variance of z-scores 802 

is lower using the random claw model than the random bouton model, indicating that the random 803 

claw model better captures the observed network structure. 804 

 805 

Supplemental Figure 7 806 

 (A) Conditional input analysis of PN-to-KC connectivity data from Caron et al. (2013), using 807 

the random bouton null model (Methods). A weak cluster of overconvergent PN types is seen in 808 

the lower right corner of the matrix, consistent with the previously reported set of types making 809 

the most output onto KCs (Supplemental Figure 1, Caron et al., 2013). This cluster does not 810 

overlap strongly with the overconvergent PN community described in the present work (PN type 811 

names color coded and bolded as in Figure 1D).  812 

(B) Histogram view of data underlying (A). The y-axis shows the mean number of claws 813 

receiving input from each PN type in the random bouton null model (blue) and in observed 814 

counts the Caron et al. (2013) data (yellow). PN types are ordered as in (A). 815 
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(C) Conditional input analysis as in (A), except using the random claw null model, which 816 

incorporates the observed output rate of each PN type. No overconvergent PN type clusters are 817 

discernible using this model. 818 

(D) Conditional input analysis of a representatively randomly sampled subset of PN-to-KC 819 

connectivity from the current study shows only weak clustering (most z-scores < 2). The number 820 

of KCs, and KCs per claw, was held equal to that of the Caron et al. (2013) study.  821 

 822 

Supplemental Figure 8 823 

(A) Fasciculating KCs (‘bundle’ KCs) in the pedunculus. A transverse plane image of the 824 

pedunculus (shaded blue) shows a discrete bundle of KCs (blue outline) that was completely 825 

reconstructed. The black rectangle delineates the subarea shown in (B). 826 

(B) Magnified view of the cross-sectional profile of bundle KC axons (magenta dots) in the 827 

pedunculus. 828 

 829 

Supplemental Figure 9 830 

(A) A high dimensional olfactory space is represented schematically here as two-dimensional 831 

(x,y axes). Kenyon cells (red dots, upper panel) may be considered as points in this space, with 832 

positions defined by their PN inputs. In a random PN-to-KC wiring, the probability that a KC is 833 

responsive at a particular position along the y dimension is independent from its responses along 834 

the x dimension (lower panel).  835 

(B) In the PN-to-KC network structure we observe, KCs receive convergent input from PNs 836 

responsive to food-related odorants more often than predicted by chance. Schematically, this 837 
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may be represented as a non-uniform distribution of KCs within the high dimensional olfactory 838 

space defined by PN inputs, analogous to the denser sampling of a visual scene in the fovea of 839 

the retina. In this case, the probability that a given KC is responsive to a particular odor along the 840 

y axis is not independent from whether it is responsive to an odor on the x axis (lower panel). 841 

Assuming the fly has a constant number of KCs regardless of network structure (i.e. the number 842 

of red dots is the same no matter what), then within the 'associational fovea' (green circle, upper 843 

panel), the probability is substantially increased, and everywhere else the probability is slightly 844 

decreased (lower panel). 845 

 846 

Supplemental Table 1 847 

PN 
types 

Behavioral 
Significance Literature 

D Unknown* 
*multiple: aversive (Knaden et al., 2012), pheromonal (Lebreton et al., 
2017), and yeast volatiles (ethyl 3-hydroxyhexanoate, Tsakiris et al., 2010) 

DA1 Pheromonal (Kurtovic et al., 2007) 
DA2 Aversive (Stensmyr et al., 2012) 
DA3 Unknown   
DA4l Aversive (Badel et al., 2016) 
DA4m Unknown   
DC1 Egg-laying (Dweck et al., 2013) 
DC2 Aversive (Knaden et al., 2012) 
DC3 Food (Ronderos et al., 2014) 
DC4 Aversive (Ai et al., 2010) 
DL1 Unknown   
DL2d Food (Mansourian and Stensmyr, 2015) 
DL2v Food (Mansourian and Stensmyr, 2015) 
DL3 Pheromonal (van der Goes van Naters and Carlson, 2007) 
DL4 Aversive (Ebrahim et al., 2015)  
DL5 Aversive (Knaden et al., 2012) 
DM1 Food (Semmelhack and Wang, 2009) 
DM2 Food (Schubert et al., 2014) 
DM3 Food (Semmelhack and Wang, 2009) 
DM4 Food (Badel et al., 2016; Semmelhack and Wang, 2009) 
DM5 Aversive (Semmelhack and Wang, 2009) 
DM6 Food (Schubert et al., 2014) 
DP1l Food (Mansourian and Stensmyr, 2015; Silbering et al., 2011) 
DP1m Food (Semmelhack and Wang, 2009) 
V Aversive (Suh et al., 2004) 
VA1d Pheromonal (van der Goes van Naters and Carlson, 2007) 
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VA1v Pheromonal (Dweck et al., 2015b) 
VA2 Food (Semmelhack and Wang, 2009) 
VA3 Unknown   
VA4 Food (Laissue and Vosshall, 2008) 
VA5 Unknown   
VA6 Food (Mansourian and Stensmyr, 2015; Schlief and Wilson, 2007) 
VA7l Aversive (Mansourian and Stensmyr, 2015) 
VA7m Unknown   
VC1 Unknown   

