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Abstract  
 
Motivation  
Coronaviridae are a family of positive-
sense RNA viruses capable of infecting 
humans and animals.  These viruses 
usually cause a mild to moderate upper 
respiratory tract infection, however, they 
can also cause more severe symptoms, 
gastrointestinal and central nervous 
system diseases.  These viruses are 
capable of flexibly adapting to new 
environments, hence health threats from 
coronavirus are constant and long-term.  
Immunogenic spike proteins are glyco-
proteins found on the surface of 
Coronaviridae particles that mediate entry 
to host cells.  The aim of this study was to 
train deep learning neural networks to 
produce simulated spike protein 
sequences, which may be able to aid in 
knowledge and/or vaccine design by 
creating alternative possible spike 
sequences that could arise from zoonotic 
sources in future. 
Results 
Here we have trained deep learning 
recurrent neural networks (RNN) to provide 
computer-simulated coronavirus spike 
protein sequences in the style of previously 
known sequences and examine their 
characteristics. Training used a dataset of 
alpha, beta, gamma and delta coronavirus 
spike sequences.  In a test set of 100 
simulated sequences, all 100 had most 
significant BLAST matches to Spike 
proteins in searches against NCBI non-
redundant dataset (NR) and also possessed 
concomitant Pfam domain matches. 
 
 

 
Conclusions 
Simulated sequences from the neural 
network may be able to guide us in future 
with prospective targets for vaccine 
discovery in advance of a potential novel 
zoonosis.  We may effectively be able to 
fast-forward through evolution using 
neural networks to investigate sequences 
that could arise. 
 
Introduction 
1.1 Coronaviridae 

Coronaviridae are a family of large, 
enveloped single-stranded positive-sense 
RNA viruses encompassing alpha, beta, 
gamma and delta coronavirus divisions1 as 
well as unclassified divisions in the 
sequence databases. The genome is 
packed inside a helical capsid and is further 
surrounded by an envelope.  The spike 
protein forms large protrusions from the 
virus surface, giving the coronaviruses the 
appearance of wearing a ‘crown’ under 
electron microscopy.  Coronaviruses have 
the ability to infect a wide range of 
different animals and usually cause mild to 
moderate upper-respiratory tract illnesses, 
however they can also cause severe 
respiratory infections as well as 
gastrointestinal and central nervous 
system diseases.  Coronaviruses circulate 
among humans and animals such as bats, 
pigs, camels, and cats1.  Recent zoonoses 
include SARS Coronavirus (SARS-CoV), 
which emerged in November 2002 and 
became effectively extinct by 20042–5.  
Middle East Respiratory Syndrome (MERS-
CoV) was believed to be transmitted from 
an animal reservoir in camels in 20126.  In 
veterinary terms, CoV such as porcine 
epidemic diarrhea coronavirus (PEDV)  
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causes an extremely high fatality rate in 
piglets7. SARS-CoV-2 emerged from China 
in 20198,9 and was declared a pandemic 
during the first quarter of 2020 with an 
extremely high requirement for a vaccine 
to be provided in a short timeframe.  Spike 
protein is a multifunctional viral protein 
found on the outside of the virus particle.  
It initially binds a host cell receptor though 
its S1 subunit and fuses viral and host 
membranes through its S2 subunit.   In 
addition to mediating entry, the spike is a 
critical determinant of viral host range and 
a major inducer of host immune 
responses10.  Due to the key role of the S 
protein, it is the main target for antibody-
mediated neutralization11. 

   
1.2 A brief history of Artificial 
Intelligence and Deep Learning 

Artificial intelligence, based on the 
assumption that the process of human 
thought can be mechanized was first 
conceived as an academic discipline in 
1956 following Turing’s landmark paper in 
195012.  Deep learning (DL) is a subset of 
Artificial Intelligence that employs deep 
neural networks requiring the use of a 
training set and are modelled on the 
circuitry in the human brain.  DL has its 
roots in Rosenblatt’s Perceptron neural 
network of 1957-196013.  DL algorithms 
use multiple layers to progressively extract 
higher level features from raw input. Many 
different architectures of neural network 
exist, and for the most part are involved in 
applications with image recognition. Some 
recent uses of DL include self-driving cars 
and robots; with creative projects using DL 
to compose music, create novel art from 
different styles of art and write ‘fake news’.  
The recent advent of much increased 
processing power and availability in the 
shape of graphical processing units (GPUs), 
and CUDA architecture from Nvidia, have 
paved the way for a renewed interest in 
machine learning and DL algorithms. 
 
