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ABSTRACT 24 

Artificial sweetener consumption by pregnant women has been associated with an increased risk 25 

of infant obesity, but the underlying mechanisms are unknown. We aimed to determine if 26 

maternal consumption of artificially sweetened beverages (ASB) during pregnancy is associated 27 

with modifications of infant gut bacterial community composition during the first year of life, 28 

and whether these alterations are linked with infant body mass index (BMI) at one year of age. 29 

This research included 100 infants from the prospective Canadian CHILD Cohort Study, selected 30 

based on maternal ASB consumption during pregnancy (50 non-consumers and 50 daily 31 

consumers). We identified four microbiome clusters, of which two recapitulated the maturation 32 

trajectory of the infant gut bacterial communities from immature to mature and two deviated 33 

from this trajectory. Maternal ASB consumption was associated with the depletion of several 34 

Bacteroides sp. and higher infant BMI. As we face an unprecedented rise in childhood obesity, 35 

future studies should evaluate the causal role of gut microbiota in the association between 36 

maternal ASB consumption, infant development and metabolism, and body composition.  37 
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INTRODUCTION 38 

Childhood obesity in the United States increased from 5 to 18.5 percent between 1978 and 39 

2016
1
, magnifying the risk of cardiometabolic disease and mental health disorders later in life

2
. 40 

Recent work from the CHILD Cohort Study showed that maternal consumption of artificially 41 

sweetened beverages (ASB) during pregnancy is associated with higher infant body mass index 42 

(BMI) at one year of age
3
. Importantly, this association was independent of key obesity risk 43 

factors, such as maternal BMI, smoking, poor diet, diabetes, short breastfeeding duration, and 44 

earlier introduction of solid food
3
. Similar associations have been reported in several other 45 

prospective birth cohorts
4
, but the underlying mechanism has not been studied. 46 

The gastrointestinal tract, a key site for host metabolic regulation
5,6

, is colonized by a vast 47 

community of microbes including bacteria, viruses, and micro-eukaryotes
7
. The gut microbiome 48 

is highly heterogeneous during infancy, characterized by colonization patterns
8-10

 that are 49 

influenced by the maternal microbiome
11,12

, method of birth 
13-15

, infant nutrition (breast milk or 50 

formula)
16-18

, and antibiotic treatment
14,19

. Simultaneously, important aspects of metabolic 51 

development occur during this period of life, many of which rely on interactions between 52 

microbes and host cells
20

. Recent studies in mice show that artificial sweetener consumption 53 

during pregnancy predisposes offspring to increased weight gain through behavioral (i.e. 54 

preference for sweet foods, appetite increase) and physiological mechanisms (i.e. stimulation of 55 

intestinal sugar absorption, increased postnatal weight gain, altered lipid profiles, 56 

downregulation of hepatic detoxification, and increased insulin resistance)
21-24

. Suez et al.
25

 57 

demonstrated that artificial sweetener consumption in adult mice directly impacts gut 58 

microbiome composition and function, leading to an increase in host glucose intolerance. More 59 

recently, Stichelen et al.
24

 addressed gestational exposure to artificial sweeteners, finding 60 
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changes in bacterial metabolites and an decrease in Akkermansia municiphila in the pups’ gut 61 

microbiome. However, the consequences of maternal artificial sweetener consumption during 62 

pregnancy on the infant gut microbiota has not been reported in humans. 63 

To address this knowledge gap and build on our prior observations in the CHILD Cohort 64 

Study, we evaluated the association of maternal artificially sweetened beverage (ASB) 65 

consumption during pregnancy with the infant gut microbiota in a subset of 100 infants (50 with 66 

daily maternal ASB consumption during pregnancy and 50 unexposed controls). We employed 67 

next generation sequencing of the 16S rRNA amplicon gene combined with a community typing 68 

analysis (Dirichlet Multinomial Mixtures [DMM] modelling)
26

 to understand if ASB intake was 69 

associated with a shift in infant microbiota composition that might explain the relationship 70 

between maternal ASB intake during pregnancy and infant BMI at one year of age. 71 

 72 

METHODS 73 

Study design and population 74 

We used data and samples collected through the CHILD Cohort Study
27,28

, a Canadian general 75 

population birth cohort (3621 families recruited across four provinces) including singleton 76 

pregnancies (>35 weeks gestational age with no congenital abnormalities) enrolled from 2008 to 77 