VC2 Unknown¶ 
¶ unclear: dietary antioxidants (Dweck et al., 2015a); suppress oviposition, 
(Chin et al., 2018) 

VC3l Food (Laissue and Vosshall, 2008) 
VC3m Food (Laissue and Vosshall, 2008) 
VC4 Unknown   
VC5 Egg-laying (Hussain et al., 2016) 
VL1 Unknown   
VL2a Food (Grosjean et al., 2011) 
VL2p Aversive (Hamada et al., 2008) 
VM1 Food (Min et al., 2013) 
VM2 Food (Root et al., 2007) 
VM3 Food (Mansourian and Stensmyr, 2015) 
VM4 Unknown   
VM5d Food (Hallem and Carlson, 2006) 
VM5v Food (Mansourian and Stensmyr, 2015) 
VM7d Food (Laissue and Vosshall, 2008) 
VM7v Unknown   
VP1 Others temperature (Enjin et al., 2016) 
VP2 Others temperature (Frank et al., 2015; Liu et al., 2015) 
VP3 Others temperature (Enjin et al., 2016) 

 848 

Acknowledgements 849 

We thank: Greg Jefferis and Paavo Huoviala for substantial contributions to the literature search 850 

to classify PN types for behavioral significance; Greg Jefferis, Eyal Gruntman, Shaul Druckman, 851 

Larry Abbott, Ashok Litwin-Kumar, and Marcus Meister for helpful discussion of preliminary 852 

data;  Jacob Ratliff, Shahrozia Imtiaz, Benjamin Gorko, Arynne Boyes, Adam John, Emily 853 

Moore, Ben Koppenhaver, Philipp Ranft, bailey harrison, Sri Murthy, Ala Haddad, Addy 854 

Adesina, Ashley Scott, Chelsea Marlin, Emily Wissell, Zachary Gillis, Saba Ali, Gabrielle 855 

Allred, Spencer Waters, Lisa Marin, Annie Scott, Sarah Mohr, Michael Lingelbach, Emma 856 

Spillman, Aidan Smith, Teri Ngo, Jordan Dunlap, Bindu Gampah, Melissa Ryan, Nethan Reddy, 857 

Adam Fischel, Markus Pleijzier, Arlo Sheridan, Kabas Abou Jahjah, Amelia Edmondson-Stait, 858 

Ilenia Salaris, Ruchi Parekh, Austin Warner, Winston Chen, Ruairi Roberts, Julia Gonzales, 859 

Laurin Bueld, Cory Ardekani, Razi Rais, Niles Ribeiro, Teresa Neves for Kenyon cell 860 

reconstructions; Noah Nelson, for pilot software for analysis of the PN-to-KC connectivity graph 861 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


at the level of boutons and claws; J. Scott Lauritzen, for help coordinating reconstruction efforts. 862 

Funding: Howard Hughes Medical Institute; Wellcome Trust collaborative award 863 

203261/Z/16/Z; NIMH BRAIN Initiative award 1RF1MH120679-01. 864 

 865 

Availability of Source Code and Neuronal Reconstructions 866 

The neuronal reconstructions and source code underlying the analyses presented here are 867 

available at: https://github.com/bocklab/pn_kc. Neuronal reconstructions are also available at the 868 

Virtual Fly Brain Project 869 

(https://v2.virtualflybrain.org/org.geppetto.frontend/geppetto?id=vfb_site/overview.htm). 870 

 871 

 872 

Ai, M., Min, S., Grosjean, Y., Leblanc, C., Bell, R., Benton, R., and Suh, G.S. (2010). Acid 873 

sensing by the Drosophila olfactory system. Nature 468, 691-695. 874 

Albus, J.S. (1971). A theory of cerebellar function. Mathematical Biosciences 10, 25-61. 875 

Amin, H., Suarez-Grimalt, R., Vrontou, E., and Lin, A.C. (2020). Localized inhibition in the 876 

Drosophila mushroom body. 2020.2003.2026.008300. 877 

Aso, Y., Grubel, K., Busch, S., Friedrich, A.B., Siwanowicz, I., and Tanimoto, H. (2009). The 878 

mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 23, 879 

156-172. 880 

Aso, Y., Hattori, D., Yu, Y., Johnston, R.M., Iyer, N.A., Ngo, T.T., Dionne, H., Abbott, L.F., 881 

