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Abstract:  

Bacterial resistance to antibiotics is a growing problem that is projected to cause more 

deaths than cancer in 2050. Consequently, novel antibiotics are urgently needed. Since 

more than half of the available antibiotics target the bacterial ribosomes, proteins that 

are involved in protein synthesis are thus prime targets for the development of novel 

antibiotics. However, experimental identification of these potential antibiotic target 

proteins can be labor-intensive and challenging, as these proteins are likely to be poorly 

characterized and specific to few bacteria. In order to identify these novel proteins, we 

established a Large-Scale Transcriptomic Analysis Pipeline in Crowd (LSTrAP-Crowd), 

where 285 individuals processed 26 terabytes of RNA-sequencing data of the 17 most 

notorious bacterial pathogens. In total, the crowd processed 26,269 RNA-seq 

experiments and used the data to construct gene co-expression networks, which were 

used to identify more than a hundred uncharacterized genes that were transcriptionally 

associated with protein synthesis. We provide the identity of these genes together with 

the processed gene expression data. The data can be used to identify other 

vulnerabilities or bacteria, while our approach demonstrates how the processing of gene 

expression data can be easily crowdsourced. 

 

Introduction: 

Bacterial resistance to antibiotics is a serious and growing concern in public health, 

taking ca. 99,000 lives and costing 21-34 billion USD per year in the USA (Spellberg et 

al., 2011). Methicillin-resistant Gram-positive Staphylococcus aureus (MRSA) and 

Gram-negative Pseudomonas aeruginosa are the leading causes of serious infections 

as they form biofilms. Biofilms are complex bacterial communities embedded in an 

extracellular matrix, and these communities are able to resist antimicrobial agents (Mah 

and O’Toole, 2001). For instance, bacteria can be up to 1000x more tolerant to 

antibiotics when they grow as a biofilm, compared to single cell suspension (planktonic 
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cells). Consequently, new antibiotics are urgently needed to combat these resistance 

mechanisms, either alone or in combination with existing drugs. 

More than half of the antibiotics currently in use target the bacterial ribosome, 

typically at the elongation step of protein synthesis (Wilson, 2014), through direct or 

proximal binding of the peptidyl transferase center (PTC) which catalyzes peptide bond 

formation (Arenz and Wilson, 2016). PTC�targeting antibiotics (e.g., lincosamides, 

pleuromutilins, chloramphenicol and group A streptogramins), inhibit protein synthesis 

by obstructing the proper positioning of the tRNA substrates (Dunkle et al., 2010).  

Bacteria can be intrinsically less sensitive to antibiotics due to less efficient 

uptake of antibiotics or mutations in ribosomal proteins that result in decreased 

drug�binding efficiency (Wilson, 2014; Dinos, 2017). The most frequently encountered 

acquired resistance mechanism involves the methylation of the ribosomal RNA (e.g., by 

Erm family methyltransferases), which results in decreased drug�binding efficiency and 

increased viability in the presence of antibiotics (Wilson, 2009; Liu and Douthwaite, 

2002). As modification of the ribosomes can result in a decrease in fitness, these 

methyltransferases genes tend to be induced by the relevant antibiotics through 

translation attenuation (Lin et al., 2018; Vazquez-Laslop et al., 2008). Alternatively, the 

antibiotics can also be modified, pumped out, or degraded, thus lowering the 

intracellular concentration to non�toxic levels (Wilson, 2014; Golkar et al., 2018). 

Another mechanism is ribosome protection, where the antibiotic is actively dislodged 

from the ribosome by ATP�binding cassette F (ABC�F) protein, as observed in many 

clinical isolates (e.g., Pseudomonas aeruginosa, Escherichia coli, Staphylococcus 

aureus, Enterococcus faecalis and Listeria monocytogenes)(Sharkey and O’Neill, 2018; 

Murina et al., 2019; Kerr et al., 2005). 