2012. From this cohort, we completed a case-control study by selecting 100 infants divided 78 

equally between mothers that reported little or no ASB consumption (less than one per month) or 79 

high ASB consumption (one or more per day) during pregnancy. The groups were balanced for 80 

six potential confounding factors known to influence the gut microbiome: infant sex, birth mode, 81 

breastfeeding at three and 12 months, maternal BMI, and antibiotic use in infants before 12 82 

months (antibiotics before three months old was an exclusion criterion; eTable 1). To 83 
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characterize the gut microbiome, stool samples were acquired at three and 12 months of age for a 84 

total of 200 samples. This study was approved by the University of Calgary Conjoint Health 85 

Research Ethics Board (CHREB) and ethics committees at the Hospital for Sick Children, and 86 

the Universities of Manitoba, Alberta, and British Columbia. Written informed consent was 87 

obtained from mothers during enrollment to the CHILD Study. 88 

 89 

Maternal diet in pregnancy 90 

Maternal dietary assessment in pregnancy has previously been described
3
. Briefly, a food 91 

frequency questionnaire (FFQ) was completed during the second or third trimester and ASB 92 

consumption was evaluated using reports of “diet soft drinks or pop” (i.e. soda) 93 

(serving = 12 oz / one can) and “artificial sweetener added to tea or coffee” (serving = 1 packet). 94 

Other dietary variables included: sugar-sweetened beverages, Healthy Eating Index (HEI) total 95 

score (see eMethods), added sugar and total energy intake. 96 

 97 

Infant BMI 98 

BMI was measured by CHILD staff to the nearest 0.1 kg around one year of age (mean = 12.0 99 

months ± 0.8 [sd]) and height to the nearest 0.1 cm. Age- and sex-specific BMI-for-age z-scores 100 

were calculated following the World Health Organization reference
29

. 101 

 102 

Other variables 103 

The following variables were considered in univariable analyses (see eMethods): (1) infant’s sex, 104 

age at sample collection, breastfeeding duration (BF duration; months), breastfeeding status at 105 

three months (BF at 3M; yes or no), diet at three and six months (Diet at 3M and Diet at 6M; 106 
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both defined in 8 categories allocated based on the presence in the infant’s diet of breastfeeding, 107 

formula, and solids), solids at three and six months (Solids at 3M and Solids at 6M), formula 108 

feeding at three months (FF at 3M), number of antibiotic treatments received from six to twelve 109 

months (Child 6-12 abx), and secretor status (determined from the single nucleotide 110 

polymorphism rs601338 in the FUT2 gene); (2) mother’s gestational diabetes, age, ethnicity, 111 

education, oral antibiotics received pre-delivery (Mother pre-delivery abx), intrapartum 112 

antibiotics (Mother intrapartum abx), and secretor status (rs601338 SNP); (3) study site, presence 113 

of cats, dogs, and older siblings in the house. 114 

 115 

Stool samples DNA extraction and sequencing 116 

We extracted gut microbial DNA from fecal samples using the DNeasy PowerSoil kit 117 

(QIAGEN) according to the manufacturer’s instructions. and amplified the V4 region of the 16S 118 

rRNA gene to generate ready-to-pool dual-indexed amplicon libraries as described previously
30

 119 

(see eMethods). Using the DADA2
31

 pipeline, the final dataset contained 4,553,000 quality 120 

sequences, a mean (range) of 6,509 (22,995 - 68,265) sequences per sample identified as 121 

954 unique bacterial Amplicon Sequence Variants (ASVs). Samples contained a mean of 40 (10-122 

95) unique ASVs per samples. 123 

 124 

Statistical analysis 125 

We used Dirichlet Multinomial Mixtures (DMM) modelling
26

 on 16S rRNA gene sequencing 126 

data to identify clusters of similar bacterial community structure amongst our samples (a 127 

technique known as community typing analysis, increasingly used in human microbiome 128 

studies
10,32-34

). This technique is increasing employed in microbiome studies for three reasons: 129 
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(1) identification of unique microbial clusters is unsupervised; (2) cluster size depends on 130 

metacommunity variability; and (3) adequate explicit probabilistic model penalises model 131 

complexity to optimize cluster number. The lowest Laplace approximation grouped our samples 132 

