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Abstract: SARS-CoV-2 enters cells using its Spike protein, which is also the main target of 
neutralizing antibodies. Therefore, assays to measure how antibodies and sera affect Spike-
mediated viral infection are important for studying immunity. Because SARS-CoV-2 is a biosafety-
level-3 virus, one way to simplify such assays is to pseudotype biosafety-level-2 viral particles with 
Spike. Such pseudotyping has now been described for single-cycle lentiviral, retroviral and VSV 
particles, but the reagents and protocols are not widely available. Here we detail how to effectively 
pseudotype lentiviral particles with SARS-CoV-2 Spike and infect 293T cells engineered to express 
the SARS-CoV-2 receptor, ACE2. We also make all the key experimental reagents available in the 
BEI Resources repository of ATCC and the NIH. Furthermore, we demonstrate how these 
pseudotyped lentiviral particles can be used to measure the neutralizing activity of human sera or 
plasma against SARS-CoV-2 in convenient luciferase-based assays, thereby providing a valuable 
complement to ELISA-based methods that measure antibody binding rather than neutralization.     
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1. Introduction 

Infection with SARS-CoV-2 elicits antibodies that bind to the virus [1–6]. But as is the case for all 
viruses [7–10], only some of these antibodies neutralize the virus’s ability to enter cells [4,5,11,12]. 
While studies of immunity to SARS-CoV-2 are limited, for many other viruses neutralizing antibodies 
are more strongly correlated with protection against re-infection or disease than antibodies that bind 
but do not neutralize [7–10,13–15]. Indeed, for other coronaviruses, neutralizing antibodies are 
protective in mouse models of infection [16–20] and associated with at least some reduced 
susceptibility to re-infection or disease in humans [15,21,22]. Furthermore, anecdotal reports suggest 
that passive transfer of neutralizing antibodies to sick patients may help alleviate disease from SARS-
CoV-2 and its close relative SARS-CoV [23–25]. 
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But while there are now well-characterized and high-throughput methods (such as ELISA 
assays) to measure total antibody binding to SARS-CoV-2 or some of its key constituent proteins 
[2,6,26], quantifying neutralizing antibody activity is more difficult. The most biologically relevant 
method is to directly measure how antibodies or sera inhibit infection of cells by replication-
competent SARS-CoV-2. Such live-virus assays have now been performed to quantify neutralizing 
activity in the sera of infected patients or characterize the potency of individual antibodies [1,6,12,27]. 
However, the throughput and accessibility of live-virus neutralization assays with SARS-CoV-2 is 
limited by the fact that the virus is a biosafety-level-3 agent that must be worked with in specialized 
facilities. 
 An alternative approach that alleviates these biosafety limitations leverages the fact that all 
known neutralizing antibodies to SARS-CoV-2 (and other coronaviruses that lack an HE protein) 
target the virus’s Spike protein [1,12,27]. Spike protrudes prominently from the surface of SARS-CoV-
2 virions, and is necessary and sufficient to enable the virus to bind and enter cells [28]. Spike from 
several coronaviruses can be “pseudotyped” onto safer non-replicative viral particles in place of their 
endogenous entry protein, thereby making entry of these particles into cells dependent on Spike [29–
36]. For SARS-CoV-2, such pseudotyping has recently been reported using HIV-based lentiviral 
particles [4,27,37], MLV-based retroviral particles [12,38], and VSV [29,39–41]. In the data reported to 
date, results from such pseudovirus neutralization assays correlate well with measurements made 
using live SARS-CoV-2 [1,12,27,39]. However, the detailed protocols and reagents to perform such 
assays are not yet widely available to the scientific community. 
 Here we fill this gap by providing a detailed description of how to pseudotype lentiviral particles 
with Spike. We explain how these pseudotyped particles can be used to conveniently measure Spike-
mediated cell entry via fluorescent or luciferase reporters, and to quantify the neutralizing activity of 
human plasma. Finally, we describe all the necessary experimental reagents and make them available 
in the BEI Resources reagent repository (https://www.beiresources.org/).    

2. Results 

2.1. General approach for pseudotyping lentiviral particles with SARS-CoV-2 Spike. 

The basic strategy for pseudotyping HIV-1-derived lentiviral particles is shown in Figure 1A. It 
involves transfecting 293T cells with a lentiviral backbone plasmid encoding a fluorescent or 
luminescent reporter protein, a plasmid expressing Spike, and plasmids expressing the minimal set 
of lentiviral proteins necessary to assemble viral particles. The transfected cells then produce Spike-
pseudotyped lentiviral particles that can be used to infect permissive cells that express the SARS-
CoV-2 receptor protein, ACE2 [28,29,41,42]. 

