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Abstract  7 

Background 8 

Plant-derived natural products possess poly-pharmacologic 9 

mechanisms of action with good tolerability and thus are 10 

appropriate in the management of complex diseases, especially 11 

cancers. However, methodological limitations impede attempts 12 

to catalogue targeted processes and infer systemic mechanisms 13 

of action. Integrative systems biology approaches are better 14 

suited in these cases due to their analytical comprehensiveness. 15 

Method 16 

The transcriptome data from drug-treated breast cancer cell 17 

lines were mapped on human protein interactome to construct 18 

targeted subnetworks. The subnetworks were analysed in terms 19 

of enriched oncogenic signalling pathways by reducing 20 

redundancy through pathway-pathway interaction networks, 21 

and the filtered pathways were mapped on oncogenesis 22 

processes. 23 
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Results 1 

The signalling pathways regulated by the pleiotropic effects of 2 

Actein, Withaferin A, Indole-3-Carbinol and Compound 3 

Kushen were found to be projected on a set of oncogenesis 4 

processes at the transcriptomic level in different breast cancer 5 

subtypes (triple negative, luminal A and HER2+). Notably, 6 

these compounds indirectly regulated known oncogenes in the 7 

different subtypes through their associated pathways in the 8 

subnetworks. 9 

Conclusion 10 

The proposed approach infers the mechanisms of action from 11 

enriched subnetworks and oncogenic signalling pathways and 12 

provides a systematic approach for evaluating poly-13 

pharmacologic compounds.  14 

Background 15 

While reductionist-based approaches generated much of the 16 

drugs and drug targets known today, drug-human interactions 17 

are rather complex since the mechanism of action of most 18 

pharmacologically effective drugs results from the perturbation 19 

of multi-dimensional cellular networks1. Thus, a phenotypic 20 

change following a treatment is the result of regulation 21 

cascades covering various biomolecular interactions, which can 22 

be traced in omics scale1,2. Within this scope, several studies 23 

have utilized transcriptomic data to generate novel hypotheses 24 
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from drug perturbations in various diseases. In order to 1 

decipher meaningful information from such high-throughput 2 

perturbation data, novel computational approaches in the 3 

context of systems biology need to be applied2.  4 

Most cancers are driven by multiple genetic mutations and 5 

epigenetic dysregulations3,4 interconnected by biomolecular 6 

players. Breast cancer is the most prevalent form of cancer in 7 

women. Distinct subtypes have been defined for this cancer, 8 

and inter-group subtle genetic variations are known to exist. 9 

Owing to the understanding of the existence of somatic 10 

mutations that aggregate in a few signaling and regulatory 11 

pathways5, a number of small molecule targeted therapies have 12 

been developed for breast cancer in the last decade. However, 13 

treatment success rates above 40% are yet to be recorded6. A 14 

plausible explanation is the inherent oncogenic signaling 15 

pathway cross-talks and the bypass of targets by alternative 16 

activating pathways. This explicitly points to a need for multi-17 

targeted therapeutic approaches.  18 

Experimental evidences from separate molecular biology 19 

studies on the use of plant-based drugs in cancer cells have 20 

strongly suggested a multi-targeting therapeutic strategy. In 21 

fact, ancient civilizations relied on plant-based drugs due to 22 

their low systemic toxicities and ability to simultaneously treat 23 

multiple diseases7. Justifiably, current systems biology analyses 24 

through differential gene expression enumerations have 25 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.18.048454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.048454
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

confirmed similar observations. Yet, despite their observed 1 

anti-cancer effects, no attempt has been made to integrate 2 

transcriptome-level response to these drugs with molecular 3 

interaction networks to systemically evaluate the mechanism of 4 

action of these drugs. Emboldened by the idea that co-regulated 5 

and co-expressed biomolecules tend to converge on well-6 

defined biological pathways, we hypothesised that genes 7 

targeted by plant-based drugs form unique subnetworks; 8 

enriched with oncogenic signaling pathways critical in 9 

regulating information flow in response to drug treatment. To 10 

test such a hypothesis, we envisioned a framework for 11 

cataloguing all the molecular players in a perturbed subnetwork 12 

module and using the resulting observations to devise an 13 

approach for elucidating the mechanism of action of plant-14 

based compounds. 15 

Network biology is a holistic approach in systems biology to 16 

understand biological systems, where  biomolecules and their 17 

binary interactions are projected onto a graph to depict 18 

molecular relationships8. Nowadays, concurrent integration of 19 

experimentally-derived omics data with a priori interaction data 20 

is a common approach in systems biology to obtain context-21 

specific subnetworks9. To this end, a number of computational 22 

tools have been proposed by different groups to map and 23 

construct subnetworks from transcriptome data10 and applied to 24 

several diseases, including breast cancer11, hepatocellular 25 
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carcinoma12,13, liver fibrosis14 and neurodegenerative 1 

diseases15. 2 

In this study, we developed a data-centric computational 3 

framework for determining the mechanism of action of poly-4 

pharmacologic compounds as plant derived natural products. 5 

To demonstrate its application, we mapped the compound-6 

treated treated breast cancer transcriptome data (actein16, 7 

compound kushen injection (CKI)17, indole-3-carbinol18 and 8 

Withaferin A19) on protein interactome and constructed the 9 

underlying subnetworks, and used network topology metrics for 10 

validation. Subsequently, we performed pathway enrichment to 11 

extract enriched signalling pathways, which were used to 12 

define the mechanisms of action of each drug by constructing 13 

pathway interactomes and by mapping them on carcinogenesis 14 

processes. Overall, we showed that these compounds possess 15 

pleiotropic properties and targets oncogenic signaling pathways 16 

and carcinogenesis processes. Notably, we found that multiple 17 

perturbed oncogenic signaling pathways coordinate to control a 18 

common carcinogenesis process.  19 

 20 

Methods 21 

The computational analysis steps utilized in this study are 22 

summarized in Figure 1. 23 

Data acquisition 24 

We used a structured query statement to interrogate and 25 

download gene expression datasets for the breast cancer cell 26 

lines treated with withaferin A (GSE53049)19, actein 27 

(GSE7848)16, CKI (GSE78512)17 and indole-3-carbinol 28 
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(GSE55897)18 from the NCBI GEO depository. We selected 1 

