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Abstract 15 

Shape analysis has been widely used in digital image processing and computer vision, but they have not 16 

been utilized to compare the structural characteristics of the human association pathways. Here we used 17 

shape analysis to derive length, area, volume, and shape metrics from diffusion MRI tractography and 18 

utilized them to study the human association pathways. An augmented fiber tracking combined with 19 

automatic segmentation was used to improve reproducibility in tractography. The reliability analysis 20 

showed that shape descriptors achieved moderate to good test-retest reliability. Further analysis on 21 

association pathways showed left dominance in the arcuate fasciculus, cingulum, uncinate fasciculus, 22 

frontal aslant tract, and right dominance in the inferior fronto-occipital fasciculus and inferior longitudinal 23 

fasciculus. The superior longitudinal fasciculus has a mixed lateralization profile with different metrics 24 

showing either left or right dominance. The analysis of between-subject variations shows that the overall 25 

layout of the association pathways does not variate a lot across subjects, as shown by low between-26 

subject variation in length, span, diameter, and radius. In contrast, the area of the pathway innervation 27 

region has a considerable between-subject variation. A follow-up analysis is warranted to thoroughly 28 

investigate the nature of population variations and their structure-function correlation. 29 

Keywords: diffusion MRI, tractography, automatic fiber tracking, shape analysis, shape descriptor.  30 
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Introduction 31 

Deciphering the structural layout of the human brain has been a challenging goal to understand how 32 

structure defines the brain function (DeFelipe, 2010). The first connectome study identified structural 33 

connection using diffusion MRI fiber tracking (Sporns et al., 2005) and formulated brain connections as 34 

a graph to reveal the network topology (Bullmore and Sporns, 2009). Further studies have correlated 35 

structural connectivity with brain function in the healthy population or disease population (Fornito et al., 36 

2015). The network analysis tackled the structure-function correlation from a panoramic view, but the 37 

shape characteristics and topological pattern of the connecting bundles were mostly ignored, particularly 38 

the association pathways in the human brain that control most of the cognitive functions. While there are 39 

existing shape analysis studies focused on specific applications, (Corouge et al., 2004; Glozman et al., 40 

2018; Kitchell et al., 2018), there is yet a comprehensive study utilizing shape analysis to investigate the 41 

structural characeteristics of the human association pathways. 42 

Here we aim to bridge this information gap by applying a comprehensive shape analysis, including length, 43 

area, volume, and shape metrics, to investigate the shape characteristics of the human association 44 

pathways. Shape analysis has been widely used in computer vision in a variety of applications to achieve 45 

imaging understanding of an object (Costa and Cesar Jr, 2000). The analysis provides the “shape 46 

descriptor”—a quantitative measurement that describes one part of the shape characteristics as length, 47 

area, and volume. Leveraging shape analysis to investigate tractography, however, faces two technical 48 

challenges. First, the existing shape analysis is designed for 2D pixel-based or 3D voxel-based images, 49 

whereas tractography is a set of coordinate sequences plotting the simulated routes of brain connections. 50 

The definition of shape descriptors, such as length, area, and volume metrics, requires a substantial 51 

revision to fit into the tractography context. Second, the reproducibility of tractography has long been an 52 
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ongoing issue (Rheault et al., 2020). Without a reliable and reproducible tractography input, the result of 53 

shape analysis will be meaningless due to “garbage in, garbage out.”  54 

In this study, we first tackled the reproducibility issue using “parameter saturation,” a strategy that 55 

saturates parameter space by using millions of parameter combinations instead of a simple parameter 56 

setting for the tractography. Then we combined fiber tracking with an automatic segmentation method 57 

based on an expert-vetted tractography atlas (Yeh et al., 2018) to isolate target pathways and exclude 58 

irrelevant or false connections. After segmentation, we applied an automatic pruning method called 59 

topology-informed pruning (Yeh et al., 2019) to eliminate possible false connections. We integrated these 60 

three strategies to map 14 association pathways on a test-retest dataset from the human connectome 61 

projects (n=44).  62 

Then we introduced the shape descriptors for the tractography. Figure 1 illustrates the calculation using 63 

the left arcuate fasciculus as an example. Figure 1a shows the quantification of the length metrics, 64 

including length, span, diameters of the bundle, and radius of the innervation regions. Figure 1b shows 65 

the area metrics, including the area of the entire track surface and area of the two end surfaces. Figure 66 

1c shows the volume metrics, including total track volume and trunk volume. Based on these metrics, we 67 

further derived “shape metrics,” which are unit free indices, including curl, elongation, and irregularity, to 68 

describe the shape characteristics of the association pathways. We examined the reliability of these 69 

metrics using the intra-class correlations. This reliability results allowed us to ignore findings with poor 70 

reproducibility to ensure the robustness of the results. Then we derived the distribution of shape 71 

descriptors to reveal their left-right asymmetry and between-subject variations for the association 72 

pathways.  73 
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Material and Methods  74 

MRI acquisitions 75 

The test-retest diffusion MRI data were acquired by the Human Connectome Project database (WashU 76 

consortium)(Glasser et al., 2016). A total of 44 subjects had repeat diffusion MRI scans. 24 of them were 77 

female, and 20 of them were male. The age range was 22- to 35-year-old, and the average age was 30.3. 78 