in four unique clusters (Figure 1-2 and eFigure 1). 133 

The distribution of variables as well as the variation in bacterial richness (Chao 1), alpha-134 

diversity (Shannon index), and community evenness (Shannon index / logn(species richness)) 135 

across the DMM clusters were examined by non-parametric Kruskal-Wallis tests followed by 136 

post-hoc Dunn tests or generalized linear models (glm) with a binomial/logistic distribution. To 137 

explore the changes in taxonomical community structure at a fine scale, we tested for significant 138 

differences in the relative abundance of the 10 most dominant bacterial genera across clusters 139 

using non-parametric Kruskal-Wallis tests followed by post-hoc Dunn tests with Benjamin-140 

Holmes False Discovery Rate (FDR) correction. To account for potential heteroskedasticity in 141 

bacterial community dispersion between groups and avoid the loss of information through 142 

rarefaction
35

, we performed a variance stabilizing transformation
35,36

 prior to any statistical tests 143 

on beta-diversity. To select variables that could be drivers of infant gut bacterial community 144 

structure, we tested for correlations between our variables and community scores on the Principal 145 

Component Analysis (PCoA) ordination axes in univariable models (envfit function of vegan
37

). 146 

The relative influence of the significant drivers of gut bacterial community structure was then 147 

assessed statistically in multivariate models using a Permutational Multivariate Analysis Of 148 

Variance (PERMANOVA; adonis function of vegan
37

) with 999 permutations and visualized 149 

using PCoAs based on Bray-Curtis dissimilarities. We used DESeq2 to test for differentially 150 

abundant bacterial taxa according to maternal ASB consumption on the 100 most relatively 151 

abundant bacterial taxa to limit spurious significance driven by very rare ASVs. Finally, we used 152 
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linear models on the three- and twelve-months-old samples to test for the influence of maternal 153 

ASB consumption and microbial ordination axes (PCoA1 and PCoA2) on infant BMI z-score. 154 

The full model’s formula was the following:  155 

[ Infant BMI ~ ASB + PCoA1 + PCoA2 ] 156 

All analyses and graphs were computed in R version 3.6.1 (R Development Core Team; 157 

http://www.R-project.org). 158 

 159 

RESULTS 160 

Microbiome clusters 161 

We performed community typing analysis based on Dirichlet Multinomial Mixtures (DMM) 162 

modelling
26

 to identify clusters of similar bacterial community structure amongst our samples. 163 

Based on their microbiota composition, the infant fecal samples clustered in four groups 164 

(Figure 1-2 and eFigure 1). Gut bacterial species richness (Figure 1B), alpha- (Figure 1C) and 165 

beta-diversity (Figure 1A) and taxonomic composition (Figure 2) differed between clusters, 166 

reflecting broad community differences. Clusters 1 and 4 comprised microbial communities 167 

reflecting the well-described effect of temporal maturation during the first year of life; with 168 

cluster 1 comprising only three-month (3M) samples and cluster 4 comprising almost exclusively 169 

twelve-month (12M) samples. Clusters 2 and 3 comprised a mixture of 3M and 12M samples. 170 

Compared to the other three clusters, cluster 1 showed a higher proportion of exclusive 171 

breastfeeding. Cluster 3 included a higher proportion of mothers receiving antibiotics, infants 172 

born by C-section and formula feeding (Figure 1). However, there was no difference in maternal 173 

ASB consumption between clusters, suggesting that this exposure did not influence the 174 

compositional differences that drove cluster classification (Figure 1F). In addition, the clusters 175 
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did not differ in terms of maternal sugar intake, gestational diabetes, age, parity, ethnicity, 176 

education, antibiotics, study site, infant antibiotics, or infant or mother secretor status. 177 

 178 

Relative influence of ASB on microbial community structure 179 

Envfit analysis (univariable models) identified thirteen variables as significant drivers of gut 180 

bacterial beta-diversity from which we selected eight non-redundant variables to build our 181 

models: infant age, maternal intrapartum antibiotics, maternal ethnicity, birth mode, 182 

breastfeeding status at three months, presence of older siblings, infant secretor status, and 183 

maternal ASB consumption (Figure 3A and eFigure 2). Considering the complete dataset, the 184 

significant predictors were infant age, maternal ethnicity, intrapartum antibiotics, and birth 185 

mode. The same four variables, plus breastfeeding status at 3 months, were tested in a 186 