these four plant-based drugs among others since the 2 

corresponding datasets had at least 3 control and 3 treatment 3 

groups, and there was a distinct separation between the control 4 

and treatment groups (tested using the unsupervised dimension 5 

reduction method, principal component analysis).  6 

Data processing and differential gene expression analysis 7 

The expression datasets included microarray expression 8 

profiles and RNA-seq counts and, therefore, platform specific 9 

protocols were followed. For the microarray derived datasets 10 

(withaferin A, actein and indole-3-carbinol), probeset mapping 11 

was performed by choosing the probe with the maximum 12 

average expression value among multiple probesets of a gene. 13 

For RNA-seq data (CKI), we selected only those genes with 14 

above zero counts in at least two samples in either control or 15 

treatment group. Overall, we log2 normalized all the pre-16 

processed datasets. Subsequently, we used LIMMA20 package 17 

in R to identify differentially expressed genes between the 18 

treated versus control (untreated) groups. We used Benjamini-19 

Hochberg p-value correction to control false discovery rates 20 

(FDR). Fold change and FDR cut-offs were simultaneously 21 

used to select differentially expressed genes. 22 

Active subnetwork scoring and construction using 23 

KeyPathwayMiner 24 
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The challenge of discovering most-connected drug specific 1 

subnetworks in the human protein-protein interaction network 2 

was solved using KeyPathwayMiner (KPM)21, one of the tools 3 

reported to have a high performance among subnetwork 4 

discovery methods10. In this approach, given a priori protein-5 

protein interaction network (PPIN), we were interested in a 6 

maximally connected clique based on a significance score. 7 

Hence, we treat this problem as an optimization problem with 8 

two main constraints: (i) the maximum allowable non-9 

differentially expressed genes, and (ii) the significance cut-off. 10 

In this work, we used the Cytoscape (v3.7.1) based KPM 11 

(v5.0.1) plugin.  12 

In our analysis, we made a few modifications to the input data 13 

and constraints as we describe next. We applied a uniform fold-14 

change cut-off of 2 and a varied FDR cut-off of 5 � 10�� (for 15 

indole-3-carbinol and withaferin A) or 1 � 10�� (for actein and 16 

CKI) to identify differentially expressed genes. Thus, our 17 

approach is strict; with the intention of reducing the rate of 18 

false positives and retaining only important features . These 19 

two cut-offs were used to assign binary values to all the genes 20 

in a dataset. Specifically, we used ‘1’ to denote differentially 21 

expressed genes based on our criteria, and ‘0’ for other genes.  22 

In the subnetwork construction, significantly changed and 23 

physically interacting proteins are used. These interconnected 24 

proteins essentially denote drug-targeted cellular pathways. We 25 
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allowed a maximum of 5 non-differentially expressed genes in 1 

each subnetwork solution, a parameter available in KPM. For 2 

the priori human PPIN, we used BioGRID22 (release 3.5.173; 3 

25th March, 2019) containing 22 435 proteins and 478 529 4 

interactions. 5 

Subnetwork analysis and prospective validation of high 6 

centrality genes 7 

Using CytoNCA (v2.1.6)23 Cytoscape plugin, we analysed two 8 

network topological features to identify the major genes in the 9 

subnetworks: degree and betweenness centrality. Next, we used 10 

the TCGA breast cancer RNA-Seq data to investigate the 11 

prognostic values of the top 5 (based on high degree and 12 

betweenness centrality) identified genes. Specifically, we used 13 

the online tool KM-Express24 to determine the effect of the 14 

identified genes on overall survival and their association with 15 

samples from normal, primary and metastatic cases. For the 16 

overall survival, the tool uses the median gene expression 17 

across all samples and a hazard ratio to infer statistical 18 

significance based on log-rank p-value. A p-value cut-off of 19 

0.05 was used in this study.  20 

Pathway enrichment analysis 21 

We used enrichR25 package in R to perform pathway 22 

enrichment analysis for the respective subnetwork nodes 23 

(genes). It takes pathway definitions from Kyoto Encyclopaedia 24 
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of Genes and Genomes (KEGG), WikiPathway, Reactome and 1 

Gene Ontology Biological Process (GO-BP) databases, among 2 

others. We limited our results to the enriched pathways with an 3 

FDR cut-off of 0.05 and containing the terms: ‘signal’, 4 

‘apoptosis’, and ‘cell cycle’. Also, those pathways with less 5 

than 3 associated genes were removed at this step.  6 

Construction of pathway-pathway interaction network 7 

Oncogenic signaling pathways do not function in isolation but 8 

are known to crosstalk with each other while redirecting 9 

cellular processes. Construction of pathway interaction 10 

networks has been previously applied to visually elaborate the 11 

pathway-pathway interrelationships and infer associated 12 

biological phenomenon26,27. On the other hand, since pathway 13 

enrichment via enrichR was based on multiple pathway 14 

databases, redundant pathways were inevitable in the 15 

enrichment results. Therefore, pathway-pathway similarity can 16 

also be used to identify redundant pathways. One approach to 17 

computationally enumerate such relationships is to evaluate the 18 

degree of pathway-pathway overlap based on gene similarities 19 

in any given two pathways. We used the Jaccard index; which 20 

is a measure of the similarity between a pair of sets. Here, 21 

given two pathways, ��  and �� , with enriched gene sets, �� and 22 

��, we computed the Jaccard index (�) using the formula below: 23 

����, ��� �
�������

�������
          (eq. 1) 24 
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This evaluates to the number of genes common in the two 1 