Only one subject was left-handed. The data were acquired using a multishell diffusion scheme with three 79 

b-values at 1000, 2000, and 3000 s/mm2. Each shell had 90 sampling directions. The spatial resolution 80 

was 1.25 mm isotropic. The acquisition parameters are detailed in the consortium paper (Glasser et al., 81 

2016). 82 

Diffusion MRI Fiber tracking 83 

The diffusion data were first rotated and interpolated to the ICBM2009 T1W space at 1mm. Here the 84 

rotation used a rigid-body transformation without a nonlinear deformation so that the shape features were 85 

preserved. The b-table was also rotated accordingly. The purpose of this spatial transformation was to 86 

facilitate a direct comparison of the tractography between the repeat scans. The rotated data were then 87 

reconstructed using generalized q-sampling imaging (Yeh et al., 2010) with a diffusion sampling length 88 

ratio of 1.7. The b-table was checked by an automatic quality control routine to ensure its accuracy 89 

(Schilling et al., 2019).  90 

We mapped 14 association pathways, including the left and right arcuate fasciculus (AF), cingulum (C). 91 

frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), 92 

superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF). The SLF here included “SLF II” and 93 

“SLF III,” as they often form a continuous sheet structure together. “SLF I” was not included because it is 94 

often separated from the other two SLF bundles and closely sided with cingulum. The starting region of 95 
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the fiber tracking (a.k.a. the seeding region) was defined using the corresponding white matter regions in 96 

the HCP842 tractography atlas (Yeh et al., 2018) (nonlinearly registered to the subject’s native space). 97 

To cope with the reproducibility problem in tractography, we saturated the tracking parameters using a 98 

random generator to select a combination of fiber tracking parameters within a working range. The 99 

tracking parameters included the anisotropy threshold, angular threshold, step size (a.k.a. the 100 

propagation distance). The anisotropy threshold was randomly selected between 0.5 and 0.7 of the 101 

Otsu’s threshold (Otsu, 1979). The angular threshold was randomly selected between 15 to 90 degrees. 102 

The step size was randomly selected between 0.5 to 1.5 voxel distance. The random generator was 103 

based on a uniform distribution to select a value from the above parameter range. For each of the 14 104 

association pathways, we initiated 5,000,000 tracking iterations, with each iteration having a unique 105 

sample of the parameter combination. The fiber tracking was conducted using a deterministic fiber 106 

tracking algorithm (Yeh et al., 2013).  107 

Automatic segmentation and pruning 108 

The generated tracks were further filtered by automatic segmentation and pruning. The track 109 

segmentation was based on the HCP842 tractography atlas (Yeh et al., 2018). For each trajectory, we 110 

calculated its Hausdorff distance with all trajectories in the tractography atlas (nonlinearly wrapped to the 111 

subject space). If the shortest distance was found at a trajectory matching our tracking target, and the 112 

distance was smaller than 16 mm, then the trajectory was selected. All selected trajectories were then 113 

filtered by topology-informed pruning (TIP)(Yeh et al., 2019) with 20 iterations to remove noisy fibers. For 114 

each diffusion MRI scan, we successfully obtained all 14 association pathways, except for one subject, 115 

the right arcuate fasciculus was too thin, and pruning iteration was reduced to 10, and in two other 116 

subjects, no track was selected in automatic segmentation for the right arcuate fasciculus (both test and 117 

retest scans). Further investigations into these two subjects found that the initial fiber tracking did 118 
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generate numerous pathways from the right arcuate fasciculus area, but subsequent tract segmentation 119 

categorized them as right superior longitudinal fasciculus as the trajectories did not reach the right 120 

superior temporal lobe. Thus the analysis related to the right arcuate fasciculus excluded these two 121 

subjects. For all track bundles, the shape characteristics were quantified using the following shape 122 

analysis. The analysis was conducted on the Pittsburgh Supercomputing Center provided through the 123 

XSEDE resource (Towns et al., 2014). The source code is available at http://dsi-studio.labsolver.org with 124 

documentation to ensure the reproducibility of this study. 125 

Shape analysis 126 

Table 1 lists the shape descriptors and their definition. A fiber bundle is a set of streamline trajectories 127 

that can be represented as 3D coordinate sequences: {𝑣𝑖(𝑡) |  𝑖 = 1,2,3, … 𝑛}. Here 𝑛 is the total number 128 

of tracks, 𝑣𝑖(𝑡) is a sequence of 3D coordinates representing the trajectory of a track. 𝑡 is a discrete 129 

variable from 1 to 𝑚𝑖, where 𝑚𝑖 is the number of the coordinates. The length of a fiber bundle is thus 130 

defined as follows: 131 

𝑙𝑒𝑛𝑔𝑡ℎ =
1

𝑛
∑ ∑ ‖𝑣𝑖(𝑡) − 𝑣𝑖(𝑡 + 1)‖2

𝑡=𝑚𝑖−1
𝑡=1

𝑖=𝑛
𝑖=1    (1) 132 

The span is defined as: 133 

𝑠𝑝𝑎𝑛 = ∑ ‖𝑣(1) − 𝑣(𝑚𝑖)‖2
𝑖=𝑛
𝑖=1       (2) 134 

curl is then defined as: 135 

𝑐𝑢𝑟𝑙 =
𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑝𝑎𝑛 
           (3) 136 