 
 

1.3  Recurrent Neural Network 
The recurrent neural network (RNN) 

is a type of neural network usually used for 
text encoding implementations, mainly 
through whole word encoding and the bag 
of words concept.  Whilst character 
encoding has been used on occasion this is 
less often used and is less well supported 
by software libraries, potentially due to 
higher memory requirements.  The 
recurrent neural network (RNN)14, is 
trained on a set of sequences using an 
optimization algorithm with estimations of 
gradient descent combined with 
backpropagation through time.  The RNN 
has the potential to consider previously 
seen data such as the character or word 
that came before the current time step 
using units such as long short-term 
memory cells15 (LSTM) or gated recurrent 
units16 (GRU).    
 
1.4 Current and upcoming uses for DL 
in medicine and health care 

Recently, uses for DL have been 
described in health care, particularly in 
screening for breast cancer17,18 and for use 
with electrocardiogram (ECG) traces19,20.  
Potential novel antibiotics were searched 
out by screening known drug databases for 
structures21.  The strength of this approach 
lies in that these drugs already have 
significant results and may have clinical 
trial data.  In 2007,  Hochreiter, Heusel and 
Obermayer proposed the use of LSTM for 
protein homology detection15, commenting 
that LSTM is capable of automatically 
extracting local and global sequence 
statistics like hydrophobicity, polarity, 
volume and polarizability and combining 
them with a pattern. 
Common bioinformatic techniques involve 
searching and identifying matches and 
differences both at small and larger scale 
and clustering sequences.  Hochreiter, 
Heusel and Obermayer specifically 
identified the following features during the 
use of RNNs which would not be otherwise 
identified using other common 
bioinformatic techniques. 
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(i) extraction of dependencies between 
subsequences. A subsequence AB, e.g. 
may only be indicative if it is followed 
later by the subsequence CD 

(ii) extraction of correlations within 
subsequences. Both 
AB and CD subsequences  may be 
indicative for the class (motif [AC]–
[BD]), however, AD may not be 
indicative for the class (AD is 
a negative pattern) 

(iii) extraction of global sequence 
characteristics (hydrophobicity or 
atomic weight)  
and 

(iv)  extraction of dependencies between 
amino acids which range over a long 
interval in the amino acid sequence. 

 
Methods 
2.1 Recurrent Neural Network (RNN) 
Architecture 
In creating the model described in this 
study, character encoding was used on the 
sequences in the training set.  Alternative 
model architectures were considered and 
trialled, however, the most successful was 
composed of a single embedding layer and 
a gated recurrent unit (GRU) with 1024 
RNN units followed by a dense linear layer.  
The model was trained in Tensorflow 
2.1.022 with Keras23 using an Adam 
optimizer24 with AMSgrad25 option and 
adaptive learning rate over 15 epochs, 
where losses fell gradually from an initial 
3.259 to 0.266.  Python 3.5 and above is 
required.  Figures 1 and 3 were generated 
in R 3.5.1 (‘Feather Spray’)26 with ggplot227 
libraries and the Wes Anderson colour 
palette. 
 
2.2  Coronavirus training set 

A training dataset was formulated 
from a wide variety of coronavirus spike 
protein sequences from alpha, beta, 
gamma and delta coronaviruses and 
constituted isolates from many different 

animals.  The dataset was downloaded 
from NCBI Genbank on 19th March 2020, 
prior to any very large release of newly 
sequenced beta-coronaviruses from SARS-
CoV-2, which at the time of writing are 
destined for later release and stored at 
Gisaid.org. The total number of spike 
protein sequences in the final training 
dataset was 2406, encompassing 511 
sequences from Human CoV including 
examples of SARS-CoV-1 and MERS as well 
as SARS-CoV-2 (hCoV-19), 232 Bovine, 194 
Noctilionine (Bat), 106 Porcine and several 
samples from other animals including 
camel, Chinese ferret-badger, hedgehog, 
dog, deer, avian and whale.  Downloaded 
sequences were searched and cleaned to 
remove poorer quality and partial 
sequences and subunits. 
 