PERMANOVA (multivariable model), altogether explaining 14.2% of community variance 187 

(Table 1). Maternal ASB consumption was a significant predictor of infant gut bacterial 188 

composition only in the multivariable model (R
2
 = 0.7%; Table 1). Birth mode (vaginal vs. C-189 

section) had also a significant influence on community composition (R
2
=0.8%), but to a lesser 190 

extent than infant age (R
2
 = 7.3%) and mother’s ethnicity (R

2
 = 2.5%; Table 1). 191 

Next, we repeated the beta-diversity analyses separately within each of the 4 clusters. Envfit 192 

univariable models identified distinct drivers for each cluster (Figure 3A). Interestingly, the 193 

drivers of beta-diversity in cluster 1 (only 3M samples) were mainly maternal factors (i.e. birth 194 

mode, mother’s ethnicity, intrapartum antibiotics) whereas the drivers of cluster 4 (mostly 12M) 195 

were infant factors (infant’s secretor status, breastfeeding at three months, and infant age (Figure 196 

3A). Cluster 2 was the only cluster in which maternal ASB consumption was associated with 197 
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beta-diversity (R
2
 = 3.2%), and this association was confirmed by the univariable (Figure 3A, 198 

eFigure 2) and multivariable (Table 1) analyses. 199 

We tested for associations of specific bacterial features in the infant gut with maternal ASB 200 

consumption. In the complete dataset, we identified two ASVs associated with maternal 201 

consumption of ASB, one species being depleted (Bacteroides sp. ASV45, log2 fold 202 

change = -27.2 and another species enriched (Prevotella copri ASV42, 24.2) among infants 203 

exposed to high maternal ASB intake (Figure 3B). Repeating this test within each cluster, we 204 

identified 15 additional ASVs enriched or depleted. For cluster 2, one ASV was enriched 205 

(ASV19, Akkermansia municiphila, 24.9) and four depleted (Bacteroides ovatus ASV27, -25.9; 206 

Parabacteroides sp. ASV83, -25.2; Bacteroides sp. ASV45, -24.9; Bacteroides sp. ASV25, -10.7) 207 

with maternal ASB consumption (Figure 3B). All adjusted p-values were below 0.001. 208 

 209 

Association of ASB and the microbiome with infant BMI at one-year-old 210 

Finally, using a multivariable linear model on the complete dataset, we tested the association of 211 

maternal ASB consumption and microbial community composition with infant BMI z-score at 212 

one year of age. Our results confirmed that daily maternal ASB consumption is associated with 213 

higher infant BMI (ß-estimate = 0.42, 95%CI 0.03:0.80, P = 0.037; Table 2), and showed that 214 

BMI was associated with the microbiome composition at 12 months (PCoA1 axis; ß-estimate = -215 

0.71, 95%CI -1.40:-0.01, P = 0.048; Table 2) but not at three months (not shown). These results 216 

suggest that features of PCoA1 (i.e. lower relative abundance of Bacteroidetes and 217 

Faecalibacterium, and higher relative abundance of Escherichia, Klebsiella, Bifidobacterium, 218 

Haemophilus, Clostridium, and Veillonella; eFigure 3) are inversely associated with infant BMI.  219 
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DISCUSSION 220 

In defining links between maternal ASB consumption and infant BMI, we provide new evidence 221 

suggesting that maternal consumption of ASB during pregnancy (1) influences the establishment 222 

of the infant gut microbiome, particularly in infants diverging from what has previously been 223 

described as the typical microbiome maturation trajectory (Table 1, Figure 3A); and (2) is 224 

associated with an increase in infant BMI at one-year-old (Table 2). To our knowledge, this is 225 

the first human study to report the impact of maternal consumption of ASB on the infant gut 226 

microbiome, and its potential influence on infant BMI. In light of recent data showing that ASB 227 

can drive dysregulation of energy metabolism in mice through changes in the gut 228 

microbiome
24,25,38,39

, our study suggests that infants exposed to ASB through their mothers may 229 

be at higher risk of shifts in microbial community structure related to early-life predisposition to 230 

metabolic diseases
40,41

. 231 

In our study, broad shifts in bacterial community structure were significantly associated 232 