Curl has a range of [1, ∞). A track bundle with a big curl value tends to have a curvy shape, whereas a 137 

straight line has a curl value of 1.  138 
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Then we voxelized tracks to carry out further shape analysis. All trajectories were first resampled so that 139 

for any two consecutive coordinates in any track, ‖𝑣𝑖(𝑡) − 𝑣𝑖(𝑡 + 1)‖2 was smaller than the voxel size. 140 

This resampling allowed us to directly “voxelize” tracks by rounding up all coordinates and removing 141 

repeat voxels. To minimize discretization error, we multiplied track coordinates by 4 before rounding up, 142 

and any further metrics calculation will consider this scaling effect. The voxelized tracks could be 143 

represented by a set of unique voxel coordinates denoted as 𝑇 = {𝑉𝑖 |  𝑖 = 1,2,3, … 𝑁}, where N is the 144 

total number of unique voxel coordinates. The total track volume could be estimated by the following: 145 

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑁 × 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒       (4) 146 

Note that due to our previous scaling, the voxel size was 43 times smaller than the raw DWI voxel size. 147 

The bundle diameter was then approximated using a cylinder model: 148 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 (𝑚𝑚) = 2√
𝑣𝑜𝑙𝑢𝑚𝑒

𝜋×𝑙𝑒𝑛𝑔𝑡ℎ
        (5)     149 

The diameter can be used to calculate elongation as a shape metric: 150 

𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 
         (6) 151 

To calculate track surface area, we converted the track voxel set 𝑇 to a 3D volume 𝑉(𝑥, 𝑦, 𝑧), whereas 152 

𝑉(𝑥, 𝑦, 𝑧) = 1 if 𝑉(𝑥, 𝑦, 𝑧) ∈ 𝑇 and 0 otherwise. This 3D volume enabled us to use morphology operation 153 

to identify the “surface voxel,” defined as a non-zero voxel that connects to at least one zero-valued voxel 154 

among its 26 neighboring voxels. The surface area was then estimated as follows: 155 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑣𝑜𝑥𝑒𝑙𝑠 × 𝑣𝑜𝑥𝑒𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔2  (8) 156 

Based on a cylinder model, the irregularity of the surface was then defined as 157 
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𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝜋×𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟×𝑙𝑒𝑛𝑔𝑡ℎ
       (9) 158 

A surface area much larger than the expected cylinder surface suggests higher shape irregularity.  159 

The rest of the shape analysis then utilized the two end surfaces of a track bundle. One obstacle for end 160 

surface analysis was that the coordinates of a track could be sequenced in two opposite directions 161 

(antegrade or retrograde), and correctly grouping the endpoints into two “end surfaces” required 162 

additional clustering steps. To handle it, we used k-means clustering algorithm with k=2 and modified it 163 

to satisfy the constraint that the endpoints of the same track will always be in the different clusters. 164 

Specifically, all 𝑣𝑖(1) was first assigned to cluster 1 and all 𝑣𝑖(𝑚𝑖) to cluster 2. Then we computed the 165 

mean coordinate for each cluster, and for each track, we re-clustered its two endpoints again using their 166 

distance to the mean coordinates. All tracks were repeatedly re-clustered until there was no cluster 167 

change for all the endpoints. The coordinates of the clustered endpoints were then rounded up to remove 168 

repeat voxel coordinates. This generated two unique sets of discrete voxel coordinates: 𝐸1 = {𝑉} and 169 

𝐸2, each of them denoting the voxelized end surfaces of the track bundle. We further checked the mean 170 

coordinates of 𝐸1  and 𝐸2 and figure out which of the x-, y-, or z-dimension has the largest distance 171 

between the mean coordinates. Without loss of generality, we assigned 𝐸2 to be the end surface that 172 

had a larger coordinate value in at this dimension (posterior or superior end of a bundle). The area of 𝐸1  173 

or 𝐸2 was then calculated as follows: 174 

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎𝑛 𝑒𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑒𝑡)  × (𝑣𝑜𝑥𝑒𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔)2  (10) 175 

The area was calculated separately for each of the end surfaces. The radius of an end surface was then 176 

calculated by modeling it as a circle, which has a radius equal to 1/5 of the mean distance to the center: 177 

𝑟𝑎𝑑𝑖𝑢𝑠 = 1.5 × (𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑣𝑜𝑥𝑒𝑙𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟)    (11) 178 
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The irregularity was also calculated as follows using a circle model: 179 

𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑜𝑓 𝑎𝑛 𝑒𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =
𝜋 ×𝑟𝑎𝑑𝑖𝑢𝑠2