pathways divided by the total number of genes in both 2 

pathways without repeats. Hence, Jaccard index takes values 3 

between 0 and 1, and, using this metric, the proportional 4 

similarity between two pathways can be deduced. Here, we 5 

defined two pathways to be either in crosstalk or similar based 6 

on their Jaccard scores. We relied on a cut-off of 0.60 and 0.25 7 

to infer pathway redundancy and pathway crosstalk 8 

respectively. Since we used multiple pathway databases 9 

(KEGG, GO-BP, WikiPathways and Reactome pathway 10 

definitions) in our analysis, which increased the possibility of 11 

pathway redundancies, this approach allowed us to prioritize a 12 

family representative for redundant pathways, effectively 13 

eliminating sub-pathways originating from the same pathway 14 

database. To graphically illustrate the outcome of the Jaccard 15 

analysis and visually inspect the pathways for prioritization, we 16 

used the igraph R package28 to construct pathway-pathway 17 

interaction network as we describe later. The pathway 18 

definitions were used as the network nodes while a cut-off of 19 

0.25 was used to insert an edge between any pathways with at 20 

least 25% common genes. Furthermore, we used greedy 21 

optimization algorithm in igraph to define clusters in a 22 

pathway-pathway interaction network. 23 

Oncogenic signaling pathway inference 24 
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Using the pathway-pathway interaction networks, we applied a 1 

two-tier approach to infer biological significance. First, we 2 

relied on the 10 canonical oncogenic signaling pathways from 3 

the comprehensive pathway analysis by the TCGA Pan-Cancer 4 

Consortia29, which are cell cycle, Hippo, Myc, Notch, NRF2, 5 

PI-3-Kinase/Akt, RTK-RAS-MAPK, TGF-beta P53 and β-6 

catenin/Wnt signalling pathways. Among the terms identified 7 

in our enrichment analysis, we selected the terms that were 8 

semantically related to the aforementioned canonical pathways 9 

as drug-targeted signaling pathways. Subsequently, we grouped 10 

such terms into three broad clusters depicting the main cancer 11 

pathophysiologic processes: (i) cell cycle, proliferation and 12 

apoptosis, (ii) cell metastasis and invasion, and (iii) 13 

angiogenesis30.   14 

Results  15 

Construction of drug responsive protein interaction 16 

subnetworks from transcriptome data  17 

Breast cancer is molecularly classified into three main 18 

subtypes: luminal (A and B), triple negative and human 19 

epidermal receptor 2 positive (HER2+); based on hormone 20 

receptor and HER2 expression31. While the datasets used in this 21 

study included representative cell lines from the three subtypes, 22 

they differ on the transcriptomic platforms used to collect the 23 

data and the drug applied. Nevertheless, we believe that the 24 

approach applied here captures the systemic drug effects and is 25 
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enough to study the pleiotropic nature of plant derived drugs. 1 

We summarise these datasets in Supplementary Table 1. In 2 

general, our datasets include luminal A (T47D, MCF-7, 3 

ZR751), triple negative (MDA-MB-231, MDA-MB-157 and 4 

MDA-MB-436) and human epidermal receptor 2 positive 5 

(MDA-MB-468) breast cancer cell lines treated with at least 6 

one of indole-3-carbinol, Withaferin A, CKI and Actein. The 7 

Principal Component Analysis results showing separate 8 

grouping of treatment and control samples is available as 9 

Supplementary Figure 1. To identify drug affected genes, we 10 

performed differential gene expression analysis. We relied on 11 

fold change and FDR scores as cut-offs for significance; which 12 

were eventually used for data binarization for KPM analysis, as 13 

described in the Methods section. Corresponding numbers of 14 

differentially expressed genes are given in Supplementary 15 

Table 2. 16 

Network mapping and subnetwork scoring approaches have 17 

been extensively used in integrative biology field to discover 18 

active disease- and drug-specific modules in various 19 

experiments10,21,32,33. To elucidate the molecular effects of plant 20 

derived drugs in breast cancer, we constructed the active 21 

subnetworks from transcriptome data using 22 

KeyPathwayMiner32. Concurrently, using the same approach 23 

and parameters, we also constructed active subnetworks from 24 

the up- and down-regulated genes separately. The number of 25 
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proteins and their interactions for all the subnetworks solutions 1 

are reported in Table 1.  2 

Overall, we observed a compound- and breast cancer subtype-3 

specific number of proteins and their interactions. Thus, it is 4 

deducible that the different drugs studied had substantial 5 

differential effects on the activity of the underlying protein 6 

interaction networks in the disease conditions. With the 7 

differences in the number of targeted proteins, this deduction 8 

reinforces the dominant idea that no two drugs have a similar 9 

mechanism of action in complex diseases2,34. As expected, the 10 

role of molecular heterogeneity of the different breast cancer 11 

subtypes in drug response can be explicitly delineated from the 12 

sizes of the subnetworks. For instance, under indole-3-carbinol, 13 

in terms of the number of enriched genes, a relatively higher 14 

number was targeted by LA than TN, while the reverse was 15 

observed under Withaferin A treatment of LA and TN cell 16 

types (Table 1). The current drug research regime focusses on 17 

targeted therapy (famously defined as ‘magic bullets’)2,34. 18 

However, with the increasing acceptance of the poly-19 

pharmacologic paradigm as an effective approach in the 20 

treatment of complex diseases, our network analysis results 21 

indicate that the analysed compounds target multiple proteins 22 

simultaneously to exert their effects in a network-centric a 23 

multi-targeting mechanism. This observation would be 24 
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beneficial under disease conditions, particularly if the cohort of 1 

targeted proteins can be linked to or are known disease drivers.  2 

The drug-specific subnetworks capture key breast cancer 3 

carcinogenesis-related genes as revealed by prospective 4 

prognostic prediction using network topology analysis. 5 

An overarching question is whether the genes enriched in the 6 

subnetwork solutions have any significance in breast cancer 7 

prognosis. In therapeutic terms, effective anti-carcinogenic 8 

drug candidates are known to regulate a niche of known proto-9 

oncogenes in a disease network. To address this, network 10 

centrality measures can be used to identify topologically 11 

important target vertices (genes) in the subnetwork solutions35. 12 

In disease networks under compound perturbations, such genes 13 

are significantly enriched as a result of the condition 14 

(treatment) change. In this study, with the aim to prospectively 15 

validate the constructed subnetworks, we used CytoNCA23 to 16 

extract the top five genes based on both high betweenness and 17 

degree centralities from each subnetwork. The result from this 18 

analysis is reported in Table 2. Betweenness and degree 19 

centrality scores of all genes in the subnetworks are given in 20 

Supplementary Table 3. Subsequently, we analysed the top-21 

five genes by using the KM-Express24 tool for their association 22 

with overall survival and for their relationship with 23 

pathological stages (median expression in normal, tumor and 24 

metastasis states).  25 
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In general, we found 11 unique genes from all the subnetworks. 1 