We used an HIV-based lentiviral system to produce viral particles pseudotyped with Spike. As 
shown in Figure 1A, his system requires co-transfecting cells with a lentiviral backbone encoding the 
reporter protein(s), a plasmid expessing Spike, and plasmids encoding the other HIV proteins 
necessary for virion formation (Tat, Gag-Pol, and Rev). We used two different lentiviral backbones: 
one that uses a CMV promoter to drive expression of just ZsGreen, and another that uses a CMV 
promoter to drive exprssion of luciferase followed by an internal ribosome entry site (IRES) and 
ZsGreen (hereafter referred to as the ZsGreen and Luciferase-IRES-ZsGreen backbones). 
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Figure 1. General approach for lentiviral pseudotyping. (A) 293T cells are transfected with a plasmid 
encoding a lentiviral backbone (genome) expressing a marker protein, a plasmid expressing Spike, 
and plasmids expressing the other HIV proteins needed for virion formation (Tat, Gag-Pol, and Rev). 
The transfected cells produce lentiviral particles with Spike on their surface. These viral particles can 
infect cells that express the ACE2 receptor. (B) We used three variants of Spike: the codon-optimized 
Spike from SARS-CoV-2 strain Wuhan-Hu-1, a variant containing mutations K1269A and H1271A in 
the cytoplasmic tail (such that the C-terminal five amino acids are ALAYT), and a variant in which 
the cytoplasmic tail of Spike has been replaced with that from influenza hemagglutinin (HA). (C) 
Spike expression on the surface of 293T cells transfected with the plasmids expressing our three Spike 
constructs was measured using flow cytometry 24 hours post-transfection. Spike expression was 
measured by staining with in-house produced CR3022 antibody [43–45] at a concentration of 10 
µg/mL followed by staining with an anti-human Fc antibody conjugated to APC (Jackson Labs, 109-
135-098) at a 1:100 dilution.   

The Spike protein was from SARS-CoV-2 strain Wuhan-Hu-1 using the NCBI-annotated start 
site [46], with the nucleotide sequence codon optimized for expression in human cells. We used three 
variants of Spike (Figure 1B). The first variant was simply the codon-optimized Spike. The second 
variant had two amino-acid mutations to basic residues in Spike’s cytoplasmic tail (K1269A and 
H1271A) that change the sequence of the five most C-terminal residues to ALAYT. This variant is 
hereafter referred to as Spike-ALAYT. The rationale for Spike-ALAYT was that for the original SARS-
CoV, the two analagous mutations were shown to improve plasma-membrane expression of Spike 
by eliminating an endoplasmic reticulum retention signal [47,48]. The third variant had the 
cytoplasmic tail of Spike replaced with that from influenza hemagglutinin (HA); this variant is 
hereafter referred to as Spike-HAtail. The rationale for Spike-HAtail was that for the original SARS-
CoV, deleting Spike’s cytoplasmic tail or replacing it with that from other viruses was shown to 
improve pseudotyping efficiency [30,49–51]. We validated that there was expression of Spike on the 
surface of 293T cells transfected with plasmids expressing each of these three variants (Figure 1C). 
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The sequences of all of the Spike and lentiviral plasmids are in File S1, and the plasmids are 
available from BEI Resources (see Materials and Methods for BEI catalog numbers).    

2.2. Target 293T cells constititutively expressing Spike’s ACE2 receptor. 

To create a target cell line that is efficiently infected by the SARS-CoV-2 Spike-pseudotyped lentiviral 
particles, we transduced 293T cells with a lentiviral vector expressing human ACE2 under an EF1a 
promoter (lentiviral backbone plasmid sequence is in File S1, and is available from BEI Resources as 
item NR-52512). To create a clonal cell line from the bulk transduction, we sorted single transduced 
cells by flow cytometry and re-expanded into large populations (note that there is not a selectable 
marker in these cells). We identified an expanded clone that expressed high levels of ACE2 (Figure 
2A). This ACE2 expression appears stable overtime and has not noticeably decreased through twelve 
passages at the time of writing. This clone is hereafter referred to as 293T-ACE2, and is available from 
BEI Resources as item NR-52511. 