While the structure of the ribosomes is well conserved, structural features of 

ribosomes may vary significantly between different species, suggesting species-specific 

adaptations of protein synthesis (Ahmed et al., 2016; Ahmed et al., 2017; Barandun et 

al., 2019; Bieri et al., 2017; Kushwaha and Bhushan, 2020; Eyal et al., 2015; Greber 

and Ban, 2016; Melnikov et al., 2012; Melnikov et al., 2018). For example, structural 

analysis of mycobacterial ribosome revealed that the 30S ribosomal subunit lacks the 

protein bS21 that is found in Escherichia coli. Instead, the mycobacteria employ a 
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unique protein bS22 near the decoding center (DC), thereby keeping the overall number 

of ribosomal proteins in 30S subunit the same as in E. coli (Kushwaha and Bhushan, 

2020). Thus, the identification of novel bacteria ribosomal components has great 

potential for the development of species-specific antibiotics. However, the identification 

of these novel components using traditional molecular or structural biology approaches 

is time-consuming.  

Bioinformatic approaches are used to predict gene function and can be used to 

identify novel components of protein synthesis. Newly sequenced genomes of all 

organisms are typically first annotated using sequence similarity analysis, where the 

genes are annotated based on the DNA/protein sequence similarity to characterized 

genes/proteins (Rhee and Mutwil, 2014). While sequence similarity analysis is well 

established and gives a quick overview of gene functions in a new genome, it has its 

caveats as genes can i) have multiple functions, ii) sub- or neo-functionalise and/or iii) 

have no sequence similarity to characterized genes. Thus, while sequence similarity 

analysis is a powerful method, it requires other methods to complement it (Rhee and 

Mutwil, 2014; Proost and Mutwil, 2016). 

  The wide availability of RNA sequencing (RNA-seq) data makes it possible to 

study gene function from the perspective of gene expression (Rhee and Mutwil, 2014; 

Usadel et al., 2009; Hansen et al., 2018; Hansen et al., 2014). Co-expression analysis 

is based on the observation that genes that have similar expression profiles across 

experiments tend to be functionally related (Rhee and Mutwil, 2014; Proost and Mutwil, 

2016; Proost and Mutwil, 2017). These co-expressed genes can be identified by 

analyzing publicly-available microarrays or RNA-seq data, and the co-expression 

relationships can be represented as networks. In a co-expression network, genes are 

represented as nodes, where edges connect co-expressed nodes (links)(Mutwil et al., 

2008; Mutwil et al., 2009; Mutwil et al., 2010; Mutwil et al., 2011; Ruprecht et al., 2016; 

Ferrari et al., 2018; Ruprecht et al., 2017; Ng et al., 2019; Wen Tan and Mutwil, 2019; 

Proost and Mutwil, 2018a; Ruprecht et al., 2011; Proost and Mutwil, 2018b). The 

networks can be mined for groups of highly connected genes (called clusters or 

modules) that likely represent genes that are involved in the same biological process. 

Due to the ubiquity of expression data, and the ability to complement DNA/protein 
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sequence-based gene function prediction approaches, coexpression networks have 

become a popular tool to elucidate the function of genes. The networks have predicted 

the function of genes involved in a wide range of processes, such as various cellular 

processes (Takabayashi et al., 2009; Takahashi et al., 2008; Stuart et al., 2003; Wen 

Tan and Mutwil, 2019), transcriptional regulation (Yu et al., 2003), physiological 

responses to the environment and stress (Lee et al., 2010; Jiménez-Gómez et al., 

2010), and the biosynthesis of metabolites (Tan et al., 2020; Tan and Mutwil, 2019; 

Ruprecht et al., 2016; Sibout et al., 2017). 

 The amount of gene expression data has expanded vastly over the last decade, 

resulting in >1000-fold increase in nucleotide bases on NCBI Sequence Read Archive 

(SRA), from 11TB (2010) to 12 PB (2020). Due to limitations in software used to 

estimate gene expression from RNA-seq data, analyzing all this data would have been 

unthinkable a decade ago. However, drastic improvements to the speed and efficiency 

of software, such as Kallisto (Bray et al., 2016) and salmon (Patro et al., 2017), allow 

the analysis of gigabytes of data on even a Raspberry Pi-like miniature computer (Tan 

and Mutwil, 2019). Recently, combined the availability of cloud computing and the user-

friendliness of the Jupyter notebooks to implement a large-scale transcriptomic analysis 

pipeline, LSTrAP-Cloud (Tan et al., 2020). Importantly, though Google Colab, the 

pipeline gives access to a free cloud computer with 2 Xeon cores, with at least 15 

gigabytes of permanent storage (as provided by users google drive account) and 12 

gigabytes of RAM, giving biologists both the software and hardware to perform large-

scale co-expression analysis. 