Five of these genes (APP, TRIM25, ELAVL1, HNRNPL and 2 

ESR2) were found to be the most frequent across all 3 

subnetworks (Table 2). Since we had allowed the parameter 4 

� 	 5 in KPM-based subnetwork extraction, top five genes 5 

mainly consisted of non-significantly expressed but highly 6 

connected genes in response to treatment. Coincidentally, they 7 

had the highest betweenness centrality scores as well. Survival 8 

analysis found APP, TRIM25 and ELAVL1 to have significant 9 

associations with overall survival (log-rank p-value
 0.05) in 10 

breast cancer. Overexpression of APP and TRIM25 in cancer 11 

patients was associated with low overall survival and the 12 

reverse was true for ELAVL1 (Supplementary Figure 2a-c). 13 

In the literature, APP is a well-established cancer biomarker, a 14 

target of ADAM10, and has been strongly linked with breast 15 

cancer growth, metastasis and migration36. A comprehensive 16 

study identified TRIM25 as a key gene in regulating TN breast 17 

cancer metastasis37. ELAVL1 codes for an RNA binding 18 

protein controlling multiple facets of carcinogenesis, and 19 

literature reports show its over-expression to be associated with 20 

adverse-event free tumors38. Indeed, our current finding 21 

concurs that its low expression in cancer patients correlates 22 

with low overall survival and that over-expression may increase 23 

the patient overall survival. On the other hand, HNRNPL and 24 

ESR2, which have been reported to be associated with breast 25 
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cancer elsewhere39, were not significantly associated with 1 

patient survival at the median gene expression cut-off. 2 

However, further interrogation revealed their significant 3 

association with overall survival at 75% vs 25% (high vs low) 4 

and 75% gene expression cut-offs respectively 5 

(Supplementary Figure 2d-e). From Supplementary Figure 6 

2f-j, high expression levels of TRIM25 is associated with 7 

metastatic tumors while that of ELAVL1 is associated with 8 

primary tumors. The expression of APP, on the other hand, 9 

decreases in both primary and metastatic tumors., We found 10 

TRIM25 to be indirectly targeted by all the compounds, except 11 

in MDA-MB-231 under indole-3-carbinol (Figure 2). Also, 12 

under indole-3-carbinol treatment, APP was not present 13 

amongst the top-five genes in MDA-MB-231 and MDA-MB-14 

157, indicating a transcriptome deviation from the other 15 

TNBC-specific cell line, MDA-MB-436.  16 

These findings indicate that these plant-derived compounds 17 

target gene subnetworks driven by well-established oncogenes. 18 

Importantly, the plant-based compounds exert their effects not 19 

directly through the central oncogenes but by perturbing a high 20 

number of their first neighbours to modify the underlying 21 

physiological conditions. This protein-disease-prognosis 22 

consistency is a validation of the efficiency of the applied 23 

method to capture biologically informative protein networks 24 

and shows the effectiveness of the compounds in cancer, 25 
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permitting the constructed subnetworks as viable in hypothesis 1 

generation.  2 

Actein, indole-3-carbinol, CKI and Withaferin A target 3 

multiple oncogenic signaling pathways which coordinate to 4 

influence cellular processes. 5 

The current pharmacokinetics and pharmacodynamics studies 6 

are highly efficient in elucidating the mechanism of action of 7 

anti-microbial drugs. However, studies have consistently 8 

demonstrated that this simple framework is inefficient in 9 

addressing drug action in complex and multi-factorial disease 10 

systems. In such systems, limiting drug research to targeting 11 

single disease biomarkers is one of the main causes of drug 12 

failures in clinical trials 1,2,40. Drug induced reprogramming of 13 

cellular responses is directed through metabolic reactions, 14 

which are regulated by signaling pathways enormously 15 

enriched in protein-protein interactions. Thus, undeniably, 16 

studying drug effects on cellular pathways provides a holistic 17 

approach as to the molecular targets of drug candidates. Given 18 

the increased preference by tumors for only a handful number 19 

of such pathways, a sound anti-carcinogenic effect can thus be 20 

deduced by evaluating their activity upon treatment. A recent 21 

study evaluating oncogenesis related pathways based on gene 22 

profiling in various cancers29 provides a foundation for 23 

systemically evaluating the therapeutic relevance of drug-24 

responsive pathways upon treatment in various tumors. 25 
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The pleiotropic nature of plant-derived drugs in cancer is well 1 

anchored in literature7,41. However, linking drug targeted 2 

networks from transcriptome data with oncogenesis processes 3 

to study the mechanism of action of natural products as a 4 

holistic approach has not been explored systematically. Thus, 5 

we reasoned that taking such an approach would present a 6 

novel method to studying the poly-pharmacologic compounds. 7 

In this section, we aimed to comprehensively catalogue drug 8 

targeted oncogenic signaling pathways and their corresponding 9 

oncogenesis processes. In summary, the following procedure 10 

was followed: (i) pathway enrichment was applied to all the 11 

genes in a subnetwork, (ii) only oncogenic signaling pathways 12 

were retained, (iii) to identify and filter out redundant pathways 13 

coming from different databases, pathway-pathway correlation 14 

networks were constructed (iv) the final list of pathways were 15 

mapped on three major oncology related processes based on 16 

their semantic similarity to the 10 canonical oncogenic 17 

signalling pathways29 (see Methods section).  18 

As described in the methods section, we performed pathway 19 

enrichment analysis using the genes in each identified 20 

subnetwork. An important factor in this systemic approach is 21 

the interconnectivity of the proteins used in pathway 22 

enrichment analysis. Thus, it is obvious that the enriched 23 

pathways are connected due to the shared targeted-network 24 

proteins. To illustrate this, first we eliminated all those 25 
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pathways which were unrelated to cancer. Supplementary 1 