 

 
 

Figure 2. 293T-ACE2 cells are infectable with SARS-CoV-2 Spike-pseudotyped lentiviral particles. (A) 
Flow cytometry plot showing expression of human ACE2 by the 293T-ACE2 cells (grey shaded) at 
passage 12 compared to parental 293T cells (white fill) as quantified by staining with an anti-ACE2 
antibody (see subsection 4.2 for detailed methods). The gate was set so the parental 293T cells are 2% 
positive. (B) Microscope images showing ZsGreen expression in 293T-ACE2 or 293T cells at 58 hours 
after incubation with Spike- or VSV G-pseudotyped lentiviral particles with the ZsGreen backbone. 
For each viral entry protein, 293T and 293T-ACE2 cells were incubated with equal volumes of virus. 
Cells were incubated with 1/20th the volume of VSV G-pseudotyped lentivirus compared to Spike-
pseudotyped lentivirus. The decrease in infected cells for the Spike-HAtail virus compared to the 
other Spike-pseudotyped lentiviruses is consistent with this virus having somewhat lower titers (see 
Fig. 2A). 

 We validated that the 293T-ACE2 cells were susceptible to infection by SARS-CoV-2 Spike-
pseudotyped lentiviral particles by incubating 293T-ACE2 and parental 293T with equivalent 
amounts of viral particles carrying ZsGreen. As shown in Figure 2B, all Spike-pseudotyped viruses 
can infect the 293T-ACE2 but not the 293T cells. Virus pseudotyped with VSV G, an amphotropic 
viral entry protein that is not dependent on ACE2, efficiently infects both cell lines (Figure 2B). 

2.3. Titers of pseudotyped lentiviral particles with different Spike cytoplasmic tail variants. 

To quantify the titers of lentiviral particles pseudotyped with each of the Spike variants, we produced 
particles with each of these Spikes, as well as a positive control using VSV G and a negative control 
without a viral entry protein. We first produced viral particles using the ZsGreen backbone, and 
titered by flow cytometry to determine the number of transducing particles per ml. As shown in 
Figure 3A, all Spike variants produced titers »104 transduction units per ml. These titers were about 
two orders of magnitude lower than those achieved with VSV G, but we considered them to be 
encouragingly high given that lentiviral particles can be further concentrated by a variety of methods 
[52,53]. We then produced viral particles using the Luciferase-IRES-ZsGreen backbone, and found 
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that we could achieve titers of >106 relative luciferase units (RLUs) per ml in 96-well plate infections 
(Figure 1B). This titer was again about two orders of magnitude lower than that achieved using VSV 
G. As expected, the magnitude of the fluorescent signal from ZsGreen is lower for the Luciferase-
IRES-ZsGreen backbone than for the ZsGreen-only backbone (Figure 1C), since the ZsGreen in the 
former construct is driven by an IRES rather than the primary promoter.  

 

 
 

Figure 3. Titers of Spike-pseudotyped lentiviral particles in 293T-ACE2 cells. (A) Titers of the ZsGreen 
backbone pseudotyped with the three Spike variants or VSV G, as determined by counting green cells 
via flow cytometry analysis at 48 hours post-infection, and then calculating transduction-competent 
viral particles per ml from the percentage of green cells. The “n.d.” indicates that the titer was not 
detectable. (B) Titers of the Luciferase-IRES-ZsGreen backbone as determined by measuring relative 
luciferase units (RLUs). RLUs were determined at 48 hours after infecting ~2.3x104 293T-ACE2 cells 
per well in 96-well plates. The RLUs per mL for the Spike-pseudotyped viruses are the average of 
three 3-fold serial dilutions of virus starting at 50 µL virus in a total volume of 150 µL. For the VSV 
G-pseudotyped virus, RLUs per mL were averaged from two 3-fold dilutions starting at 3 µL virus in 
a total volume of 150 µL. (C) Microscope images showing 293T-ACE2 cells transduced with Spike 
pseudotyped virus with either the ZsGreen or Luciferase-IRES-ZsGreen backbone at 60 hours post-
infection. As can be seen from the images, the ZsGreen backbone gives a stronger fluorescent signal 
than the Luciferase-IRES-ZsGreen backbone, presumably because this protein is expressed more 
strongly as the sole CMV-promoter driven transcript than as the second transcript driven by an IRES. 