 In this study, we introduce Large-Scale Transcriptomic Analysis Pipeline in 

Crowd (LSTrAP-Crowd). This simple pipeline was used by 285 undergraduate students 

to process RNA-seq data of some of the 17 most notorious bacterial pathogens. Within 

a week, the students processed 26,269 RNA-seq samples, comprising 263,757,103,900 

(~263 billion) reads and 26.38 terabytes of data. The gene expression data was used to 

construct co-expression networks, which were mined for the presence of 

uncharacterized genes that were co-expressed with the bacterial ribosomes. In total, we 

have predicted more than 100 putative proteins to be involved in protein synthesis in the 

17 bacterial pathogens.  
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Materials and methods 

Streaming RNA Sequencing Data 

The LSTrAP-Crowd pipeline was implemented on Google Colaboratory and is based on 

the LSTrAP-Cloud pipeline with standard parameters (Tan et al., 2020). The pipeline 

streams the RNA-seq fastq files to a virtual machine in the cloud, and deposits the 

processed gene expression data on the user’s Google Drive. The CDSs were obtained 

from EnsembleGenomes and used to generate kallisto index with default parameters. 

The RNA sequencing data of the 17 bacteria was obtained from European Nucleotide 

Archive (ENA) and mapped against the kallisto index of coding sequences (CDS) of the 

17 bacteria. The used CDSs are: Campylobacter jejuni 

(Campylobacter_jejuni_subsp_jejuni_cg8421.ASM17179v2.cds.all.fa), Clostridioides 

difficile (Clostridioides_difficile_e25.E25.cds.all.fa), Enterococcus faecalis 

(Enterococcus_faecalis_og1rf.ASM17257v2.cds.all.fa), Escherichia coli 

(Escherichia_coli_str_k_12_substr_mg1655.ASM584v2.cds.all.fa), Haemophilus 

influenzae (Haemophilus_influenzae_r3021.ASM16975v1.cds.all.fa), Helicobacter pylori 

(Helicobacter_pylori_b8.ASM19675v1.cds.all.fa), Klebsiella pneumoniae 

(Klebsiella_pneumoniae_jm45.ASM44540v1.cds.all.fa), Listeria monocytogenes 

(Listeria_monocytogenes_gca_001027125.ASM102712v1.cds.all.fa), Mycobacterium 

tuberculosis (Mycobacterium_tuberculosis_h37rv.ASM19595v2.cds.all.fa), Mycoplasma 

pneumoniae (Mycoplasma_pneumoniae_fh.ASM14394v1.cds.all.fa), Neisseria 

gonorrhoeae (Neisseria_gonorrhoeae_gca_001047275.ASM104727v1.cds.all.fa), 

Pseudomonas aeruginosa 

(Pseudomonas_aeruginosa_gca_001181725.E11_London_26_VIM_2_06_13.cds.all.fa)

, Salmonella enterica 

(Salmonella_enterica_subsp_enterica_serovar_typhimurium_str_lt2.ASM694v2.cds.all.f

a), Staphylococcus aureus 

(Staphylococcus_aureus_gca_001212685.7738_4_69.cds.all.fa), Streptococcus 

pneumoniae (Streptococcus_pneumoniae_r6.ASM704v1.cds.all.fa), Streptococcus 

pyogenes (Streptococcus_pyogenes_ns88_2.SPNS88.2.cds.all.fa), Vibrio cholerae 
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(Vibrio_cholerae_v51.ASM15246v2.cds.all.fa). A total of 26,269 experiments were 

streamed (Table S1).  

Generating gene expression matrices for the 17 bacteria 

To remove RNA-seq samples that are of lower quality, we identified outlier samples that 

show a lower number (n_pseudoaligned) and percentage (p_pseudoaligned) of reads 

aligned to the coding sequences than the majority of the samples. This analysis 

assumes that the majority of samples are of good quality. The expression matrices 

containing the gene expression data that passed these thresholds are available in 

Supplementary Dataset 1. Table S1 contains the n_pseudoaligned and 

p_pseudoaligned numbers and indicates which samples passed the thresholds. 