Table 4 and Supplementary Table 5 report the enriched 2 

pathways from this analysis. Then we constructed unweighted 3 

pathway-pathway interaction networks based on common 4 

proteins shared between different pathways. We relied on a 5 

Jaccard similarity index of at least 25% to denote pathway 6 

crosstalk (through intersecting genes) and represented this by 7 

placing an edge between them in the network. Figure 2a-b and 8 

Supplementary Figure 3a-g shows the networks of various 9 

drug targeted pathways from the four drugs studied. This 10 

clustering allowed us to (i) prioritise meaningful signaling 11 

pathway terms for mapping on oncogenesis processes thus 12 

reducing redundancy (the pathways with J>0.60), and (ii) 13 

illustrate pathway-pathway crosstalk (interdependence) in a 14 

drug-targeted network. We reckon that this approach is much 15 

simpler and precise compared to Chen et al.42’s gene overlap 16 

index approach for pathway prioritisation.  17 

We observed a characteristic clustering of related pathway 18 

terms across the various enrichment results. For instance, in the 19 

actein treated MDA-MB-453 dataset, we identified 10 pathway 20 

clusters out of 21 enriched pathways; only 5 of these (NRF2, 21 

Cell cycle, Apoptosis, Interferon signaling and TGF-beta) were 22 

identified as members of the defined oncogenic signaling 23 

pathways (see Methods). An examination of the various 24 

pathway clusters from all the datasets revealed two important 25 
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features: (i) the clustered pathways were either semantically 1 

related or from the same database with similar functions, as is 2 

the case of ‘NRF2’ and ‘Nuclear receptor meta-pathway’ 3 

pathways in Figure 2a (J>0.60, pathway redundancy), and (ii) 4 

the interacting pathways are well-known to interact in literature 5 

acting as sub-pathways through the activation of the main 6 

pathway, as is the case of ‘apoptosis’, ‘TNF’ and ‘IL17’ in 7 

Figure 2b (pathway crosstalk), which is expected43. The 8 

pathway-pathway interaction networks from the other datasets 9 

are reported in Supplementary Figure 3a-g. 10 

Next, to infer biological significance, we applied a two-tier 11 

approach. First, we relied on the predefined canonical 12 

oncogenic signaling pathways (see Methods section)29 for the 13 

concise terms. Additionally, though not captured in the 14 

TCGA29 analysis of the most frequently mutated canonical 15 

oncogenic signaling pathways since it is a response mechanism 16 

to foreign system, the role of the immune system signaling as a 17 

secondary response mechanism in cancer is significant and can 18 

be attributed to the inhibition/promotion of tumor initiation and 19 

metastasis in advanced cases. Thus, immune system related 20 

pathway terms were also included in the analysis results based 21 

on the known physiological roles of both the pathways and 22 

their enriched genes. Subsequently, we used pathway 23 

enrichment analysis results from the up-/down-regulated 24 

subnetworks (Supplementary Table 5) to assign these 25 
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pathways as either up- or down-regulated. Eventually, with 1 

clear pathway clusters and only canonical-signaling-pathways 2 

relevant non-redundant terms, we mapped the resulting 3 

pathway terms on the three categories derived from major 4 

oncogenesis processes: (i) cell cycle, proliferation and 5 

apoptosis, (ii) cell metastasis and invasion, and (iii) 6 

angiogenesis. However, given the overlapping roles different 7 

pathways perform in biological systems, deciphering the 8 

affected processes is not straightforward. Therefore, to assign a 9 

pathway to either of the three groups, we looked up for the 10 

functional role(s) of the associated genes (both up- and down- 11 

regulated) in UniProtKB44 database. To deduce the targeted 12 

biological processes, we relied on those genes whose molecular 13 

functions match the biological roles of the pathways provided 14 

in literature. Table 3 details the results of this grouping. To 15 

illustrate this approach, we provide a detailed description of the 16 

grouping as applied to the actein treated MDA-MB-453 cell 17 

line in Supplementary Table 6 using enrichment results from 18 

Supplementary Table 5 and the pathway-pathway interaction 19 

networks (Figure 2a, b and Supplementary Figure 3a-g). 20 

Discussion 21 

Systems pharmacology has evolved as a data-driven approach 22 

to bridge the gap between the increasing amounts of 23 

compound/drug perturbation data and drug discovery through 24 

systematic evaluations34,45. It gives new perspectives to 25 
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drug/compound treated clinical and experimental publicly 1 

available omics data through well-grounded bioinformatics data 2 

analysis pipelines, speeding up the rate of understanding of the 3 

molecular mechanisms of action to identify targets of drug 4 

candidates1,2,46. In this study, we developed and implemented a 5 

computational analysis framework that relies on mapping 6 

transcriptome data on protein interactome and constructing 7 

targeted subnetworks, and subsequent mapping of enriched 8 

pathways in the subnetworks on carcinogenesis processes 9 

(Figure 1). For poly-pharmacologic compounds, this approach 10 

projects the cellular behaviour in response to treatment on a 11 

physical interaction network; thereby, simplifying inference of 12 

mechanism of action from omics data. Next, we discuss the 13 

main findings with literature evidences on the studied 14 

compounds. 15 

Actein is a widely studied natural triterpene glycoside that has 16 

recently attracted attention in breast cancer due to its effects on 17 

various biological processes in cancer16,47–49. In this study, cell 18 

death and cell cycle roles of TGF-beta, PI3K-Akt-mTOR and 19 

NRF2 pathways were up-regulated while proliferation roles of 20 

TGF-beta pathway were down-regulated. Additionally, tumor 21 

microenvironment regulation through interferon signaling 22 

pathway was down-regulated (Table 3). Available reports on 23 

breast and other cancers indicate that actein targets cell 24 

apoptosis48,50, cell adhesion49 and migration49,50. This analysis 25 
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showed actein to target oncogenic signalling pathways mainly 1 