with infant BMI at one-year-old. We also identified 9 bacterial taxa from Bacteroides sp. that 233 

were enriched (3 ASVs) or depleted (6 ASVs) at high levels of maternal ASB consumption, 234 

suggesting a mechanism of influence on infant weight gain involving specific taxa of the gut 235 

microbiome. The taxa Akkermansia municiphila and genus Bacteroides have previously been 236 

identified by various studies to be respectively decreased and enriched as a consequence of ASB 237 

consumption
25,38,39,42

. Our results differ from previous findings for A. municiphila and suggest 238 

that Bacteroides patterns of enrichment or depletion might be species- or strain-specific, 239 

warranting further research with deeper resolution. 240 

As reported by Bian et al.
38,39

 in two studies with adult mice, and by Nettleton et al.
43

 in a 241 

study on dams and their offspring, ASB have been shown to alter gut bacterial community 242 
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composition (increase of Bacteroides and reductions of Lactobacillus and Clostridium) and 243 

increase body weight in parallel with an enrichment of energy metabolism bacterial genes. The 244 

functional cluster analyses by Bian et al.
38,39

 revealed activation of genes related to carbohydrate 245 

absorption and increases in metabolic pathways related to glycolysis and sugar and xylose 246 

transport
38

. Sucralose treatment resulted in an increase in bacterial pro-inflammatory mediator 247 

genes in mice
39

. Likewise, Chi et al.
42

 found that consumption of the artificial sweetener 248 

neotame altered the alpha- and beta-diversity of mice gut microbiome, and led to a decrease in 249 

butyrate synthetic genes and changes to the fecal short chain fatty acids cluster. Overall, 250 

accumulating evidence suggests that the alterations of host gut bacterial community structure 251 

through the consumption of ASB is reflected in bacterial and host metabolic gene clusters, which 252 

might explain the increase in weight gain. Based on this evidence and our current results, we 253 

hypothesize that gestational exposure to ASB impacts infant gut bacterial communities either 254 

indirectly through disruption of vertical transmission of the maternal microbiome, or directly 255 

through lactation during breastfeeding. However, our study is underpowered to definitively 256 

assess whether gut microbiome mediate the relationship between maternal ASB and infant BMI. 257 

Additional work including functional evidence from metagenomics and metabolomics will 258 

determine if the bacterial taxa and compositional changes associated with high maternal ASB 259 

consumption in our study are causally implicated in energy metabolism dysregulation and infant 260 

body composition. 261 

Overall, our study validates previous findings
3
 that maternal consumption of artificial 262 

sweeteners is associated with a higher BMI at one-year-old, and provides unique and timely 263 

evidence that the infant gut microbiome could play a role in this effect, especially for susceptible 264 

infants displaying a disrupted maturation trajectory (reduced alpha-diversity and species 265 
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richness) of their gut microbiome and a high relative abundance of Bacteroides. Our study also 266 

confirms recent descriptions of infant microbiome development and confirms the influence of 267 

several known determinants of the gut microbiome during the first year of life
11-14,16,17,19

 268 

including maternal antibiotics, breastfeeding, birth mode and ethnicity.  269 

The major strength of our study is the combination of state-of-the-art community typing 270 

analysis of the gut bacterial communities combined with the standardized prospective evaluation 271 

of maternal ASB consumption. Limitations of our study lie in risk of measurement error in self-272 

reported dietary exposures and our inability to distinguish between different types of ASB or 273 

account for artificial sweeteners in foods. Also, we did not assess maternal diet after delivery, so 274 

we could not directly investigate the impact of prenatal ASB exposure in utero versus postnatal 275 

exposure through lactation
46,47

. In addition, we used 16S amplicon sequencing to characterize the 276 

gut bacterial communities. This method is limited in resolution as many recent studies have 277 

revealed that host-microbe and microbe-microbe interactions occur at as species and subspecies-278 

level variants
44,45

. Finally, aside from the gut microbiome, various other physiological 279 

mechanisms are altered in rodent offspring after exposure to artificial sweeteners in utero
21-24

 280 

(i.e. intestinal sugar absorption stimulation, increased postnatal weight gain, altered lipid 281 

profiles, downregulation of hepatic detoxification, and increased adulthood insulin resistance). 282 