Identification of genes Involved in ribosome biogenesis with co-expression 

networks 

To identify genes that are involved in protein synthesis in the 17 bacteria, we have first 

retrieved all genes containing ‘DUF’ (domain of unknown function), ‘hypothetical’ or 

‘conserved’ in their description. Next, we calculated the Pearson Correlation Coefficient 

(PCC) between the uncharacterized genes and all genes in the genome, where 

PCC>0.7 between two genes was used to indicate that the genes are co-expressed. 

Finally, the uncharacterized genes were predicted to be involved in protein synthesis if 

>10%, >30%, >50%, >70% or >90% of the genes that they are co-expressed with 

contained annotations such as ‘ribosome’ or ‘ribosomal’.  

 

Results 

Obtaining and quality-controlling gene expression data for 17 bacterial pathogens 

In this study, we analyzed the gene expression data of 17 notorious bacterial pathogens 

that cause numerous diseases, such as pharyngitis, tonsillitis, scarlet fever, cellulitis, 

erysipelas, rheumatic fever, post-streptococcal glomerulonephritis, necrotizing fasciitis, 

and many others (Table 1). While more bacterial pathogens were considered, we only 
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analyzed bacteria that had at least 100 RNA-seq samples based on Illumina technology 

found in the Sequence Read Archive (Leinonen et al., 2011). In total, 26,269 RNA-seq 

samples were analyzed. 

Table 1. Genomic properties of the 17 bacteria and the RNA-seq sample statistics. 

Bacteria Number of 
genes 

Genome size 
(Mb) 

Student 
groups 
analyzing the 
data 

RNA-seq 
samples: 
total/passed 
QC 

Campylobacter jejuni 1635 1.65 1 219/320 
  

Clostridioides difficile 3769 4.27 1 182/381 

Enterococcus faecalis 2579 3.11 1 81/195 

Escherichia coli 4141 5.44 13 2494/7154 

Haemophilus 
influenzae 

2098 1.79 2 189/448 

Helicobacter pylori 1720 1.62 1 84/167 

Klebsiella pneumoniae 5141 5.78 2 536/639 

Listeria 
monocytogenes 

2817 2.78 2 370/572 

Mycobacterium 
tuberculosis 

4023 4.33 11 2414/6495 

Mycoplasma 
pneumoniae 

629 0.82 3 365/956 

Neisseria gonorrhoeae 2159 2.15 1 102/371 

Pseudomonas 
aeruginosa 

6512 6.09 7 1372/2662 

Salmonella enterica 4554 4.79 3 611/1284 

Staphylococcus aureus 2638 2.90 5 1112/1963 

Streptococcus 
pneumoniae 

2043 2.13 2 365/956 

Streptococcus 
pyogenes 

1660 1.85 4 1340/1705 

Vibrio cholerae 3648 4.00 1 167/311 
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Figure 1. LSTrAP-Crowd pipeline and sample quality control. A) LSTrAP-Crowd pipeline. The pipeline is a

modification of LSTrAP-Cloud, where the modification allows one group of students to share the task streaming and

pseudo-aligning the RNA-seq data. B) Scatter plot showing the number of pseudoaligned reads (n_pseudoaligned, x-

axis) and % of pseudoaligned reads (p_pseudoaligned, y-axis) of RNA-seq samples for four bacteria. Samples with

n_pseudoaligned>1,000,000 and with high p_pseudoaligned values that were not dissimilar from the majority of

samples were used to build the expression matrices. Used samples are indicated by green rectangles. 

 The RNA-seq data was streamed by using a modified LSTRaP-Cloud pipeline

(Figure 1A), which gives each user a free Google Colab notebook equipped with a 2

core Xeon CPU and 12 Gb of RAM (Tan et al., 2020). The modified pipeline, LSTrAP-

Crowd, thus allows a large group of people to download the gene expression data

collaboratively. 285 first-year undergraduate students were divided into 60 groups, with

each group tasked to download a maximum of 600  RNA-seq samples (Table 1). The

size of each RNA-seq sample was capped at ~1 Gb, allowing a person running the

modified LSTRaP-Crowd pipeline to download ~300 RNA-seq samples per day (Tan et

al., 2020). Theoretically, 85,500 (300*285) RNA-seq samples equivalent to ~85Tb,

could be processed per day by the classroom. 
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Figure 2. Quality control of the 26270 RNA-seq samples. A) % pseudoaligned (p_pseudoaligned) threshold set for

the 17 bacteria. B) The percentage of samples that passed (blue) or failed the p_pseudoaligned and

n_pseudoaligned>1000000 thresholds. 