Axel, R., Tanimoto, H., et al. (2014). The neuronal architecture of the mushroom body 882 

provides a logic for associative learning. Elife 3, e04577. 883 

Aso, Y., and Rubin, G.M. (2020). Toward nanoscale localization of memory engrams in 884 

Drosophila. J Neurogenet, 1-5. 885 

Athreya, A., Fishkind, D.E., Tang, M., Priebe, C.E., Park, Y., Vogelstein, J.T., Levin, K., 886 

Lyzinski, V., and Qin, Y. (2017). Statistical inference on random dot product graphs: a 887 

survey. The Journal of Machine Learning Research 18, 8393-8484. 888 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Babadi, B., and Sompolinsky, H. (2014). Sparseness and expansion in sensory 889 

representations. Neuron 83, 1213-1226. 890 

Badel, L., Ohta, K., Tsuchimoto, Y., and Kazama, H. (2016). Decoding of Context-891 

Dependent Olfactory Behavior in Drosophila. Neuron 91, 155-167. 892 

Barak, O., Rigotti, M., and Fusi, S. (2013). The Sparseness of Mixed Selectivity Neurons 893 

Controls the Generalization-Discrimination Trade-Off. Journal of Neuroscience 33, 3844-894 

3856. 895 

Bargmann, C.I., and Marder, E. (2013). From the connectome to brain function. Nat 896 

Methods 10, 483-490. 897 

Barlow, H.B. (2012). Possible Principles Underlying the Transformations of Sensory 898 

Messages. In Sensory Communication (The MIT Press). 899 

Barnstedt, O., Owald, D., Felsenberg, J., Brain, R., Moszynski, J.P., Talbot, C.B., Perrat, 900 

P.N., and Waddell, S. (2016). Memory-Relevant Mushroom Body Output Synapses Are 901 

Cholinergic. Neuron 89, 1237-1247. 902 

Bates, A.S., Schlegel, P., Roberts, R.J.V., Drummond, N., Tamimi, I.F.M., Turnbull, R., 903 

Zhao, X., Marin, E.C., Popovici, P.D., Dhawan, S., et al. (2020). Complete connectomic 904 

reconstruction of olfactory projection neurons in the fly brain. 2020.2001.2019.911453. 905 

Bhandawat, V., Olsen, S.R., Gouwens, N.W., Schlief, M.L., and Wilson, R.I. (2007). 906 

Sensory processing in the Drosophila antennal lobe increases reliability and separability 907 

of ensemble odor representations. Nat Neurosci 10, 1474-1482. 908 

Bopp, R., Macarico da Costa, N., Kampa, B.M., Martin, K.A., and Roth, M.M. (2014). 909 

Pyramidal cells make specific connections onto smooth (GABAergic) neurons in mouse 910 

visual cortex. PLoS Biol 12, e1001932. 911 

Brown, S.P., and Hestrin, S. (2009). Intracortical circuits of pyramidal neurons reflect 912 

their long-range axonal targets. Nature 457, 1133-1136. 913 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Butcher, N.J., Friedrich, A.B., Lu, Z., Tanimoto, H., and Meinertzhagen, I.A. (2012). 914 

Different classes of input and output neurons reveal new features in microglomeruli of 915 

the adult Drosophila mushroom body calyx. J Comp Neurol 520, 2185-2201. 916 

Caron, S.J., Ruta, V., Abbott, L.F., and Axel, R. (2013). Random convergence of olfactory 917 

inputs in the Drosophila mushroom body. Nature 497, 113-117. 918 

Cayco-Gajic, N.A., and Silver, R.A. (2019). Re-evaluating Circuit Mechanisms Underlying 919 

Pattern Separation. Neuron 101, 584-602. 920 

Chin, S.G., Maguire, S.E., Huoviala, P., Jefferis, G., and Potter, C.J. (2018). Olfactory 921 

Neurons and Brain Centers Directing Oviposition Decisions in Drosophila. Cell Rep 24, 922 

1667-1678. 923 

Christiansen, F., Zube, C., Andlauer, T.F., Wichmann, C., Fouquet, W., Owald, D., Mertel, 924 

S., Leiss, F., Tavosanis, G., Luna, A.J., et al. (2011). Presynapses in Kenyon cell dendrites 925 

in the mushroom body calyx of Drosophila. J Neurosci 31, 9696-9707. 926 

Costa, M., Manton, J.D., Ostrovsky, A.D., Prohaska, S., and Jefferis, G.S.X.E. (2016). 927 

NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron 928 

Family Databases. Neuron 91, 293-311. 929 

Crittenden, J.R., Skoulakis, E.M., Han, K.A., Kalderon, D., and Davis, R.L. (1998). Tripartite 930 

mushroom body architecture revealed by antigenic markers. Learn Mem 5, 38-51. 931 

Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tsegaye, G., Holt, 932 

G.T., Hu, A., Walpita, D., et al. (2016). Sensitive red protein calcium indicators for 933 

imaging neural activity. Elife 5. 934 

DasGupta, S., Ferreira, C.H., and Miesenbock, G. (2014). FoxP influences the speed and 935 

accuracy of a perceptual decision in Drosophila. Science 344, 901-904. 936 

Dasgupta, S., Stevens, C.F., and Navlakha, S. (2017). A neural algorithm for a 937 

fundamental computing problem. Science 358, 793-796. 938 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Dickinson, M.H., and Muijres, F.T. (2016). The aerodynamics and control of free flight 939 

manoeuvres in Drosophila. Philos Trans R Soc Lond B Biol Sci 371. 940 

Dionne, H., Hibbard, K.L., Cavallaro, A., Kao, J.C., and Rubin, G.M. (2018). Genetic 941 

Reagents for Making Split-GAL4 Lines in Drosophila. Genetics 209, 31-35. 942 

Dweck, H.K., Ebrahim, S.A., Farhan, A., Hansson, B.S., and Stensmyr, M.C. (2015a). 943 

Olfactory proxy detection of dietary antioxidants in Drosophila. Curr Biol 25, 455-466. 944 

Dweck, H.K., Ebrahim, S.A., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., Hansson, B.S., 945 

and Stensmyr, M.C. (2013). Olfactory preference for egg laying on citrus substrates in 946 

Drosophila. Curr Biol 23, 2472-2480. 947 

Dweck, H.K., Ebrahim, S.A., Thoma, M., Mohamed, A.A., Keesey, I.W., Trona, F., Lavista-948 

Llanos, S., Svatos, A., Sachse, S., Knaden, M., et al. (2015b). Pheromones mediating 949 

copulation and attraction in Drosophila. Proc Natl Acad Sci U S A 112, E2829-2835. 950 

Ebrahim, S.A., Dweck, H.K., Stokl, J., Hofferberth, J.E., Trona, F., Weniger, K., Rybak, J., 951 

Seki, Y., Stensmyr, M.C., Sachse, S., et al. (2015). Drosophila Avoids Parasitoids by 952 

Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS Biol 13, e1002318. 953 

Egger, R., Dercksen, V.J., Udvary, D., Hege, H.C., and Oberlaender, M. (2014). Generation 954 

of dense statistical connectomes from sparse morphological data. Front Neuroanat 8, 955 

129. 956 

Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C.M., 957 

Saumweber, T., Huser, A., Eschbach, C., Gerber, B., et al. (2017). The complete 958 

connectome of a learning and memory centre in an insect brain. Nature 548, 175-182. 959 

Enjin, A., Zaharieva, E.E., Frank, D.D., Mansourian, S., Suh, G.S., Gallio, M., and Stensmyr, 960 

M.C. (2016). Humidity Sensing in Drosophila. Curr Biol 26, 1352-1358. 961 

Farris, S.M. (2011). Are mushroom bodies cerebellum-like structures? Arthropod Struct 962 

Dev 40, 368-379. 963 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Felsenberg, J., Jacob, P.F., Walker, T., Barnstedt, O., Edmondson-Stait, A.J., Pleijzier, 964 

M.W., Otto, N., Schlegel, P., Sharifi, N., Perisse, E., et al. (2018). Integration of Parallel 965 

Opposing Memories Underlies Memory Extinction. Cell 175, 709-722 e715. 966 

Frank, D.D., Jouandet, G.C., Kearney, P.J., Macpherson, L.J., and Gallio, M. (2015). 967 

Temperature representation in the Drosophila brain. Nature 519, 358-361. 968 

Groschner, L.N., and Miesenbock, G. (2019). Mechanisms of Sensory Discrimination: 969 

Insights from Drosophila Olfaction. Annu Rev Biophys 48, 209-229. 970 

Grosjean, Y., Rytz, R., Farine, J.P., Abuin, L., Cortot, J., Jefferis, G.S., and Benton, R. 971 

(2011). An olfactory receptor for food-derived odours promotes male courtship in 972 

Drosophila. Nature 478, 236-240. 973 

Gruntman, E., and Turner, G.C. (2013). Integration of the olfactory code across dendritic 974 

claws of single mushroom body neurons. Nat Neurosci 16, 1821-1829. 975 

Guven-Ozkan, T., and Davis, R.L. (2014). Functional neuroanatomy of Drosophila 976 

olfactory memory formation. Learn Mem 21, 519-526. 977 

Hallem, E.A., and Carlson, J.R. (2006). Coding of odors by a receptor repertoire. Cell 125, 978 