Although we were unable to explore these mechanisms in our study, they will be addressed by 283 

future work in the CHILD cohort involving metagenomics of infant stool and metabolomics of 284 

infant stool, urine and serum.  285 
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CONCLUSION 286 

In this study, we characterized the infant gut microbiome of 100 infants and found evidence that 287 

maternal ASB consumption during pregnancy might have unforeseen effects on infant gut 288 

microbiome development and body mass index during the first year of life. As we face an 289 

unprecedented rise in childhood obesity and related metabolic diseases, further research is 290 

warranted to understand the impact of artificial sweeteners on gut microbiome and weight gain, 291 

especially during critical periods of early development.  292 
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FIGURE LEGENDS 448 

 449 

Figure 1. Discrepancies in covariate distribution, alpha- and beta-diversity between 450 

clusters. 451 

(A) Principal component analysis (PCoA) ordinations of variation in beta-diversity of infant gut 452 

bacterial communities based on Bray-Curtis dissimilarities among samples. Ellipses represent 453 

95% confidence intervals. (B-C) Box plots showing the alpha-diversity (richness and Shannon’s 454 

diversity) per DMM cluster. The central line denotes the median, the boxes cover the 25th and 455 

75th percentiles, and the whiskers extend to the most extreme data point, which is no more than 456 

1.5 times the length of the box away from the box. Points outside the whiskers represent outlier 457 

samples. Letters denoted significant differences (non-parametric Kruskal-Wallis test followed by 458 

post-hoc test of Dunn with FDR correction following Benjamini-Hochberg method; P<0.05). (D-459 

K) Variable distribution between clusters tested with non-parametric Kruskal-Wallis test 460 

followed by either a post-hoc generalized linear model (glm) with a binomial/logistic distribution 461 

(D-I) or (J-K) a post-hoc Dunn test with FDR correction following Benjamini-Hochberg method. 462 

Minuscule letters indicate statistical differences between clusters from post-hoc generalized 463 

linear model (glm) with a binomial/logistic distribution. “BF at 3M” stands for “breastfeeding at 464 

three months” and “FF at 3M” for “formula feeding at three months”. Aside from maternal ASB 465 

consumption (F), only the variables that showed a statistical difference in distribution between 466 

clusters are presented. No differences were found for maternal age, ethnicity, education, 467 

diabetes; study site, household pets, siblings, or introduction of solid foods at 3 or 6 months. 468 

Cluster 1 included 48 samples from 48 infants; cluster 2 included 59 samples from 49 infants; 469 
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cluster 3 included 47 samples from 39 infants; and cluster 4 included 44 samples from 43 infants. 470 

See methods for definition of variables. 471 

 472 

Figure 2. Differences in relative abundances of the dominant bacterial genera between 473 

clusters. 474 

(A-J) Relative abundance across DMM clusters of the ten most dominant bacterial genera and 475 

(K) of the 15 most dominant bacterial genera. Letters indicate significant differences between 476 

clusters (non-parametric Kruskal-Wallis test, post-hoc Dunn test with Benjamini-Hochberg FDR 477 

correction). Cluster 1 contains only three months of age. Cluster 2 and 3 are composed of a mix 478 

three and twelve months of age, and Cluster 4 only 12M (except two samples). 479 

 480 

Figure 3. Drivers of gut bacterial beta-diversity and indicator taxa associated with 481 

maternal consumption of ASB differ between clusters. 482 

(A) Univariate models showing significance and explained variance of 10 variables on bacterial 483 

community structure across all data and each cluster subset. Horizontal bars show the amount of 484 

variance (R
2
) explained by each covariate in the model as determined by envfit. Asterisk denotes 485 

the significant covariates in each data subset (P<0.05). All 32 variables considered in this study 486 

are shown in eFigure 2. In this figure, ASB represents artificially sweetened beverages and BF at 487 

3M represents infant’s breastfeeding status at three months (see methodology). (B) 14 bacterial 488 

taxa identified as significant features associated with maternal consumption of ASB by DESeq2. 489 

  490 
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TABLES 491 

 492 

Table 1. Maternal consumption of ASB during pregnancy is associated with bacterial 493 

community assembly during the first year of life. 494 

Permutational Analysis of Variance (PERMANOVA) of gut bacterial community composition 495 