Results 
3.1 Training dataset manipulation 

Newer sequences of SARS-CoV-2 
were not included in the training dataset in 
the belief that the high number of these 
closely-related beta coronavirus (CoV) 
sequences could cause bias in the training 
dataset.  Initial processing involved 
generating a file of 4424729 sequences of 
15-mer Kmer windows (overlapping 
sequences shifted by one amino acid at a 
time).  This is a recognised strategy to help 
with longer sequences.  However, the 
length of the Kmer was later raised to 100 
to improve results and thereafter 
generated on the fly.    
Preliminary investigations on this dataset 
trained an RNN for hundreds of epochs on 
GPU with one-hot encoding and with deep 
LSTM cells.  However, a model with a 
cleaner dataset, a GRU and character 
indexing proved more successful and 
relevant in providing simulated sequences. 
Characteristics of the sequences are 
examined below.  
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Figure 1.  Comparison of the amino acid composition of the real and simulated proteins 
 

 
 
Figure 1.  Boxplot graph showing the amino acid composition of each amino acid as a fraction of the protein 
sequence in both the real dataset (red) and the synthesized dataset (blue).  The line in the box represents the 
median. The amino acid single letter code is shown on the X axis with the fraction of the amino acid in each 
sequence on the y axis as calculated by Biopython ProtParam module.  The ‘Real’ dataset comprised 2406 
sequences in total whilst the ‘Synth’ simulated example dataset was a sample of 100 sequences.   
 
These downstream sequences were used 
to investigate the possibility of creating 
simulated new spike protein sequences 
that could potentially arise as a chance 
zoonosis event in future.   
 
3.2 Characteristics of DL simulated 
Spike proteins. 

To create predictions, the RNN is 
initially given a short seed protein 
sequence.  The seed sequence can be 
passed as a random choice from previously 
sequenced spike proteins or formulated of 
random choices of amino acids starting 
with Methionine chosen by the python 
random library.  In this study, the RNN was 
then able to provide sequences up to the 
full length of spike protein, a maximum 
length in the input dataset of 1582 amino 
acids with a mean length of 1324.4 amino 
acids.  The maximum sequence identity 
that a simulated sequence achieved in 
BLAST matches against the training set 

was 100% sequence identity over 875 
amino acids with a temperature scaling 
value of 1.0 (see below for details) or 
100% identity over the full length of the 
protein with a temperature scaling value of 
0.5.  The lengths of all the synthesized 
proteins were fixed at 1588 amino acids.   
A dataset of 100 DL synthesised spike 
protein sequences was collected for 
preliminary investigations.  The RNN was 
initially provided with seed sequences of 16 
amino acids chosen at random from the full 
dataset of spike proteins.  The amino acid 
complement of the real and synthesized 
spike proteins in the datasets is as 
compared below in Figure 1.  Although the 
amino acid complements show some 
differences, it is clear that there are 
significant similarities across the two 
datasets.   The simulated sequences 
generated for this figure are provided with 
the model and source code (as described 
below).
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3.21 Sequence matching 
All 100 of the simulated sequences 

had a significant BLASTP match to Spike 
protein from one or more coronavirus 
sequences with BLAST searches of the 
query sequences against the entire 
database of NR.  A partial example 
alignment is shown in Figure 2 with a full 
alignment in Supplementary Data 1. 
Figure 2.  Partial BLAST alignment of 
Spike protein from a simulated query 
protein against Bat coronavirus RaTG1328  
 
Query  1     
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFS  60 
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNS TRGVYYPDKVFRSSVLH TQDLFLPFFS 
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSSTRGVYYPDKVFRSSVLHLTQDLFLPFFS  60 
Sbjct  1 
 
Query  61    
NVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIV  120 
NVTWFHAIHVSGTNG KRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIV 
NVTWFHAIHVSGTNGIKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIV  120 
Sbjct  61     
 
Query  121   
NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE  180            
NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE 
NNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLE  180 
Sbjct  121    
 
Query  181   
GKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPPGFSALEPLVDLPIGINITRFQT  240 
GKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPPGFSALEPLVDLPIGINITRFQT 
GKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPPGFSALEPLVDLPIGINITRFQT  240 
Sbjct  181    

 
Figure 2.  Partial BLASTP alignment of search of a 
Query (Query) simulated sequence against a member 
of the training dataset of real spike proteins (Sbjct).  In 
total the identities were 940/1065 (88%) and positives 
were 1003/1065 (94%).  The complete alignment is 
shown in Supplementary Data 1 (S1).  
 