143-160. 979 

Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., and Garrity, 980 

P.A. (2008). An internal thermal sensor controlling temperature preference in 981 

Drosophila. Nature 454, 217-220. 982 

Hansel, D., and van Vreeswijk, C. (2012). The mechanism of orientation selectivity in 983 

primary visual cortex without a functional map. J Neurosci 32, 4049-4064. 984 

Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nat Rev 985 

Neurosci 4, 266-275. 986 

Hige, T., Aso, Y., Rubin, G.M., and Turner, G.C. (2015). Plasticity-driven individualization 987 

of olfactory coding in mushroom body output neurons. Nature 526, 258-262. 988 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Hussain, A., Zhang, M., Ucpunar, H.K., Svensson, T., Quillery, E., Gompel, N., Ignell, R., 989 

and Grunwald Kadow, I.C. (2016). Ionotropic Chemosensory Receptors Mediate the 990 

Taste and Smell of Polyamines. PLoS Biol 14, e1002454. 991 

Inada, K., Tsuchimoto, Y., and Kazama, H. (2017). Origins of Cell-Type-Specific Olfactory 992 

Processing in the Drosophila Mushroom Body Circuit. Neuron 95, 357-367 e354. 993 

Ito, K., Awano, W., Suzuki, K., Hiromi, Y., and Yamamoto, D. (1997). The Drosophila 994 

mushroom body is a quadruple structure of clonal units each of which contains a 995 

virtually identical set of neurones and glial cells. Development 124, 761-771. 996 

Jefferis, G.S., Potter, C.J., Chan, A.M., Marin, E.C., Rohlfing, T., Maurer, C.R., Jr., and Luo, 997 

L. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially 998 

segregated fruit and pheromone representation. Cell 128, 1187-1203. 999 

Jonas, E., and Kording, K. (2015). Automatic discovery of cell types and microcircuitry 1000 

from neural connectomics. Elife 4, e04250. 1001 

Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A., Knowles-Barley, 1002 

S., Lee, D., Vazquez-Reina, A., Kaynig, V., Jones, T.R., et al. (2015). Saturated 1003 

Reconstruction of a Volume of Neocortex. Cell 162, 648-661. 1004 

Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., 1005 

Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z., et al. (2014). Independent optical 1006 

excitation of distinct neural populations. Nat Methods 11, 338-346. 1007 

Knaden, M., Strutz, A., Ahsan, J., Sachse, S., and Hansson, B.S. (2012). Spatial 1008 

representation of odorant valence in an insect brain. Cell Rep 1, 392-399. 1009 

Kornfeld, J., and Denk, W. (2018). Progress and remaining challenges in high-throughput 1010 

volume electron microscopy. Curr Opin Neurobiol 50, 261-267. 1011 

Koulakov, A.A., Kolterman, B.E., Enikolopov, A.G., and Rinberg, D. (2011). In search of 1012 

the structure of human olfactory space. Front Syst Neurosci 5, 65. 1013 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Kremer, M.C., Christiansen, F., Leiss, F., Paehler, M., Knapek, S., Andlauer, T.F., Forstner, 1014 

F., Kloppenburg, P., Sigrist, S.J., and Tavosanis, G. (2010). Structural long-term changes 1015 

at mushroom body input synapses. Curr Biol 20, 1938-1944. 1016 

Kurtovic, A., Widmer, A., and Dickson, B.J. (2007). A single class of olfactory neurons 1017 

mediates behavioural responses to a Drosophila sex pheromone. Nature 446, 542-546. 1018 

Laissue, P.P., and Vosshall, L.B. (2008). The olfactory sensory map in Drosophila. Adv Exp 1019 

Med Biol 628, 102-114. 1020 

Laughlin, S. (1981). A simple coding procedure enhances a neuron's information 1021 

capacity. Z Naturforsch C Biosci 36, 910-912. 1022 

Lebreton, S., Borrero-Echeverry, F., Gonzalez, F., Solum, M., Wallin, E.A., Hedenstrom, 1023 

E., Hansson, B.S., Gustavsson, A.L., Bengtsson, M., Birgersson, G., et al. (2017). A 1024 

Drosophila female pheromone elicits species-specific long-range attraction via an 1025 

olfactory channel with dual specificity for sex and food. BMC Biol 15, 88. 1026 

Lee, T., Lee, A., and Luo, L. (1999). Development of the Drosophila mushroom bodies: 1027 

sequential generation of three distinct types of neurons from a neuroblast. 1028 

Development 126, 4065-4076. 1029 

Lee, W.C., Bonin, V., Reed, M., Graham, B.J., Hood, G., Glattfelder, K., and Reid, R.C. 1030 