 

For each species, all the processed RNA-seq experiments were visualized as scatter

plots, that show the percentage (y-axis) against the number (x-label) of reads

pseudoaligned to the respective species’ CDS. For each experiment, high

pseudoalignment percentage indicates high sequence similarity to the CDS, whereas a

high absolute number of reads indicates whether the experiment has sufficient data for

meaningful coexpression analysis. In this study, a minimum threshold of 1 million reads
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pseudoaligned was required for the experiment to be considered. We removed samples 

with n_pseudoaligned<1,000,000 and with p_pseudoaligned values that were lower 

than the majority of the high p_pseudoaligned samples (typically >30%) (Figure 2, 

Figure S1). The scatterplot pattern was different for each bacteria, most likely due to 

each bacteria having a different ratio of coding to non-coding DNA (Figure S1). Samples 

that passed these thresholds were used to build expression matrices (Supplementary 

Data 1) and used for the co-expression analysis and identification of novel genes 

involved in protein synthesis.  

Construction and evaluation of co-expression networks for the 17 bacteria  

A small portion of real-world networks is scale-free (Broido and Clauset, 2019), 

including co-expression networks (Mutwil et al., 2010). In scale-free networks, only a 

few genes are connected (correlated) to many genes, while the majority of genes show 

only a few connections (Barabási and Bonabeau, 2003). Scale-free topology is 

hypothesized to ensure that the network remains mostly unaltered in case of mutations, 

and is an evolved property that ensures robustness against perturbations (Barabási and 

Oltvai, 2004). To demonstrate that the expression data of the 17 bacteria can generate 

biologically meaningful co-expression networks, we investigated whether the data can 

produce a typical scale-free network. All of the co-expression networks of the 17 

bacteria showed a pattern indicative of scale-free topology, as plotting the number of 

connections a gene has (node degree) against the frequency of this association 

produced a negative slope (Figure 3A). This confirms the scale-free topology of the co-

expression networks and suggests that the networks are biologically relevant.  

Interestingly, we observed that the power-law plots of some bacteria contain 

more nodes with a higher degree than expected from a network following power law 

(Figure 3A, indicated by red squares). While the basis of this phenomenon is outside of 

the scope of this publication, we speculate that this is caused by the operon structure of 

the bacterial genes. Interestingly, certain bacteria, such as Vibrio cholerae (Figure 3A) 

did not show this pattern. Finally, Mycoplasma pneumoniae power-law plot showed a 

small number of points, indicating that few genes show PCC>0.7 in this bacteria. This 
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could be attributed to most samples in this bacterium showing worse mapping statistics

than the other 16 bacteria (Figure 2A, Figure S1), indicating that perhaps the available

CDS for Mycoplasma are of poor quality.  

Figure 3. Power-law and example of a ribosomal network. A) Power-law plot obtained from the expression data of

the 17 bacteria. The x-axis shows the node degree (number of co-expression connections of a gene), while the y-axis

indicates the frequency of a degree. Pearson Correlation Coefficient (PCC) > 0.7 was used to decide whether two

genes are co-expressed. The two axes are log10-transformed. B) Co-expression neighborhood of AEA92696 from

Enterococcus faecalis (red square), a 30S ribosomal protein S18, and the 50 most highly co-expressed genes

(including AEA92696). Nodes indicate genes, while gray edges connect genes with PCC > 0.7. Blue nodes represent

ribosomal genes, green nodes represent genes with ‘Hypothetical protein’ in their description, while gray nodes

indicate genes with other functions.  