regulating cell cycle, proliferation and apoptosis processes in 2 

this cell type. 3 

CKI is an ancient formulation in the Chinese pharmacopoeia; 4 

derived from a mixture of Radix sophorae flavescentis and 5 

Rhizoma smilactis glabrae herbs. Mixed results have been 6 

reported in breast cancer 51. Here, we found CKI to down-7 

regulate P53 pathway which is in line with a previous 8 

observation of P53 independent apoptotic cell death17, and up-9 

regulate RTK-RAS-MAPK (EGFR, p38 and ErbB), PI3K-Akt-10 

mTOR, NRF2 and TGF-beta pathways in MCF-7. These 11 

pathways regulate cell proliferation and apoptosis (P53, RTK-12 

RAS-MAPK, PI3K-Akt-mTOR and NRF2) and 13 

metastasis/invasion (TGF-beta). Moreover, CKI also targets 14 

angiogenesis and tumor microenvironment regulating pathways 15 

through VEGFA/VEGFR2 and cytokine signaling (B cell 16 

receptor, T cell receptor and FC-epsilon signaling) respectively 17 

(Supplementary Table 5), which is consistent with a previous 18 

finding52. Other reports have shown that CKI directly regulates 19 

cell migration53; and apoptosis in breast cancer52. Cell cycle, 20 

proliferation and apoptosis, metastasis/invasion, and 21 

angiogenesis were the main targeted carcinogenesis processes 22 

in this cell line (Table 3). 23 

Indole-3-carbinol is a phytohormone derived from cruciferous 24 

vegetables and is a breakdown product of glucosinate 3-25 
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ylmethylglucosinate compound. Its therapeutic effectiveness is 1 

well defined in oestrogen receptor driven cancers54,55. In LA 2 

cell types, we mapped the pathways on cell proliferation and 3 

apoptosis (Wnt, cell cycle, Notch and TGF-beta) and 4 

invasion/metastasis (TGF-beta, Wnt and Notch). 5 

Characteristically, TGF-beta regulating metastasis/invasion was 6 

down-regulated in T47D and MCF-7 while its cell death 7 

promoting role was up-regulated in T47D and down-regulated 8 

in ZR751 (Table 3 and Supplementary Table 5). All the three 9 

categories of carcinogenesis processes were targeted (Table 3). 10 

The role of indole-3-carbinol on TN is less studied, however 11 

low efficacy in this subtype has been noted18. Accordingly, 12 

here no oncogenic signaling pathway was enriched in the 13 

MDA-MB-157 subnetwork; illustrating an indole-3-carbinol -14 

specific non-responsive subtype. This tumor subtype is known 15 

to be resistant to most chemotherapeutic interventions56. 16 

Nonetheless, more MDA-MB-436 signaling pathways were 17 

targeted by indole-3-carbinol than in MDA-MB-231 subtype 18 

(Supplementary Table 5); and they control carcinogenesis 19 

through cell cycle, proliferation and apoptosis, 20 

metastasis/invasion, and angiogenesis processes (Table 3). 21 

Withaferin A is a steroidal lactone belonging to the withanolide 22 

group of compounds derived from Withania somnifera. It is a 23 

vital component of the Indian Ayurvedic medicine. The 24 

characteristic anti-cancer effects of Withaferin A is well 25 
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anchored scientific reports57–60 and specifically in breast 1 

cancer19,58,61,62. Here, RTK-RAS-MAPK, TGF-beta, NRF2 and 2 

P53 oncogenic signaling pathways were targeted in both TN 3 

and LA. Tumor subtype specificity on Wnt, Notch, VEGFA-4 

VEGFR2 and PI3K-Akt-mTOR in TN and cytokines in LA 5 

were observed (Table 3). Moreover, cytokine mediated 6 

signaling in both cells was also targeted. The up-regulation of 7 

NRF2 pathway genes as observed is consistent with in vivo 8 

findings of induced oxidative stress in the two cell lines58,63. 9 

These results illustrated multi-targeting of several 10 

carcinogenesis processes, including cell proliferation and death, 11 

metastasis/invasion and angiogenesis (Table 3) in both TN and 12 

LA associated with phenotypes reported in in vitro 13 

studies19,58,61,62,64. 14 

Whereas this work attempts to associate the various targeted 15 

networks with carcinogenesis processes to explain the 16 

mechanism of action of poly-pharmacologic compounds, a 17 

major limitation arises on enumerating their therapeutic values. 18 

For instance, enrichment of a pathway in either up- or down-19 

regulated subnetworks may not necessarily be directly 20 

translated as activation or inactivation of the related pathway-21 

defined cellular process, as the same process may be targets of 22 

other co-/dys-regulated pathways by the same drug. However, 23 

the in vitro reports on the activity of different drugs on cell 24 

lines16–19 provides a validation for the current study. To 25 
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increase the robustness of this approach, we propose future 1 

integration of more omics data to provide a more precise 2 

picture on the exact mechanism of action of natural products65.  3 

Another challenge experienced in this approach is the un-4 

directionality of protein interactomes. Thus, given the inherent 5 

directionality in signalling pathways, our future studies will 6 

incorporate directed networks from an ensemble of databases, 7 

by drawing on their comprehensiveness to construct all-8 

inclusive interaction networks.  9 

Additionally, given the poly-pharmacologic properties found 10 

here, simulations on the effect of different combinations to 11 

determine synergistic and antagonistic combinations and side-12 

effects would provide more information. Regan-Fendt et al.66 13 

recently developed a computational drug combination analysis 14 

using transcriptome data and disease specific root genes for 15 

malignant melanoma and successfully predicted vemurafenib 16 

and tretinoin as synergistic therapeutic combinations. Variants 17 

of this approach, for instance, modelling the active drug 18 

subnetworks using deep learning, could be applied to 19 

systematically predict combinations and side-effects for 20 

precision medicine applications in complex diseases 40,45. 21 

Conclusion 22 

This study generated two main outputs: (i) proposed a data-23 

driven framework for elucidating the mechanism of action of 24 
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pleiotropic natural products using transcriptome data and 1 

protein interactome and (ii) demonstrated that plant-derived 2 

drugs (actein, indole-3-carbinol, withaferin A and CKI) are 3 

capable of simultaneously regulating multiple carcinogenesis 4 

processes in breast cancer. Thus, network-centric methods can 5 

extract subtle systemic drug effects on cellular pathways and 6 

provides a better approach to the abortive exquisite ‘target’ 7 

approach in studying poly-pharmacologic compounds. 8 

Although breast cancer dataset was used to prove the concept, 9 

the approach can also be applied on other cancers. We 10 

anticipate that the proposed framework will be instrumental in 11 

accelerating evaluation of poly-pharmacologic compounds for 12 

applications in oncology precision medicine and other complex 13 

diseases. 14 

  15 
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 11 

Legends 12 

Figures 13 

Figure 1: Computational analysis workflow applied in this 14 

study. The approach is centred on three main analysis sections: 15 

data mining, subnetwork discovery and pathway inference. 16 

PCA: Principal component analysis, FDR: False discovery rate, 17 

FC: Fold change, KPM: KeyPathwayMiner  18 

Figure 2: Pathway-pathway interaction networks under Actein 19 

(MDA-MB-453 cell line) and Withaferin A (MDA-MB-231 20 

cell line) treatments. The network nodes represent individual 21 

pathways while the coloured clusters represent both pathway 22 

crosstalk and similarity. Pathway-pathway crosstalk (Jaccard 23 

Index) ≥0.25. 24 
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Supplementary Figures 1 