(2016). Anatomy and function of an excitatory network in the visual cortex. Nature 532, 1031 

370-374. 1032 

Leiss, F., Groh, C., Butcher, N.J., Meinertzhagen, I.A., and Tavosanis, G. (2009). Synaptic 1033 

organization in the adult Drosophila mushroom body calyx. J Comp Neurol 517, 808-824. 1034 

Leitch, B., and Laurent, G. (1996). GABAergic synapses in the antennal lobe and 1035 

mushroom body of the locust olfactory system. J Comp Neurol 372, 487-514. 1036 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Li, P.H., Lindsey, L.F., Januszewski, M., Zheng, Z., Bates, A.S., Taisz, I., Tyka, M., Nichols, 1037 

M., Li, F., Perlman, E., et al. (2019). Automated Reconstruction of a Serial-Section EM 1038 

Drosophila Brain with Flood-Filling Networks and Local Realignment. 605634. 1039 

Lichtman, J.W., and Sanes, J.R. (2008). Ome sweet ome: what can the genome tell us 1040 

about the connectome? Curr Opin Neurobiol 18, 346-353. 1041 

Lin, A.C., Bygrave, A.M., de Calignon, A., Lee, T., and Miesenbock, G. (2014). Sparse, 1042 

decorrelated odor coding in the mushroom body enhances learned odor discrimination. 1043 

Nat Neurosci 17, 559-568. 1044 

Lin, H.H., Lai, J.S., Chin, A.L., Chen, Y.C., and Chiang, A.S. (2007). A map of olfactory 1045 

representation in the Drosophila mushroom body. Cell 128, 1205-1217. 1046 

Litwin-Kumar, A., Harris, K.D., Axel, R., Sompolinsky, H., and Abbott, L.F. (2017). Optimal 1047 

Degrees of Synaptic Connectivity. Neuron 93, 1153-1164 e1157. 1048 

Litwin-Kumar, A., and Turaga, S.C. (2019). Constraining computational models using 1049 

electron microscopy wiring diagrams. Curr Opin Neurobiol 58, 94-100. 1050 

Liu, Q., Yang, X., Tian, J., Gao, Z., Wang, M., Li, Y., and Guo, A. (2016). Gap junction 1051 

networks in mushroom bodies participate in visual learning and memory in Drosophila. 1052 

Elife 5. 1053 

Liu, W.W., Mazor, O., and Wilson, R.I. (2015). Thermosensory processing in the 1054 

Drosophila brain. Nature 519, 353-357. 1055 

Liu, X., and Davis, R.L. (2009). The GABAergic anterior paired lateral neuron suppresses 1056 

and is suppressed by olfactory learning. Nat Neurosci 12, 53-59. 1057 

MacQueen, J. (1967). Some methods for classification and analysis of multivariate 1058 

observations. Paper presented at: Proceedings of the fifth Berkeley symposium on 1059 

mathematical statistics and probability (Oakland, CA, USA). 1060 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Mansourian, S., and Stensmyr, M.C. (2015). The chemical ecology of the fly. Curr Opin 1061 

Neurobiol 34, 95-102. 1062 

Marr, D. (1969). A theory of cerebellar cortex. J Physiol 202, 437-470. 1063 

Meinertzhagen, I.A. (2010). The organisation of invertebrate brains: cells, synapses and 1064 

circuits.  91, 64-71. 1065 

Meinertzhagen, I.A. (2018). Of what use is connectomics? A personal perspective on the 1066 

Drosophila connectome. J Exp Biol 221. 1067 

Min, S., Ai, M., Shin, S.A., and Suh, G.S. (2013). Dedicated olfactory neurons mediating 1068 

attraction behavior to ammonia and amines in Drosophila. Proc Natl Acad Sci U S A 110, 1069 

E1321-1329. 1070 

Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K.M., and Chklovskii, D.B. 1071 

(2010). Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics 1072 

Perspective. Neuron 67, 1009-1020. 1073 

Murtagh, F., and Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering 1074 

Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification 31, 1075 

274-295. 1076 

Murthy, M., Fiete, I., and Laurent, G. (2008). Testing odor response stereotypy in the 1077 

Drosophila mushroom body. Neuron 59, 1009-1023. 1078 

Nern, A., Pfeiffer, B.D., and Rubin, G.M. (2015). Optimized tools for multicolor stochastic 1079 

labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl 1080 

Acad Sci U S A 112, E2967-2976. 1081 

Newman, M. (2018). 7. Measures and metrics. In Networks (Oxford University Press). 1082 