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
          (12) 180 

The irregularity of a circle is 1, whereas any protrusion or intrusion will increase the irregularity. Last, the 181 

end surface coordinates will be used to define the “trunk” of a bundle. We first converted 𝐸1  and 𝐸2 into 182 

two 3D volumes of 0-1 valued voxels, respectively. The converted volumes were then analyzed by 3D 183 

connected component analysis to isolate the largest region of the surface. The two generated regions 184 

were then used as two regions of interest to isolate the main trunk of the fiber bundle and calculate its 185 

volume.  186 

For each shape descriptor, the test-retest reliability was calculated using one-way random, single 187 

measures intraclass correlation (ICC 1-1). The median value of descriptors from 14 bundles was identified 188 

as an overall indicator of the performance. The between-subject variations of each descriptor were 189 

quantified using the absolute deviation from the median further divided by the median to facilitate 190 

comparison. 191 

Results 192 

Augmented fiber tracking and automatic segmentation 193 

Figure 2a shows the tracking result of the first subject, including the arcuate fasciculus (AF), cingulum 194 

(C). frontal aslant tract (FAT), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus 195 

(ILF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF) presented in the left, right, 196 

anterior, and superior views. Only the association pathways in the left hemisphere are shown here to 197 

facilitate comparison. The tractography matches the known anatomical trajectories of the human 198 

association pathways, suggesting the feasibility of the automatic segmentation to obtain clean results 199 
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without manual intervention. Figure 2b further shows the left arcuate fasciculus of all 44 subjects, 200 

including their test-retest results generated from automatic segmentation. The tractography of the repeat 201 

scan is placed immediately on the right of the first scan. The tracking results show C-shaped bundles 202 

that match the anatomy of the arcuate fasciculus. The tracking did not require manual intervention or 203 

placement of regions. This suggests that high-throughput automatic fiber tracking could be realized to 204 

provide a decent tractography result. 205 

Test-retest reliability 206 

Figures 3a and 3b further present the test-retest results of the arcuate fasciculus tractography. We 207 

selected three best (Fig. 3a) and three worst (Fig. 3b) performers from our subject pool, as quantified by 208 

the differences in the volume between the test-retest scans. The tractography in Figure 3a shows high 209 

consistency in the fiber trajectories. The topological pattern of the core bundle is almost identical, though 210 

minor differences can still be observed at the details. Figure 3b shows tractography from the three worst 211 

performers in the test-retest scans. Although at their worst, the overall tractography still also presents 212 

decent consistency. Most of the differences are located in the branches, whereas the core trajectories 213 

are still highly consistent.  214 

Figure 3c lists the intraclass correlation (ICC) of shape descriptors for each bundle. The shape descriptors 215 

can be categorized into length metrics (light gray), area metrics (gray), volume metrics (dark gray), and 216 

shape metrics (white). Good reliability (ICC≥0.75) is labeled by a green circle, and moderate reliability 217 

(0.75>ICC≥0.5) is labeled by a yellow circle. Poor reliability (ICC<0.5) is marked by red. Out of 210 218 

bundle-descriptor entries, 120 of them (57.1%) have good reliability, 76 of them (36.2%) have moderate 219 

reliability, and 14 of them (6.7%) have poor reliability. More than 90% of the scenarios have moderate to 220 

good reliability, suggesting overall good reliability of the shape descriptors. All descriptors have a median 221 

ICC value greater than 0.5, and the length metrics perform the best, with a median value of ICC around 222 
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0.8. The area and volume metrics are the next, showing the median values of ICC around 0.7~0.8. The 223 

shape metrics moderate to good reliability, with curl and elongation performing the best, and irregularity 224 

the last. There are poor reliability scenarios in radius, trunk volume, and irregularity that requires 225 

precautions. These metrics can have outstanding reliability (ICC>0.9) for some bundles and poor 226 

reliability (ICC < 0.5) in the others. This indicates that the application of these three shape descriptors 227 

still requires additional precautions for the use-case scenarios to avoid poor reliability conditions. 228 

Normative distribution of shape descriptors and their left-right asymmetry 229 

Figure 4a shows representative examples of large and small metrics values using the left arcuate 230 

fasciculus selected from the subject pool, whereas the median values of the shape descriptors are listed 231 

and color-coded in Fig. 4b. In Figure 4b, the red color represents a relatively higher value compared with 232 

other association pathways. For example, the length of the inferior fronto-occipital fasciculus (IFOF) is 233 

marked by red, suggesting their longest length among all association pathways. Similarly, the frontal 234 

aslant tract (FAT) has the largest diameters, and the left cingulum (C) has the largest surface area. The 235 

left superior longitudinal fasciculus (SLF) has the largest topological irregularity. The median value offers 236 

an overview of the structural characteristics of the association pathways. 237 

We further plot the distributions of length and area metrics in Fig.5 for each of the association pathways. 238 

The two circles on the right upper corner represent the test-retest reliability of the measures, as listed in 239 

Fig.3c. Green color indicates good test-retest reliability (ICC≥0.75), yellowish color indicates moderate 240 

reliability (0.75>ICC≥0.5), and red color indicates poor reliability (ICC<0.5). The distributions for the left 241 

side bundle are colored by blue, whereas the right colored by red. Paired t-tests were used to test the 242 

left-right differences. The p-value results are presented with significance marks (*< 0.05, **<0.01, ***< 243 