The real spike protein training dataset was 
clustered and deduplicated using cd-hit 
with default parameters resulting in 154 
clusters.  The 100 simulated sequences 
were searched with BLASTP against the 
representative cluster sequences.  Figure 
3A shows that the best BLAST hits for the 
first set of simulated sequences covered 
several distinct clusters.  There were 
several hits to MERS clusters, possibly due 
to a high representation of MERS in the 
training set.  Figure 3B shows the 
equivalent BLAST hits on the second set of 
100 simulated sequences that each had an 
identical seed text of 64 amino acids from 
the start of SARS-CoV-2 spike.  There are a 
high number of SARS-CoV matches, as well 
as Bat SARS-like sequences, although 

some samples still shared high identities 
with MERS sequences. 
 
3.22 Pfam domain complements of 
simulated protein sequences 
Significant Pfam domain hits were 
uncovered on searching the query 
sequences with HMMER329 using 
hmmsearch against the Pfam-A30 database. 
HMMER3 searches of the synthesized 
proteins against Pfam_A.hmm database 
revealed Pfam domains that were expected 
within a coronavirus spike protein (below). 
 
Table 1. Pfam Domain complements in the 
100 simulated sequences 
 

Pfam domain Pfam 
DB 

Full Name Count  

Corona_S2 Pfam-A Coronavirus S2 
glycoprotein 

100 

Corona_S1 Pfam-A Coronavirus S1 
glycoprotein 

13 

Spike_rec_bind Pfam-A Spike receptor 
binding domain 

81 

Spike_NTD Pfam-A Spike 
glycoprotein N-
terminal 

53 

CoV_NSP2_C Pfam-
A.SARS-
CoV-2 

Coronavirus 
replicase NSP2,  
C-terminus 

6 

CoV_S1_C Pfam-
A.SARS-
CoV-2 

Coronavirus 
Spike S1, C-
terminus 

75 

bCoV_S1_RBD Pfam-
A.SARS-
CoV-2 

Betacoronavirus 
Spike S1, 
receptor-binding 

82 

bCoV_S1_N Pfam-
A.SARS-
CoV-2 

Betacoronavirus-
like spike S1,  
N-terminus 

88 

CoV_S2 Pfam-
A.SARS-
CoV-2 

Coronavirus 
Spike 
glycoprotein S2 

100 

 
Table 1.  Common Pfam domains and their counts 
identified within the original 100 simulated sequences 
which are also found in real Spike proteins, showing 
that all 100 sequences had C-terminal Spike domains.  
Other domains were identified in full Pfam-A but the 
most common were Corona_S2, Spike_rec_bind and 
Spike_NTD.  Database Pfam-A.SARS-CoV-2 refers to 
the April 2, 2020 update for SARS-CoV Pfam domains 
(Xfam Blog 
https://xfam.wordpress.com/2020/04/02/pfam-sars-
cov-2-special-update/)  
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Figure 3.  BLAST matches of simulated sequences against known Spike proteins 
Fig. 3A

 
 
Fig. 3B

 
 
BLAST searches of DL synthesized sequences against a clustered version of the Spike protein 
sequence training set. 
3A shows BLAST searches of the original 100 DL synthesized sequences filtered for matches by length over 200bp 
and identity over 90%.  3B shows the second set of DL synthesized sequences which were all given identical feeder 
sequence of 64 amino acids from the start of SARS-CoV-2.  This graph is filtered for matches by length over 500 
bp and identity over 90%. Highest length matches are represented by the largest diameter circle and most red 
colour.  However, large circles are generally of interest since the identity cut-off is high. Unfiltered data is presented 
in Supplementary Figure  1. 
 
This compared favourably with the most 
commonly found domains within the real 
training dataset of 2504 proteins which had 
1781 domains of Spike_rec_bind, 2413 
Corona_S2, 1052 Spike_NTD and 502 
Corona_S1 (Coronavirus S1 glycoprotein 
domain) among others.  According to Pfam 
architectures30, domain Corona_S2 is found 
in real spike proteins in the databases with 
either Corona_S1, Spike_NTD and 
Spike_rec_bind, just Spike_rec_bind, with 
Spike_NTD and 2 x Spike_rec_bind and in 
some sequences as a standalone domain.  
 