Ofstad, T.A., Zuker, C.S., and Reiser, M.B. (2011). Visual place learning in Drosophila 1083 

melanogaster. Nature 474, 204-207. 1084 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Olsen, S.R., and Wilson, R.I. (2008). Lateral presynaptic inhibition mediates gain control 1085 

in an olfactory circuit. Nature 452, 956-960. 1086 

Owald, D., and Waddell, S. (2015). Olfactory learning skews mushroom body output 1087 

pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol 35, 178-184. 1088 

Pehlevan, C., Genkin, A., and Chklovskii, D.B. (2017). A clustering neural network model 1089 

of insect olfaction. Paper presented at: Signals, Systems, and Computers, 2017 51st 1090 

Asilomar Conference on (IEEE). 1091 

Perisse, E., Burke, C., Huetteroth, W., and Waddell, S. (2013). Shocking revelations and 1092 

saccharin sweetness in the study of Drosophila olfactory memory. Curr Biol 23, R752-1093 

763. 1094 

Perisse, E., Owald, D., Barnstedt, O., Talbot, C.B., Huetteroth, W., and Waddell, S. 1095 

(2016). Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in 1096 

the Drosophila Mushroom Body. Neuron 90, 1086-1099. 1097 

Rigotti, M., Barak, O., Warden, M.R., Wang, X.J., Daw, N.D., Miller, E.K., and Fusi, S. 1098 

(2013). The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585-1099 

590. 1100 

Ronderos, D.S., Lin, C.C., Potter, C.J., and Smith, D.P. (2014). Farnesol-detecting olfactory 1101 

neurons in Drosophila. J Neurosci 34, 3959-3968. 1102 

Root, C.M., Semmelhack, J.L., Wong, A.M., Flores, J., and Wang, J.W. (2007). 1103 

Propagation of olfactory information in Drosophila. Proc Natl Acad Sci U S A 104, 11826-1104 

11831. 1105 

Scheffer, L.K., Xu, C.S., Januszewski, M., Lu, Z., Takemura, S.-y., Hayworth, K.J., Huang, 1106 

G.B., Shinomiya, K., Maitin-Shepard, J., Berg, S., et al. (2020). A Connectome and 1107 

Analysis of the Adult <em>Drosophila</em> Central Brain. 2020.2004.2007.030213. 1108 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Schlief, M.L., and Wilson, R.I. (2007). Olfactory processing and behavior downstream 1109 

from highly selective receptor neurons. Nat Neurosci 10, 623-630. 1110 

Schneider-Mizell, C.M., Gerhard, S., Longair, M., Kazimiers, T., Li, F., Zwart, M.F., 1111 

Champion, A., Midgley, F.M., Fetter, R.D., Saalfeld, S., et al. (2016). Quantitative 1112 

neuroanatomy for connectomics in Drosophila. Elife 5. 1113 

Schubert, M., Hansson, B.S., and Sachse, S. (2014). The banana code-natural blend 1114 

processing in the olfactory circuitry of Drosophila melanogaster. Front Physiol 5, 59. 1115 

Schürmann, F.-W. (1974). Bemerkungen zur funktion der corpora pedunculata im gehirn 1116 

der insekten aus morphologischer sicht. Experimental Brain Research 19, 406-432. 1117 

Seki, Y., Dweck, H.K.M., Rybak, J., Wicher, D., Sachse, S., and Hansson, B.S. (2017). 1118 

Olfactory coding from the periphery to higher brain centers in the Drosophila brain. 1119 

BMC Biol 15, 56. 1120 

Semmelhack, J.L., and Wang, J.W. (2009). Select Drosophila glomeruli mediate innate 1121 

olfactory attraction and aversion. Nature 459, 218-223. 1122 

Shomrat, T., Turchetti-Maia, A.L., Stern-Mentch, N., Basil, J.A., and Hochner, B. (2015). 1123 

The vertical lobe of cephalopods: an attractive brain structure for understanding the 1124 

evolution of advanced learning and memory systems. J Comp Physiol A Neuroethol Sens 1125 

Neural Behav Physiol 201, 947-956. 1126 

Silbering, A.F., Rytz, R., Grosjean, Y., Abuin, L., Ramdya, P., Jefferis, G.S., and Benton, R. 1127 

(2011). Complementary function and integrated wiring of the evolutionarily distinct 1128 

Drosophila olfactory subsystems. J Neurosci 31, 13357-13375. 1129 

Sporns, O., and Betzel, R.F. (2016). Modular Brain Networks. Annu Rev Psychol 67, 613-1130 

640. 1131 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Stensmyr, M.C., Dweck, H.K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, 1132 

V., Steck, K., Lavista-Llanos, S., et al. (2012). A conserved dedicated olfactory circuit for 1133 

detecting harmful microbes in Drosophila. Cell 151, 1345-1357. 1134 

Stevens, C.F. (2015). What the fly's nose tells the fly's brain. Proc Natl Acad Sci U S A 1135 