0.001), and the percentage differences are also calculated by 100%×(a-b)/a, where a is the quantity of 244 

the dominance side. The largest and most significant left dominance can be found in the arcuate 245 
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fasciculus (AF) in the span, diameter, and radius of its anterior end surface. On the next, superior 246 

longitudinal fasciculus (SLF), cingulum (C), and uncinate fasciculus (UF) show moderately left dominance 247 

at 10~20% in diameter and end surfaces (the poor reliability results in SLF and UF labeled by red circles 248 

are ignored). The left frontal aslant tract (FAT) shows a slightly larger radius of the innervation region at 249 

the superior frontal lobe. In comparison, the inferior fronto-occipital fasciculus (IFOF) and inferior 250 

longitudinal fasciculus (ILF) shows right-dominance only in the radius of the end surfaces with no 251 

significant difference in the diameter. Figure 6 further shows the distributions of area and volume metrics 252 

for the association pathway bundles. The arcuate fasciculus (AF) shows a large left-dominance in area 253 

and volume metrics greater than 50%. On the next, cingulum (C), and uncinate fasciculus (UF) show 254 

moderately left dominance at ~20% in area and volume. The frontal aslant tract (FAT) shows only a 255 

slightly larger volume in the left hemisphere (14.8%). In comparison, inferior longitudinal fasciculus (ILF) 256 

shows moderate right-dominance in the area with no significant difference in the volume. The inferior 257 

fronto-occipital fasciculus (IFOF) shows right-dominance in the area of the anterior end surface. The 258 

superior longitudinal fasciculus (SLF) has a more complicated lateralization profile, with left dominance 259 

in tract area and right dominance at the posterior innervation region and trunk volume. Findings from Figs. 260 

5 and 6 show an overall trend of left-dominance in the arcuate fasciculus (AF), cingulum (C), frontal aslant 261 

tract (FAT), and uncinate fasciculus (UF), and right dominance in the inferior fronto-occipital fasciculus 262 

(IFOF) and inferior longitudinal fasciculus (ILF). The superior longitudinal fasciculus (SLF) has mixed 263 

lateralization with different metrics showing either left or right dominance. 264 

Figure 7 shows the distribution of shape metrics for the association pathways. The differences between 265 

left and right distribution are quantified using Cohen’s d. While all pathways present significant left-right 266 

differences in different shape metrics. The irregularity metric presents the most significant and largest 267 

left-right asymmetry. The arcuate fasciculus (AF), cingulum (C), superior longitudinal fasciculus (SLF), 268 
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and uncinate fasciculus (UF) shows substantial left dominance in the irregularity (p-value < 0.001, d > 269 

1.5), while inferior longitudinal fasciculus (ILF) shows right dominance (p < 0.001, d=1.73). The 270 

lateralization in shape irregularity seems to correlate with the lateralization of the length metrics. 271 

Between-subject variations  272 

Figure 8 shows the between-subject variations using the absolute deviation. The absolute deviation was 273 

calculated by the absolute difference from the median to evaluate the dispersion of the shape descriptors 274 

between subjects. The deviation was further divided by the median value of the bundle to facilitate 275 

comparison. Furthermore, the overall median value of all bundles is plotted by a blue vertical line, 276 

whereas the first and third quantiles are plotted by a red line. As shown in Fig. 8, the length, span, and 277 

diameters have small between-subject differences, mostly less than 10% deviations. The variations in 278 

diameter are larger for the right arcuate fasciculus (AF_R), likely due to its smallest diameter among all 279 

association pathways. The radius and surface also have a similar variation level, with the majority of the 280 

deviations lower than 20%. A much larger between-subject variation can be observed for the are of the 281 

end surfaces, mostly ranged between 10~40% in the absolute deviation. The overall results suggest that 282 

the “layout” of the association pathways seems not to vary a lot across subjects, as shown by low 283 

between-subject variation in length, span, diameter, and radius. In contrast, the innervation region has a 284 

considerable between-subject variation that may account for most of the individual differences in white 285 

matter structure. 286 

Discussion 287 

Here we conducted shape analysis on human association pathways and confirmed its reliability in a test-288 

retest dataset. We derived the distribution of shape descriptors to elucidate lateralization and between-289 

subject variations. The results revealed an overall left dominance in arcuate fasciculus, cingulum, 290 
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uncinate, and frontal aslant tract, with the largest lateralization found in the arcuate fasciculus. Cingulum 291 

and uncinate fasciculus showed moderate lateralization in either diameter, area, or volume, while the 292 

frontal aslant tract showed small lateralization. Right dominance was found in inferior fronto-occipital 293 

fasciculus and inferior longitudinal fasciculus. Although there was a widespread left-right asymmetry in 294 

all association pathways, the detail lateralization profile varied substantially across bundles, and not all 295 

bundles share the same lateralization pattern.  296 

The lateralization found in this study is not new to the neuroscience field. For example, studies have 297 

shown lateralization in the arcuate fasciculus (Lebel and Beaulieu, 2009; Vernooij et al., 2007) and the 298 

inferior longitudinal fasciculus (Panesar et al., 2018), yet our findings revealed a more sophisticated 299 

profile in lateralization. A bundle could have left dominance in one metric and right dominance in another, 300 

and a comprehensive profile covering all metrics is needed to investigate the asymmetry fully. 301 