To demonstrate that our co-expression networks can be used to predict novel

components of ribosomes, we investigated the co-expression neighborhood of

AEA92696, a 30S ribosomal protein S18 from Enterococcus faecalis. The neighborhood

was constructed by retrieving the top 50 genes with the highest PCC values to

AEA92696 (Table S2), where gene pairs with PCC>0.7 are connected (Figure 3B). Out

of 50 genes, 22 were annotated as a component of the 30S (e.g., S15, S4, S3) or 50S

(e.g., L15, L3, L14) ribosomal subunit, indicating that genes in this neighborhood are

involved in protein synthesis. Interestingly, 7 genes in the neighborhood are annotated
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as ‘hypothetical proteins’ (Figure 3B). Since these genes are found in the neighborhood

that is likely to be involved in protein synthesis, we propose that these hypothetical

proteins are also involved in protein synthesis in Enterococcus faecalis. 

Figure 4. Predicting novel components of ribosomes in the 17 bacteria. A) The percentage of genes with

unknown function (orange bars) and ribosomal genes (blue bars) in the genomes of the 17 bacteria. B) Number of

genes with unknown function that are predicted to be involved in protein synthesis in the 17 bacteria. The predictions

made by the 60 groups are shown in rows, and the groups are numbered (e.g., E.coli data is divided into 13 groups).

Predictions made on all available data are indicated by ‘All’ in the group column. The last five columns indicate the

cutoff that was used to assign a gene with unknown function to protein synthesis. For example, cutoff 

indicates that at least 10% (5) of genes in the top 50 co-expressed genes were annotated as ribosomal proteins. 

Prediction of novel components of ribosomes by a meta-analysis of the co-

expression networks 

To predict which genes with unknown function are involved in protein synthesis in the

17 bacteria, we first identified genes that are involved in protein synthesis (search term
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‘ribosom’) or shared no similarity to any characterized gene (search term ‘hypothetical’, 

‘DUF’, ‘conserved’). The analysis revealed that typically, the ribosomal genes constitute 

~5% of all genes in a bacterial genome (Figure 4A). In comparison, the number of 

genes that are without functional annotation varies from <1% (Salmonella enterica) to 

43% (Helicobacter pylori).  

 Next, to predict uncharacterized genes that are involved in protein synthesis, we 

calculated the percentage of ribosomal genes that are co-expressed with each 

uncharacterized gene. More specifically, we looked at the top 50 co-expressed genes of 

each uncharacterized gene and calculated the percentage of ribosomal genes in this 

list. The analysis is based on the example shown above (Figure 3B), where a high 

percentage (43%) of ribosomal genes co-expressed with AEA92696 indicate that this 

gene is involved in protein synthesis. We set a percentage threshold that annotates a 

gene with unknown function as involved in protein synthesis if at least 10% (i.e., at least 

5 out of 50 genes), 30%, 50%, 70% or 90% of its top 50 co-expressed genes are 

involved in protein synthesis. By increasing the threshold, the prediction can be made 

more stringent, at the cost of the number of genes with the unknown function assigned 

to protein synthesis (Figure 4B, Table S2).  

 We observed a varying number of predictions between the different bacteria, 

ranging from 0 uncharacterized genes assigned to protein synthesis (Staphylococcus 

aureus, Salmonella enterica) to 22 (Mycobacterium tuberculosis, Figure 4B). As 

expected, the number of predictions dropped when the percentage threshold was 

increased, with almost no genes assigned to protein synthesis at � 50%threshold. 

Interestingly, we observed a good agreement between the number of predictions made 

by different student groups. For example, Mycobacterium tuberculosis expression data 

(6495 samples, Table 1) was divided among 11 student groups and used to perform 11 

independent predictions (group 1-11), which we compared to a prediction based on the 

combined data (All). The prediction based on all data (14 uncharacterized genes 

assigned to protein synthesis at 10% threshold) did not have more (22 predicted genes, 

group 9) or less (8 predicted genes, group 11). Furthermore, while each group predicted 
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some unique genes, the majority of the predictions identified the same set of genes, 

indicating that more data is not necessarily better in this scenario. 