112, 9460-9465. 1136 

Stocker, R.F., Lienhard, M.C., Borst, A., and Fischbach, K.F. (1990). Neuronal architecture 1137 

of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262, 9-34. 1138 

Sugie, A., Marchetti, G., and Tavosanis, G. (2018). Structural aspects of plasticity in the 1139 

nervous system of Drosophila. Neural Dev 13, 14. 1140 

Suh, G.S., Wong, A.M., Hergarden, A.C., Wang, J.W., Simon, A.F., Benzer, S., Axel, R., and 1141 

Anderson, D.J. (2004). A single population of olfactory sensory neurons mediates an 1142 

innate avoidance behaviour in Drosophila. Nature 431, 854-859. 1143 

Takemura, S.Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., Rivlin, P.K., Hess, H., Zhao, T., 1144 

Parag, T., et al. (2017). A connectome of a learning and memory center in the adult 1145 

Drosophila brain. Elife 6. 1146 

Tanaka, N.K., Awasaki, T., Shimada, T., and Ito, K. (2004). Integration of chemosensory 1147 

pathways in the Drosophila second-order olfactory centers. Curr Biol 14, 449-457. 1148 

Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the Drosophila 1149 

mushroom body. J Comp Neurol 508, 711-755. 1150 

Technau, G., and Heisenberg, M. (1982). Neural reorganization during metamorphosis of 1151 

the corpora pedunculata in Drosophila melanogaster. Nature 295, 405-407. 1152 

Tsakiris, A., Koutinas, A.A., Psarianos, C., Kourkoutas, Y., and Bekatorou, A. (2010). A 1153 

new process for wine production by penetration of yeast in uncrushed frozen grapes. 1154 

Appl Biochem Biotechnol 162, 1109-1121. 1155 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


Turner, G.C., Bazhenov, M., and Laurent, G. (2008). Olfactory representations by 1156 

Drosophila mushroom body neurons. J Neurophysiol 99, 734-746. 1157 

van der Goes van Naters, W., and Carlson, J.R. (2007). Receptors and neurons for fly 1158 

odors in Drosophila. Curr Biol 17, 606-612. 1159 

Venken, K.J., Simpson, J.H., and Bellen, H.J. (2011). Genetic manipulation of genes and 1160 

cells in the nervous system of the fruit fly. Neuron 72, 202-230. 1161 

Wong, A.M., Wang, J.W., and Axel, R. (2002). Spatial representation of the glomerular 1162 

map in the Drosophila protocerebrum. Cell 109, 229-241. 1163 

Yagi, R., Mabuchi, Y., Mizunami, M., and Tanaka, N.K. (2016). Convergence of 1164 

multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster. 1165 

Sci Rep 6, 29481. 1166 

Yasuyama, K., Meinertzhagen, I.A., and Schurmann, F.W. (2002). Synaptic organization 1167 

of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445, 211-226. 1168 

Zhang, X., Coates, K., Dacks, A., Gunay, C., Lauritzen, J.S., Li, F., Calle-Schuler, S.A., Bock, 1169 

D., and Gaudry, Q. (2019). Local synaptic inputs support opposing, network-specific odor 1170 

representations in a widely projecting modulatory neuron. Elife 8. 1171 

Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D., Torrens, O., 1172 

Price, J., Fisher, C.B., Sharifi, N., et al. (2018). A Complete Electron Microscopy Volume 1173 

of the Brain of Adult Drosophila melanogaster. Cell 174, 730-743 e722. 1174 

 1175 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.17.047167doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.17.047167


KC claw

PN bouton

PN type A   PN type CPN type B  

KC

A BC
A

C
B

s.d. (null model)
observed – mean (null model)

z-score =

>= 8

6

3

0

-3

# of s.d.

A B C

A
B

C

K-means
clustering

olfactory 
receptor 
neurons

~120 PNs 
from ~50 glomeruli~2000 KCs

calyx

pedunculus

~ 34 
MB output neurons 
(MBON)

lobes

mushroom body (MB)

antennal lobe
(AL)

lateral horn
(LH)

Figure 1. Structured olfactory input to the mushroom body. 

A

output synapse
input synapse
PN bouton

22

9

13

30

21

23

B

C

food
aversive

pheromone

egg-laying

unknown

D

F

proportion of activated community PNs

er
ro

r r
at

e

classification performanceE

observed vs. random bouton model

>= 8
6

0
3

-3

# of s.d.



Figure 2.  Biased sampling of community PNs by KCs. 
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Figure 4. Arbor overlap between subsets of community PNs and KCs.
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