2.4. Neutralization assays with Spike-pseudotyped lentiviral particles. 

We next used the Luciferase-IRES-ZsGreen viruses to perform neutralization assays in 96-well plates. 
Because <105 RLUs per well of a 96-well plate are necessary to achieve a signal >1,000-fold above the 
background luciferase activity of virus-only controls, this assay requires only a relatively modest 
volume of virus is for a full 96-well plate neutralization assay. 
 We performed neutralization assays using plasma from a confirmed SARS-CoV-2 infected 
patient collected at 19 days post-symptom onset, and with soluble ACE2 protein fused to an IgG Fc 
domain (which neutralizes SARS-CoV-2 by acting as a decoy receptor [54]). As negative controls (not 
expected to neutralized) we used sera collected prior to the emergence of SARS-CoV-2 in late 2019. 
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For these assays, we first made serial dilutions of the plasma, sera, or soluble ACE2-Fc in a 96-well 
plate. We then incubated these dilutions for 60 minutes with a volume of pseudotyped lentiviral 
particles sufficient to achieve 2x105 RLUs of luciferase signal per well. Finally, we added the mix to a 
pre-seeded plate of 293T-ACE2 cells. We measured the luciferase signal at 60 hours post-infection 
(see Materials and Methods for a more detailed protocol). 

 

 
 

Figure 4. Neutralization assays. (A) Neutralization assay using plasma collected from a confirmed 
SARS-CoV-2 infected patient at 19 days post-symptom onset (“p.s.o.”). The IC50 for this plasma was 
1:2076 for the Spike-pseudotype, 1:1334 for the Spike-ALAYT-pseudotype, and 1:1605 for the Spike, 
HAtail-pseudotype. (B) Neutralization assay using soluble ACE2 protein fused to the Fc domain from 
IgG (ACE2-Fc). The IC50 for ACE2-Fc was 2.49 µg/mL for the Spike-psdeudotype, 1.75 µg/mL for the 
Spike-ALAYT-pseudotype, and 0.25 µg/mL for the Spike-HAtail pseudotype. (C) Negative control 
sera collected prior to the emergence of SARS-CoV-2 does not neutralize the Spike-pseudotyped 
lentiviral particles. The serum from 1989 was from a person of a similar age at the time of serum 
collection as the confirmed SARS-CoV-2 infected patient whose plasma was tested in A. High 
concentrations of naïve serum do seem to enhance luciferase signal, perhaps because of components 
that improve cell-growth. Each point shows the average of duplicate values with error bars showing 
standard error. 

 Both the plasma from the confirmed SARS-CoV-2-infected patient and the soluble ACE2-Fc 
effectively neutralized the virus (Figure 4A,B). For the plasma, the inhibitory concentrations 50% 
(IC50s) were »1:1600 (± 25%) for all three Spike variants, which is in the range of values that have 
been reported for sera and plasma from other SARS-CoV-2 patients at a similar time post-infection 
[4]. For soluble ACE2-Fc, the IC50 was »2 µg/mL with the Spike and Spike-ALAYT-pseudotyped 
lentiviral particles, but was notably lower for the Spike-HAtail pseudotyped lentiviral particles 
(Figure 4B). Our measurement of »2 µg/mL for the unmodified Spike is higher than a previously 
reported IC50 of 0.1 µg/ml for soluble ACE2-IgG [54]. We suspect that the difference could be because 
our 293T-ACE2 target cells express high levels of ACE2 making them more resistant to neutralization 
by soluble ACE2. As expected, there was no neutralization of the pseudotyped virus by either pooled 
or individual human sera collected at dates prior to the emergence of SARS-CoV-2 (Figure 4C). 
 Our results are equivocal as to whether the cytoplasmic tail modifications greatly alter 
neutralization sensitivity. For the plasma neutralization, all three Spike variants (Spike, Spike-
ALAYT, and Spike-HAtail) exhibited similar neutralization profiles (Figure 4A). But for the soluble 
ACE2, the Spike-HAtail virus was notably more neutralization sensitive than the other two Spike 
variants (Figure 4B). While the mechanism underlying the distinct neutralization sensitivity observed 
is unclear, it is possible that modifying the Spike’s cytoplasmic tail may alter opening of the receptor-
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binding domains [28]. Therefore, we suggest performing the assays using the Spike without any 
cytoplasmic tail modifications, particularly since none of the modifications tested here greatly 
improved pseudotyped lentiviral particle titers.  

3. Discussion 

We describe a detailed protocol for producing SARS-CoV-2 Spike-pseudotyped lentiviral particles 
and performing neutralization assays. Although this basic pseudotyping approach has been 
described previously [4,12,27,29,37–41], we provide the first detailed protocol that makes all reagents 
available in a public repository (https://www.beiresources.org/). We hope this protocol and reagents 
will more easily enable others to assess the neutralizing activity of antibodies and sera reactive to 
SARS-CoV-2.  