(Bray-Curtis dissimilarities) testing associations with different explanatory variables (a: all data, 496 

b-e: clusters 1-4). The model on the complete dataset (ALL) accounts for repeated measures. The 497 

set of variables to be tested was chosen based on results from univariate envfit models: infant 498 

age, antibiotics received by mother at birth, mother’s ethnicity, birth mode, breastfeeding status 499 

at three months, presence of older siblings, and maternal ASB consumption. 500 

 501 

Variables 
All 

(R
2
 %) 

Cluster 1 

(R
2
 %) 

Cluster 2 

(R
2
 %) 

Cluster 3 

(R
2
 %) 

Cluster 4 

(R
2
 %) 

Infant age (3M vs. 12M) 7.3*** 8.5* 4.1*** 8.0*** 3.9** 

Ethnicity 2.5*** NS NS NS NS 

Breastfeeding at 3M 1.9*** 5.1** 5.0*** 6.0* 6.4** 

Maternal Abx 1.7*** NS NS NS NS 

Birth mode 0.8** NS NS NS NS 

Older siblings NS NS NS NS NS 

Infant secretor status NS NS NS NS NS 

Maternal ASB 0.7* NS 3.2** NS NS 

Total R
2
 (%) 15.1 13.6 9.1 14.0 10.3 

NS 
P > 0.05, * P < 0.05, ** P < 0.01, *** P < 0.001 

  502 
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Table 2. Maternal consumption of ASB during pregnancy is associated with higher infant 503 

BMI at one-year-old. 504 

Linear model showing the explanatory power of maternal ASB consumption on infant BMI z-505 

score at one year old, as well as the two main axes of ordination of bacterial community structure 506 

(beta-diversity) on samples acquired at three and twelve-month-old. The full models are:  507 

BMI at 1y ~ ASB + PCoA1 + PCoA2. 508 

Microbial variables were transformed (squared root and order quantile normalized respectively) 509 

to achieve normality. Here we present only the best model for 12 months fitted by stepwise 510 

selection by Akaike information criterion because we detected no association between BMI at 511 

one year old and microbiota composition at three months old. 512 

 513 

Variables 
Infant BMI z-score at 1 year 

ß-est. 95% CI P-value R2 

Maternal ASB (daily vs. no 

consumption) 
0.42 [0.03,0.81] 0.037 4.1% 

12 months microbiome     

     PCoA axis 1 -0.71 [-1.40, -0.01] 0.048 3.9% 

     PCoA axis 2 
NS

 
NS

 
NS

 
NS

 

Total adj. R
2
 8.1% 

 514 
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Figure 1. Discrepancies in covariate distribution, alpha- and beta-diversity between 

clusters. 

(A) Principal component analysis (PCoA) ordinations of variation in beta-diversity of infant gut 

bacterial communities based on Bray-Curtis dissimilarities among samples. Ellipses represent 

95% confidence intervals. (B-C) Box plots showing the alpha-diversity (richness and Shannon’s 

diversity) per DMM cluster. The central line denotes the median, the boxes cover the 25th and 

75th percentiles, and the whiskers extend to the most extreme data point, which is no more than 

1.5 times the length of the box away from the box. Points outside the whiskers represent outlier 

samples. Letters denoted significant differences (non-parametric Kruskal-Wallis test followed by 

post-hoc test of Dunn with FDR correction following Benjamini-Hochberg method; P<0.05). (D-

K) Variable distribution between clusters tested with non-parametric Kruskal-Wallis test 