3.33 Prediction temperature 
parameter 

During prediction, probabilities are 
generated for the next character in the 
sequence of the amino acid single letter 
alphabet.  A parameter known as the 

‘temperature’ of 0.5 produces more similar 
sequences by scaling the resultant 
probabilities of the multinomial distribution, 
for example the model was able to reach 
100% identity over the full length of Spike 
SARS glycoprotein at a temperature of 0.5 
with the only differences being in the seed 
text.  The purpose of this study is to 
provide sequences that are not identical to 
known sequences hence we may find 
better use of a higher temperature value. 
A second dataset sample of 100 
synthesized sequences was formed by 
specifically using a seed text of 64 amino 
acids from the SARS-CoV-2 spike protein 
for each simulated sequence.  When 
simulated sequences were clustered with 
cd-hit31 at the default 90% level of identity, 
the dataset provided 51 separate clusters
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in which Cluster 0 had 27 members ranging 
from 92% - 100% identity which 
corresponded to SARS-CoV-1 type, Cluster 
1 had 13 members of 97-100% identity 
which corresponded to Bat RaTG13/SARS-
CoV-2 type, Cluster 38 had 3 members 
corresponding to MERS type, Clusters 2, 8 
and 8 each had two members, each 
example of the rest of the dataset clustered 
separately. Therefore, the seed text 
provided SARS-like hits in several but not 
all cases. 
Once the initial predicted protein is 
finished, the prediction commences a new 
protein again immediately if the maximum 
number of characters has not been 
reached.  Therefore, in some cases there 
were hybrid matches to parts of sequence 
from spike proteins in the dataset.   
Some sequences were definitively of 
interest to this study, such as a synthesized 
protein with 97% full length identity to a 
Bat beta-coronavirus sequence isolated 
from Chaerephon plicata in Yunnan in 
201132.  Further sequences of interest 
included those with high identity over 
stretches of the protein sequence to SARS-
CoV-1 or SARS-CoV-2, particularly those 
including hybrid regions.  This dataset is 
provided with the model and source (as 
described below).   
With the study of the most relevant 
sequences of 2020, SARS-CoV-1 and SARS-
CoV-2 in mind, a much larger dataset of 
1000 simulated sequences was generated 
with the same SARS-CoV seed text as 
previously.  These simulated sequences 
were clustered with cd-hit and clusters 
corresponding to SARS-CoV-1 and SARS-
CoV-2 were aligned together with 
examples of the real spike proteins from 
SARS-CoV-1 and SARS-CoV-2.  Alignments 
were sliced in Biopython to remove extra 
sequences at the ends and the seed text at 
the start.  The resulting multiple sequence 
alignment is shown in Supplementary 
Figure 2.  This alignment indicates that 
residues important in human ACE2 
recognition33 are broadly conserved across 
the simulated sequences.  

 

Conclusions 
This study used a comprehensive training 
set formulated from Coronavirus Spike 
protein sequences in the sequence 
databases for DL neural networks to 
produce novel sequence from a short 
feeder seed text.  The novel sequences 
share features that can be searched with 
bioinformatics tools to bring out highly 
significant BLAST matches and Pfam 
domain matches. That each of the 
sequences examined had BLAST and Pfam 
matches to Spike protein is exciting and 
warrants further consideration. 
   Interestingly, in an example of a very 
accurate alignment, the prediction query 
was able to fill in a blank amino acid (G) 
where one was called as X in the real 
sequence that exactly matched other 
sequences of that type.  It is to be noted 
that the generation of very large numbers 
of these synthesized sequences from the 
trained data is trivial and many thousands 
can be further generated and examined 
from the model  
(model & source code available at: 
https://github.com/LCrossman).  It is 
hoped that the simulated sequences may 
have the potential to aid in forthcoming 
vaccine searches effectively by allowing a 
peek into a fast-forward of evolution to see 
what sequences may possibly arise in 
future.  However, it is to be noted that the 
training set is only as comprehensive as the 
initial database, animal CoV sequences 
may exist elsewhere that are not present in 
our database.  Additionally, biases may 
exist, for example, the training set is 
overrepresented in MERS sequences and 
these are also heavily represented in the 
random simulated sequences.  In some 
cases the resultant protein may not 
represent a viable protein (there could be 
stability or other issues).  One additional 
potential issue could be that the premise is 
difficult to test. 
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Nonetheless, the potential production of 
novel sequence by DL is exciting and 
warrants further consideration.   
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