Supplementary Figure 1: Principal component analysis 2 

(PCA) results of transcriptome samples for each dataset 3 

illustrating the distribution of variance in the first two 4 

components considered for sample separation. PC1: principal 5 

component 1, PC2: principal component 2. (a) actein on MDA-6 

MB-453, (b) CKI on MCF-7, (c) Indole-3-Carbinol on MCF-7, 7 

(d) Indole-3-Carbinol on MDA-MB-231, (e) Indole-3-Carbinol 8 

on MDA-MB-436, (f) Indole-3-Carbinol on T47D, (g) Indole-9 

3-Carbinol on ZR751, (h) Withaferin A on MCF-7 and (i) 10 

Withaferin A on MDA-MB-231. 11 

Supplementary Figure 2: Prospective validation plots of most 12 

frequent central genes in the subnetworks. a-e) Overall survival 13 

plots showing bifurcate (APP, ELAVL1 and TRIM25), 75% vs 14 

25% (HNRNPL) and 75% (ESR2) gene expression in relation 15 

to patient overall survival across TCGA breast cancer datasets. 16 

‘High’ and ‘Low’ denotes patient cohorts with high median 17 

gene expression over the follow-up period.  Logrank (p-value) 18 


 0.05. f-j) Box-plots showing gene-phenotype (primary, 19 

normal and metastatic) association. 20 

Supplementary Figure 3: Pathway-pathway interaction 21 

networks based on shared enriched genes illustrating functional 22 

pathway cross-talk. The differently coloured clusters illustrate 23 

highly related pathways terms based on intersecting pathways. 24 

a-g: represents networks of pathways targeted by CKI on MCF-25 
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7, I3C on MCF-7, I3C on MDA-MB-436, I3C on T47D, I3C on 1 

ZR751 and WA on MCF-7.     2 

Tables 3 

Table 1: Summary of topological structure of subnetwork 4 

solutions indicating the number of proteins and their 5 

interactions in each dataset studied. CKI: Compound kushen 6 

injection, I3C: Indole-3-carbinol and WA: Withaferin A 7 

Table 2: Top 5 genes from the subnetworks for each dataset 8 

based on their betweenness and degree centrality scores. The 9 

genes are labelled using their respective universal identifiers. 10 

ACT: Actein, CKI: Compound kushen injection, I3C: Indole-3-11 

carbinol, and WA: Withaferin A. 12 

Table 3: Grouping of targeted canonical oncogenic signaling 13 

pathways based on related cancer pathophysiologic processes. 14 

Three major oncological processes defining the diverse 15 

molecular processes associated with carcinogenesis were used 16 

to deduce biological roles of the various enriched oncological 17 

signaling pathways. The enriched pathways in up-/down-18 

regulated subnetworks were used to guide the assignment of the 19 

pathways in the up and down categories. 20 

Supplementary Tables 21 

Supplementary Table 1: Summary of the transcriptome 22 

datasets used and the molecular profiles of the cell lines. The 23 

columns Controls and Treatments list the number of samples in 24 
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each case. (HER2+: human epidermal receptor 2 positive, LA: 1 

luminal A, TN: triple negative, AC: adenocarcinoma, IDC: 2 

invasive ductal carcinoma, MC: medullary carcinoma, Wt: wild 3 

type, Mut: Mutant, Del: deleted). 4 

Supplementary Table 2: Summary of the differential 5 

expression analysis results. The number of differentially 6 

expressed genes under the respective plant-derived 7 

drugs/compounds are given in the table. DEG: Differentially 8 

expressed genes, FDR: False discovery rate, FC: Fold change. 9 

Supplementary Table 3: Results of subnetwork betweenness- 10 

and degree centrality analysis.  11 

Supplementary Table 4: Pathways enriched in whole 12 

subnetworks. FDR <0.05. 13 

Supplementary Table 5: Enriched pathways in up- and down-14 

regulated subnetworks. FDR <0.05. 15 

Supplementary Table 6: An example of Actein targeted 16 

oncogenesis processes illustrating the approach used in 17 

grouping the oncogenic signaling pathways into different 18 

cancer pathophysiological processes based on the pathways’ 19 

enriched genes. 20 

 21 

Additional Information 22 

Ethics approval and consent to participate 23 
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a) CKI on MCF-7
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b) I3C on MCF-7
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c) I3C on ZR751
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d) I3C on T47D
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e) I3C on MDA-MB-436

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.18.048454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.18.048454
http://creativecommons.org/licenses/by-nc-nd/4.0/


f) I3C on MDA-MB-231
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g) WA on MCF-7
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Table 1: Summary of topological structure of subnetwork solutions indicating the 
number of proteins and their interactions in each dataset studied. CKI: Compound 
kushen injection, I3C: Indole-3-carbinol and WA: Withaferin A 

Drugs Cell Lines Genes  Interactions  Genes  Interactions 

Actein MDA-MB-453 829 3858 Up 327 687 
  Down 455 2166 

CKI MCF-7 1332 9331 Up 933 2838 
  Down 304 1676 

I3C MCF-7 1974 10684 Up 453 1162 
  Down 1399 6816 

T47D 1681 7050 Up 620 1324 
  Down 959 3254 

ZR751 1403 5457 Up 545 1105 
  Down 961 6323 

MDA-MB-231 93 126 Up 17 17 
  Down 86 111 

MDA-MB-157 86 110 Up 18 19 
  Down 75 106 

MDA-MB-436 541 1275 Up 98 120 
  Down 402 932 

WA MCF-7 333 941 Up 117 353 
  Down 202 564 

MDA-MB-231 998 3277 Up 456 1011 
  Down 480 1208 
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Table 2: Top 5 genes from the subnetworks for each dataset based on their betweenness 
and degree centrality scores. The genes are labelled using their respective universal 
identifiers. ACT: Actein, CKI: Compound kushen injection, I3C: Indole-3-carbinol, and WA: 
Withaferin A 
ACT 