a b c c

1

2

3

4

1 2 3 4

A
L

P
H

A
−

D
IV

E
R

S
IT

Y
a b c d

25

50

75

100

1 2 3 4

S
P

E
C

IE
S

 R
IC

H
N

E
S

S

a b c c

1

2

3

4

1 2 3 4

A
L

P
H

A
−

D
IV

E
R

S
IT

Y

a b c d

25

50

75

100

1 2 3 4

S
P

E
C

IE
S

 R
IC

H
N

E
S

S

48

23

26
2

36

21

42

p < 2.2e−16

0

20

40

60

1 2 3 4

C
O

U
N

T

INFANT AGE

3 months
12 months

16 17

25

14

32

42

22
30

p = 0.05

0

20

40

60

1 2 3 4

BIRTH MODE

Vaginal
Cesarean

48

23

26
2

36

21

42

p < 2.2e−16

0

20

40

60

1 2 3 4

C
O

U
N

T

INFANT AGE

3 months
12 months

16 17

25

14

32

42

22
30

p = 0.05

0

20

40

60

1 2 3 4

BIRTH MODE

Vaginal
Cesarean

27

32

20
20

21

27 27
24

p = 0.46

0

20

40

60

1 2 3 4

C
O

U
N

T

ASB

Zero
High

27

18

8
15

14

16
16

13

7

25
23

16

p < 0.001

0

20

40

60

1 2 3 4

BF at 3M

Exclusive
Partial
None

27

32

20
20

21

27 27
24

p = 0.46

0

20

40

60

1 2 3 4

C
O

U
N

T
ASB

Zero
High

27

18

8
15

14

16
16

13

7

25
23

16

p < 0.001

0

20

40

60

1 2 3 4

BF at 3M

Exclusive
Partial
None

30

19

9
16

18

40
38

28

p < 0.001

0

20

40

60

1 2 3 4

CLUSTER

C
O

U
N

T

FF at 3M

No
Yes

21

38

16
27

27

21

31

17

p = 0.005

0

20

40

60

1 2 3 4

CLUSTER

ABX

No
Yes

b a a a

p < 0.0001

0

10

20

1 2 3 4

CLUSTER

B
F

 D
U

R
A
T

IO
N

 (
m

th
s
) a ab b ab

p = 0.01

60

70

80

90

100

1 2 3 4

CLUSTER

H
E

I2
0

1
0

p = 0.001
R2 = 0.04

−2

−1

0

1

2

−1 0 1 2

PCoA1

P
C

o
A

2p = 0.001
R2 = 0.04

−2

−1

0

1

2

−1 0 1 2

PCoA1

P
C
o
A

2

CLUSTER

1 : 3 months only
2 : 3 months and 12 months
3 : 3 months and 12 months
4 : mostly 12 months

A B C

D E

F G

J KH I

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.050195doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.050195
http://creativecommons.org/licenses/by-nd/4.0/


followed by either a post-hoc generalized linear model (glm) with a binomial/logistic distribution 

(D-I) or (J-K) a post-hoc Dunn test with FDR correction following Benjamini-Hochberg method. 

Minuscule letters indicate statistical differences between clusters from post-hoc generalized 

linear model (glm) with a binomial/logistic distribution. “BF at 3M” stands for “breastfeeding at 

three months” and “FF at 3M” for “formula feeding at three months”. Aside from maternal ASB 

consumption (F), only the variables that showed a statistical difference in distribution between 

clusters are presented. No differences were found for maternal age, ethnicity, education, 

diabetes; study site, household pets, siblings, or introduction of solid foods at 3 or 6 months. 

Cluster 1 included 48 samples from 48 infants; cluster 2 included 59 samples from 49 infants; 

cluster 3 included 47 samples from 39 infants; and cluster 4 included 44 samples from 43 infants. 

See methods for definition of variables. 
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Figure 2. Differences in relative abundances of the dominant bacterial genera between 

clusters. 

(A-J) Relative abundance across DMM clusters of the ten most dominant bacterial genera and 

(K) of the 15 most dominant bacterial genera. Letters indicate significant differences between 

clusters (non-parametric Kruskal-Wallis test, post-hoc Dunn test with Benjamini-Hochberg FDR 

correction). Cluster 1 contains only three months of age. Cluster 2 and 3 are composed of a mix 

three and twelve months of age, and Cluster 4 only 12M (except two samples). 
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 1 

 1 
Figure 3. Drivers of gut bacterial beta-diversity and indicator taxa associated with 2 

maternal consumption of ASB differ between clusters. 3 

(A) Univariate models showing significance and explained variance of 10 variables on bacterial 4 

community structure across all data and each cluster subset. Horizontal bars show the amount of 5 

variance (R
2
) explained by each covariate in the model as determined by envfit. Asterisk denotes 6 

the significant covariates in each data subset (P<0.05). All 32 variables considered in this study 7 

are shown in Figure S2. In this figure, ASB represents artificially sweetened beverages and BF at 8 

3M represents infant’s breastfeeding status at three months (see methodology). (B) 14 bacterial 9 

taxa identified as significant features associated with maternal consumption of ASB by DESeq2. 10 
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