In addition to lateralization, the between-subject variation quantified in this study gave us a glimpse into 302 

how white matter structures variate across the population. Our analysis showed that the between-303 

subjects variation was small in length metrics such as length, span, diameter, and radius, whereas the 304 

area of the end surfaces had a much larger variation. While the length and span did not vary much (< 305 

10% deviation), the area of the innervation region had a median deviation of 24%, implying a considerable 306 

variation in how white matter bundle innervates at the cortical surface.  307 

 308 

 309 
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Technical challenges and limitations 310 

There are still limitations in tractography. Good test-retest reliability in shape analysis only implies the 311 

robustness of the algorithm. It does not necessarily guarantee that the results are always correct. The 312 

fiber tracking algorithm still has the issue of false-positive and false-negative results. For deterministic 313 

fiber tracking, false-negative results are more common, as the ability to capture more delicate branches 314 

depends on the spatial resolution and the sensitivity of the data acquisition. There are possibilities that a 315 

minor branch was left undetected in both test and retest scans due to the limitation of acquisitions. Last, 316 

it is noteworthy that we only have 44 subjects included in the analysis. To further investigate between-317 

subject differences, we are planning a future population-based study to include all 1065 HCP subjects 318 

and to describe the normative variation of white matter structures. Nonetheless, there are encouraging 319 

reproducibility achieved in this study. We showed that a combination of parameter saturation, automatic 320 

track segmentation, and topology-inform pruning could provide good reproducibility. The derived metrics 321 

further achieved moderate to good test-retest reliability. By integrating with shape analysis, diffusion MRI 322 

has a new option for white matter analysis. It can be used in neurological, psychological, and psychiatric 323 

studies to investigate the correlation between white matter architecture correlates and abnormal brain 324 

functions, with a hope to decipher how structure defines brain functions. 325 

Acknowledgments 326 

The research reported in this publication was partly supported by NIMH of the National Institutes of Health 327 

under award number R56MH113634. The content is solely the responsibility of the authors and does not 328 

necessarily represent the official views of the National Institutes of Health. This work used the Extreme 329 

Science and Engineering Discovery Environment (XSEDE), which is supported by National Science 330 

Foundation grant number ACI-1548562. Data were provided by the Human Connectome Project, WU-331 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.19.049544doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.19.049544
http://creativecommons.org/licenses/by/4.0/


 

Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded 332 

by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by 333 

the McDonnell Center for Systems Neuroscience at Washington University. 334 

References 335 

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of 336 

structural and functional systems. Nat Rev Neurosci 10, 186-198. 337 

Corouge, I., Gouttard, S., Gerig, G., 2004. Towards a shape model of white matter fiber 338 

bundles using diffusion tensor MRI. 2004 2nd IEEE International Symposium on Biomedical 339 

Imaging: Nano to Macro (IEEE Cat No. 04EX821). IEEE, pp. 344-347. 340 

Costa, L.d.F.D., Cesar Jr, R.M., 2000. Shape analysis and classification: theory and practice. 341 

CRC Press, Inc. 342 

DeFelipe, J., 2010. From the connectome to the synaptome: an epic love story. Science 330, 343 

1198-1201. 344 

Fornito, A., Zalesky, A., Breakspear, M., 2015. The connectomics of brain disorders. Nat Rev 345 

Neurosci 16, 159-172. 346 

Glasser, M.F., Smith, S.M., Marcus, D.S., Andersson, J.L., Auerbach, E.J., Behrens, T.E., 347 

Coalson, T.S., Harms, M.P., Jenkinson, M., Moeller, S., Robinson, E.C., Sotiropoulos, S.N., 348 

Xu, J., Yacoub, E., Ugurbil, K., Van Essen, D.C., 2016. The Human Connectome Project's 349 

neuroimaging approach. Nat Neurosci 19, 1175-1187. 350 

Glozman, T., Bruckert, L., Pestilli, F., Yecies, D.W., Guibas, L.J., Yeom, K.W., 2018. 351 

Framework for shape analysis of white matter fiber bundles. Neuroimage 167, 466-477. 352 

Kitchell, L., Bullock, D., Hayashi, S., Pestilli, F., 2018. Shape Analysis of White Matter Tracts 353 

via the Laplace-Beltrami Spectrum. International Workshop on Shape in Medical Imaging. 354 

Springer, pp. 195-206. 355 

Lebel, C., Beaulieu, C., 2009. Lateralization of the arcuate fasciculus from childhood to 356 

adulthood and its relation to cognitive abilities in children. Human Brain Mapping 30, 3563-357 

3573. 358 

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. Sys., 359 

Man., Cyber 9, 62-66. 360 

Panesar, S.S., Yeh, F.-C., Jacquesson, T., Hula, W., Fernandez-Miranda, J.C., 2018. A 361 

quantitative tractography study into the connectivity, segmentation and laterality of the human 362 

inferior longitudinal fasciculus. Frontiers in neuroanatomy 12, 47. 363 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.19.049544doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.19.049544
http://creativecommons.org/licenses/by/4.0/