(MDA453) 

CKI 

(MCF-7) 

I3C 

(MCF-7) 
I3C 

(MDA-MB-

157) 

I3C 

(MDA-MB-

231) 

I3C 

(MDA-MB-

436) 

I3C 

(T47D) 
I3C 

(ZR751) 
WA 

(MCF-7) 

WA 

(MDA-MB-

231) 

APP ELAVL1 TRIM25 HNRNPL HNRNPL HNRNPL HNRNPL HNRNPL APP TRIM25 

TRIM25 HNRNPL ELAVL1 ESR2 ELAVL1 TRIM25 TRIM25 TRIM25 TRIM25 ELAVL1 

ELAVL1 APP ESR2 TRIM25 ESR2 ESR2 ELAVL1 ELAVL1 ESR2 APP 

ESR2 TRIM25 HNRNPL CUL3 CUL3 ELAVL1 ESR2 APP ELAVL1 RNF4 

HNRNPL RNF4 APP BAG3 CDH1 APP APP RNF4 HNRNPL NXF1 
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Table 3: Grouping of targeted canonical oncogenic signaling pathways based on related 
cancer pathophysiologic processes. Three major oncological processes defining the diverse 
molecular processes associated with carcinogenesis were used to deduce biological roles of 
the various enriched oncological signaling pathways.  
 
 
 
Drug 

Carcinogenesis process 
Cell Line Activity Cell cycle/Proliferation and 

Apoptosis 
Metastasis and 
invasion  

Angiogenesis 

ACT MDA-
MB- 453 

Down Intrinsic Pathway for 
Apoptosis 
PTK6 Regulates Cell Cycle 
Interferon Signaling 

- - 

Up PI3K-Akt-mTOR 
NRF2 pathway  
TGF-beta Signaling Pathway  

- - 

CKI MCF-7 Down p53 signaling pathway 
regulation of intrinsic 
apoptotic signaling pathway  

- - 

Up PI3K-AKT-mTOR signaling 
pathway and therapeutic 
opportunities 
EGF/EGFR Signaling 
Pathway 
NRF2 pathway 
Fc epsilon RI signaling 
pathway 
T cell receptor signaling 
pathway 
B cell receptor signaling 
pathway 

Canonical and 
Non-Canonical 
TGF-B signaling 
 

VEGFA-
VEGFR2 
Signaling 
Pathway  

WA MCF-7 Down p53 signaling pathway 
NF-kB activation through 
FADD/RIP-1 pathway 
mediated by caspase-8 and -
10 
Interferon Signaling 
Cytokine Signaling in 
Immune system 

- TGF-beta 
Signaling 
Pathway 
 

Up NRF2 pathway 
MAPK Signaling Pathway 
p53 signaling pathway 
intrinsic apoptotic signaling 
pathway 

- - 

MDA-
MB-231 

Down NRF2 pathway 
MAPK signaling pathway 
ErbB Signaling Pathway 
p53 signaling pathway 
TGF-beta Signaling Pathway 
Notch Signaling Pathway 
IL-4 Signaling Pathway 
IL17 signaling pathway 

TCF dependent 
signaling in 
response to WNT 
 

- 

Up PI3K-Akt Signaling Pathway 
Interferon Signaling 
TNF signaling pathway 

Inflammatory 
Response Pathway  
 

VEGFA-
VEGFR2 
Signaling 
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Pathway 
Notch (U) 
TGF-beta 
Signaling 
Pathway  

I3C MCF-7 Down TP53 Regulates 
Transcription of Cell Cycle 
Genes 
Signaling by EGFR 
Apoptosis 
PI3K-AKT-mTOR signaling 
pathway and therapeutic 
opportunities 
MAPK Signaling Pathway 
Wnt Signaling Pathway and 
Pluripotency  
T-Cell Receptor and Co-
stimulatory Signaling 
TNF alpha Signaling 
Pathway 

TGF-beta 
Receptor 
Signaling 
 

- 

Up Apoptosis 
regulation of cell cycle 

- - 

T47D Down Cell Cycle, Mitotic 
ErbB Signaling Pathway 
PI3K-Akt Signaling Pathway 
Chemokine signaling 
pathway 
 

Signaling by 
NOTCH1 in 
Cancer 
Wnt Signaling 
Pathway and 
Pluripotency 
TGF-beta 
Signaling Pathway 

VEGFA-
VEGFR2 
Signaling 
Pathway 
PDGF 
Pathway 

Up RIG-I-like Receptor 
Signaling 
Apoptosis 
MAPK Signaling Pathway 
Interferon gamma signaling 
TGF-beta Signaling Pathway 

- - 

ZR751 Down EGF/EGFR Signaling 
Pathway 
Notch Signaling Pathway 
TGF-beta Signaling Pathway 
regulation of apoptotic 
process 
Negative regulators of RIG-
I/MDA5 signaling 

Wnt Signaling 
Pathway and 
Pluripotency 
 

VEGFA-
VEGFR2 
Signaling 
Pathway 

Up Interferon Signaling 
NRF2 pathway 
Apoptosis 
MAPK Signaling Pathway 

- - 

MDA-
MB-231 

Down - Pathways 
Regulating Hippo 
Signaling 

VEGFA-
VEGFR2 
Signaling 
Pathway 

Up NRF2 pathway - - 

MDA-
MB-436 

Down ErbB Signaling Pathway Wnt Signaling PDGF(D) 
TGF-beta 
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PI3K-Akt Signaling Pathway 
MAPK Signaling Pathway 

Pathway and 
Pluripotency 
Hippo(D) 
T-Cell Receptor 
and Co-
stimulatory 
Signaling 

Signaling 
Pathway 

Up Apoptosis-related network 
due to altered Notch3 in 
ovarian cancer 
TGF-beta Signaling Pathway 
Activated TLR4 signalling 

- - 
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