 

Discussion 

Protein sequence similarity is commonly used to transfer molecular function annotation 

from one protein to another (Kulmanov et al., 2018). Molecular function annotation by 

sequence comparison is commonly performed using programs such as BLAST (Altschul 

et al., 1997) and InterProScan (Quevillon et al., 2005). However, a substantial 

proportion of coding sequences lack sequence similarity to any characterized genes 

(Figure 4)(Rhee and Mutwil, 2014; Ruprecht et al., 2017), making sequence similarity-

based inference of gene function unsuitable. An excellent example of this limitation are 

genes that we have analyzed in this study. Since these genes are annotated as 

‘hypothetical protein', ‘domain of unknown function’, or ‘conserved protein’, there is no 

reference sequence that can be used to elucidate their function.   

Transcriptomic data is a rapidly growing resource that captures gene expression 

levels of all genes in an organism. Co-expression analysis is based on the observation 

that functionally related genes tend to have similar expression profiles across different 

experiments, and has become a powerful tool for predicting gene function (Wu et al., 

2002). We applied this approach to identify novel components of protein synthesis 

machinery in the 17 most notorious bacteria pathogens, for which sufficient (defined as 

> 100 RNA-seq samples) expression data exists (Table 1). In this study, we achieved 

two aims. 

Firstly, we show co-expression analysis can be used to predict novel candidates 

of bacterial ribosomes. We observed that ribosomal proteins tend to be strongly co-

expressed (Figure 3B), suggesting that uncharacterized genes co-expressed with the 

ribosomal proteins are likely involved in some aspect (ribosome assembly, protein 

synthesis, termination) of protein synthesis. We predicted a substantial number of novel 

genes involved in protein synthesis for 15 out of 17 bacteria (Figure 4B, Table S3), that 
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can serve as good targets to develop species-specific antibiotics. The available 

expression data (Supplemental Data 1) for the 17 bacteria can be further mined to study 

other biological functions and vulnerabilities (e.g., cell wall, RNA, and DNA 

biosynthesis) of these bacteria.  

Secondly, we show that such analysis can be outsourced to a large group of 

individuals. Here, the gene expression data was streamed and pseudo-aligned by 285 

first-year undergraduate students, as part of the Computational Thinking class project. 

To this end, we used a modified LSTrAP-Cloud pipeline (Tan et al., 2020), where the 

students were divided into 60 groups, and each group was tasked to download and 

perform quality-control of ~600 samples over a week (Figure 1-2, Table 1). 

Theoretically, 85,500 (300*285) RNA-seq samples equivalent to ~85Tb could be 

processed per day by the class, providing a computing power rivaling a high-end 

computer cluster. While each student had access to only two Xeon cores, one of the 

major bottlenecks in processing the voluminous RNA-seq data, data download, was 

circumvented by fast internet connection of each Google Colab virtual machine.  

While similar approaches are used by, e.g., folding@home, it is to our knowledge 

the first attempt to process gene expression data in such a manner. We envision that 

similar approaches will soon allow us to study gene expression data within and across 

whole kingdoms of life. 

Supplemental figures 

Figure S1. Scatter plot showing the number (x-axis) and percentage (y-axis) of 

pseudoaligned reads for the 17 bacteria. 

Figure S2. Power-law plot of the 17 bacteria. The x-axis shows the node degree 

(number of coexpression connections of a gene, PCC>0.7), while the y-axis indicates 

the frequency of a degree. The two axes are log10-transformed. 
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Supplemental tables 

Table S1. Quality control of the RNA-seq samples. The table indicates the species 

(first column), sample ID (second column), group ID processing the sample (third 

column), number of pseudoaligned reads (fourth column), percentage of pseudoaligned 

reads (fifth column) and an indication whether the sample passed the set quality 

thresholds (sixth column). 

Table S2. Co-expression neighborhood of AEA92696 from Enterococcus faecalis. 

The genes are sorted according to the Pearson Correlation Coefficient (r, first column). 

The gene IDs (second column), type (third column, 1 = ribosomal protein, 2 = gene with 

unknown function, 0 = not 1 or 2) and annotation (fourth column) are indicated. 

Table S3. Uncharacterized genes predicted to be involved in protein synthesis. 

Each row contains genes with unknown functions predicted to be involved in protein 

synthesis. The rows contain predictions made by each group (indicated by numbers) or 

by all available data (All data). The columns indicate the (i) bacteria, (ii) group ID, (iii-vii) 

predicted genes at the different percentage thresholds. 
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