 

Rheault, F., De Benedictis, A., Daducci, A., Maffei, C., Tax, C.M.W., Romascano, D., 364 

Caverzasi, E., Morency, F.C., Corrivetti, F., Pestilli, F., Girard, G., Theaud, G., Zemmoura, I., 365 

Hau, J., Glavin, K., Jordan, K.M., Pomiecko, K., Chamberland, M., Barakovic, M., Goyette, N., 366 

Poulin, P., Chenot, Q., Panesar, S.S., Sarubbo, S., Petit, L., Descoteaux, M., 2020. 367 

Tractostorm: The what, why, and how of tractography dissection reproducibility. Hum Brain 368 

Mapp 41, 1859-1874. 369 

Schilling, K.G., Yeh, F.C., Nath, V., Hansen, C., Williams, O., Resnick, S., Anderson, A.W., 370 

Landman, B.A., 2019. A fiber coherence index for quality control of B-table orientation in 371 

diffusion MRI scans. Magn Reson Imaging 58, 82-89. 372 

Sporns, O., Tononi, G., Kotter, R., 2005. The human connectome: A structural description of 373 

the human brain. PLoS Comput Biol 1, e42. 374 

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., 375 

Lathrop, S., Lifka, D., Peterson, G.D., 2014. XSEDE: accelerating scientific discovery. 376 

Computing in science & engineering 16, 62-74. 377 

Vernooij, M.W., Smits, M., Wielopolski, P., Houston, G., Krestin, G.P., van der Lugt, A., 2007. 378 

Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric 379 

language lateralization in both right-and left-handed healthy subjects: a combined fMRI and 380 

DTI study. Neuroimage 35, 1064-1076. 381 

Yeh, F.C., Panesar, S., Barrios, J., Fernandes, D., Abhinav, K., Meola, A., Fernandez-Miranda, 382 

J.C., 2019. Automatic Removal of False Connections in Diffusion MRI Tractography Using 383 

Topology-Informed Pruning (TIP). Neurotherapeutics 16, 52-58. 384 

Yeh, F.C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J.C., 385 

Vettel, J.M., Verstynen, T., 2018. Population-averaged atlas of the macroscale human 386 

structural connectome and its network topology. Neuroimage 178, 57-68. 387 

Yeh, F.C., Verstynen, T.D., Wang, Y., Fernandez-Miranda, J.C., Tseng, W.Y., 2013. 388 

Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8, 389 

e80713. 390 

Yeh, F.C., Wedeen, V.J., Tseng, W.Y., 2010. Generalized q-sampling imaging. IEEE Trans 391 

Med Imaging 29, 1626-1635. 392 

 393 

  394 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 20, 2020. ; https://doi.org/10.1101/2020.04.19.049544doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.19.049544
http://creativecommons.org/licenses/by/4.0/


 

395 

Figure 1. Shape analysis of a bundle and representative examples illustrating high and low values in the 396 

shape descriptors. (a) The length metrics include length, span, diameter, and radius of the innervation 397 

region. The length measures the length of the bundle trajectory, whereas the span measures the absolute 398 

distance between two ends of the bundle. The diameter estimates the average bundle diameter. The 399 

radius uses a circular model to estimate the coverage of the innervation regions. (b) The area metrics 400 

include total track surface area and area of the two end surfaces. Each fiber bundle has two end surfaces, 401 

and their area will be quantified separately. (c) The volume metrics include total volume and trunk volume. 402 

 403 

 404 
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406 

Figure 2. Tractography of human association pathways generated using augmented fiber tracking and 407 

automatic segmentation. (a) Seven association pathways in the left hemisphere of a subject are 408 

automatically tracked and segmented. The process does not require a manual assignment of regions or 409 

editing. The results are consistent with the known neuroanatomical structures. (b) The result of arcuate 410 

fasciculus tractography of all test-retest scans (n=44×2) mapped using augmented fiber tracking and 411 
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automatic segmentation. The retest results are placed on the right of the first scan. All segmentation 412 

results show consistent C-shaped bundles. The test-retest results are similar, suggesting the feasibility 413 

of the method for high throughput analysis. 414 
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 416 

Figure 3. Reproducibility of tractography and reliability of the shape descriptors. (a) Three subjects with 417 

the best performing test-retest results are selected for their small differences in volume. The tractography 418 

from test and retest scans is of high similarity, while the unique structural characteristics of each subject 419 

are preserved. (b) Three subjects with the worst-performing test-retest results are selected as a 420 
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comparison. Even at its worst, the fiber tracking and segmentation still achieve decent consistency 421 

between test-retest scans and preserves the structural characteristics of each subject. (C) The test-retest 422 

reliability of the shape descriptors is quantified by intraclass correlation (ICC). The majority of the shape 423 

descriptors show moderate (>0.5) to good (>0.75) reliability. The median ICC values for all descriptors 424 

are greater than 0.5, while poor reliability (<0.5) still presents in around 6% of the application scenarios. 425 

 426 
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 428 

Figure 4. (a) Representative cases of shape descriptors are shown using the left arcuate fasciculus as 429 

an example. (b) Median values of shape descriptors across 44 subjects are listed for each association 430 

pathway. The red colors are those with relatively large values in comparison with other pathways. 431 
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 432 

Figure 5. The distribution of the length metrics and their left-right differences in the association pathways. 433 

The association pathways present different significance level of the left-right differences (p-value: *** < 434 

0.001, **< 0.01, *< 0.05). The test-retest reliability of the metrics for the left and right bundle is presented 435 

by colored circles (green: ICC≥0.75, yellow: 0.75>ICC≥0.5, red: ICC<0.5). The end area 1 is located at 436 
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the anterior end of the bundles (inferior end for frontal aslant tract). AF, C, FAT, SLF, and UF present an 437 

overall left dominance in either the diameter or radius, whereas IFOF and ILF present right dominance. 438 
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 440 

Figure 6. The distributions of the area and volume metrics and their left-right differences in the association 441 

pathways. The left-right differences are tested (p-value: *** < 0.001, ** < 0.01, * < 0.05). The test-retest 442 

reliability of the metrics for the left and right bundle is presented by colored circles (green: ICC≥0.75, 443 

yellow: 0.75>ICC≥0.5, red: ICC<0.5). The end area 1 is located at the anterior end of the bundles (inferior 444 
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end for frontal aslant tract). AF, C, FAT, and UF shows significant left dominance in either area or volume 445 

metrics, whereas IFOF and ILF show significant right dominance. SLF presents a mixed lateralization 446 

profile with either right or left dominance in different metrics. 447 

 448 
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 450 

Figure 7. The distributions of the shape metrics and their left-right differences in the association pathways. 451 

The left-right differences are tested (p-value: *** < 0.001, ** < 0.01, * < 0.05) and effect size (Cohen’s d) 452 

with test-retest reliability presented as colored circles (green: ICC≥0.75, yellow: 0.75>ICC≥0.5, red: 453 

ICC<0.5). All pathways present significant lateralization at different shape metrics. The overall irregularity 454 
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shows the large left-dominance at AF, C, SLF, UF, and right dominance at ILF, suggesting their prominent 455 

left-right differences in bundle topology.  456 
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 457 

Figure 8. Between-subject variations of the length, area, and volume metrics in the association pathways. 458 

The variations are quantified by absolute deviation. The blue vertical line marks the median of deviation 459 

values of all bundles, whereas the two red vertical line marks the first and third quantiles. The test-retest 460 

reliability is labeled by colored circles (green: ICC≥0.75, yellow: 0.75>ICC≥0.5, red: ICC<0.5). All length 461 

metrics have relatively smaller between-subject variation, whereas the area and volume metrics show a 462 

larger between-subject variation, particularly the area of the end surfaces showing greater than >20% 463 

deviation.  464 
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Table 1: List of shape descriptors and their definition 

Descriptors Definition 

Length (mm) 
1

𝑛
∑ ∑ ‖𝑣𝑖(𝑡) − 𝑣𝑖(𝑡 + 1)‖2

𝑡=𝑚𝑖−1

𝑡=1

𝑖=𝑛

𝑖=1

 

Span (mm) ∑‖𝑣(1) − 𝑣(𝑚𝑖)‖2

𝑖=𝑛

𝑖=1

 

Diameter (mm) 2√
𝑣𝑜𝑙𝑢𝑚𝑒

𝜋 × 𝑙𝑒𝑛𝑔𝑡ℎ
 

Radius (mm) 
1.5

𝑁𝑒
∑ ‖𝐸𝑖 −

1

𝑁𝑒
∑ 𝐸𝑗

𝑗=𝑁𝑒

𝑗=1 𝑖

‖

2

𝑖=𝑁𝑒

𝑖=1

 

Surface Area (mm2) 𝑁𝑠 × 𝑣𝑜𝑥𝑒𝑙 𝑠𝑝𝑎𝑐𝑖𝑛𝑔2 

Volume (mm3) 𝑁 × 𝑣𝑜𝑥𝑒𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 

Trunk Volume (mm3) 𝑁𝑡 × 𝑣𝑜𝑥𝑒𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 

Curl 
𝑙𝑒𝑛𝑔𝑡ℎ

𝑠𝑝𝑎𝑛 
 

Elongation 
𝑙𝑒𝑛𝑔𝑡ℎ

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 
 

Irregularity of the bundle surface 
𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝜋 × 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 × 𝑙𝑒𝑛𝑔𝑡ℎ
 

Irregularity of the end surface 
𝜋 × 𝑟𝑎𝑑𝑖𝑢𝑠2

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
 

█Length metrics   █Area metrics   █Volume metrics 

Bundle: trajectory form={𝑣𝑖(𝑡) |  𝑖 = 1,2,3, … 𝑛} , voxelized form={𝑉𝑖  |  𝑖 = 1,2,3, … 𝑁} 

End surface: voxelized form={𝐸𝑖  |  𝑖 = 1,2,3, … 𝑁𝑒} 

Nt is the number of “trunk bundle” voxels. 

Ns is the number of tract surface voxels. 
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