We also found that modifying the cytoplasmic tail of SARS-CoV-2 Spike did not greatly improve 
titers of Spike-pseudotyped lentiviral particles. Indeed, one cytoplasmic tail modification we tested 
potentially altered the neutralization sensitivity of the pseudotyped lentiviral particles, suggesting it 
may be undesirable. While we did not test the full suite of cytoplasmic tail modifications that have 
been used for pseudotyping with Spike from the original SARS-CoV [30,49–51], our results suggest 
that modifications to the cytoplasmic tail of the SARS-CoV-2 Spike should be tested with caution.  

Overall, we have described an easily accessible assay to study neutralizing antibody responses 
to SARS-CoV-2 in a biosafety-level-2 laboratory. This assay allows human sera or plasma samples to 
be screened in a convenient 96-well format, which will help facilitate the testing of large numbers of 
patient samples to better understand the development of immunity and to potentially screen donors 
for passive transfer of convalescent plasma [25,55].  

4. Materials and Methods  

4.1. Plasmids. 
The sequences of all plasmids used in this study are available in Genbank format in File S1 and are also at 
https://github.com/jbloomlab/SARS-CoV-2_lentiviral_pseudotype/tree/master/plasmid_maps. The plasmids 
themselves are available in BEI Resources (https://www.beiresources.org/) with the following catalog numbers: 

• pHAGE2-EF1aInt-ACE2-WT (BEI catalog number NR52512): lentiviral backbone plasmid expressing 
the human ACE2 gene (GenBank ID for human ACE2 is NM_021804) under an EF1a promoter with an 
intron to increase expression. 

• HDM-IDTSpike-fixK-HA-tail (BEI catalog number NR52513): plasmid expressing under a CMV 
promoter the Spike from SARS-CoV-2 strain Wuhan-Hu-1 (Genbank NC_045512) codon-optimized 
using IDT, with the Spike cytoplasmic tail replaced by that from the HA protein of A/WSN/1933 
(H1N1) influenza, and the Kozak sequence in the plasmid fixed compared to an earlier version of this 
plasmid. 

• HDM-IDTSpike-fixK (BEI catalog number NR-52514): plasmid expressing under a CMV promoter the 
Spike from SARS-CoV-2 strain Wuhan-Hu-1 (Genbank NC_045512) codon-optimized using IDT and 
the Kozak sequence in the plasmid fixed compared to an earlier version of this plasmid. 

• HDM-nCoV-Spike-IDTopt-ALAYT (BEI catalog number NR-52515): plasmid expressing under a CMV 
promoter the Spike from SARS-CoV-2 strain Wuhan-Hu-1 (Genbank NC_045512) codon-optimized 
using IDT, with the Spike containing two mutations in the cytoplasmic tail such that the last five amino 
acids are ALAYT.  

• pHAGE-CMV-Luc2-IRES-ZsGreen-W (BEI catalog number NR-52516): lentiviral backbone plasmid 
that uses a CMV promoter to express luciferase followed by an IRES and ZsGreen. 

• HDM-Hgpm2 (BEI catalog number NR-52517): lentiviral helper plasmid expressing HIV Gag-Pol 
under a CMV promoter. 

• HDM-tat1b (NR-52518): lentiviral helper plasmid expressing HIV Tat under a CMV promoter. 
• pRC-CMV-Rev1b (NR-52519): lentiviral helper plasmid expressing HIV Rev under a CMV promoter. 
• pHAGE2-CMV-ZsGreen-W (NR-52520): lentiviral backbone plasmid that uses a CMV promoter to 

express ZsGreen. 
Note that all of these plasmids have ampicillin resistance. The only plasmid used in this study that is not in the 
BEI Resources catalog is the HDM-VSVG plasmid that expresses VSV G under a CMV promoter, and was used 
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to create the positive control lentivirus pseudotyped with VSV G. However, numerous VSV G expressing 
plasmids are available from AddGene and other repositories.  

4.2 Creation of 293T ACE2 cells. 
VSV G-pseudotyped lentivirus packaging the human ACE2 was generated via co-transfecting 293T cells (ATCC, 
CRL-3216) with the pHAGE2-EF1aInt-ACE2-WT plasmid (File S1) and lentiviral helper plasmids (HDM-VSVG, 
HDM-Hgpm2, HDM-tat1b, and pRC-CMV-Rev1b). The resulting lentivirus was used to infect more 293T cells 
in the presence of 5 ug/mL polybrene. The transduced cells were stained with anti-human ACE-2 polyclonal goat 
IgG (AF933, R&D Systems) primary antibody at 1 ug/mL and donkey anti-goat IgG conjugated to Alexa Fluor 
488 (ab150129, Abcam) secondary antibody at a 1:2500 dilution and sorted based on antibody staining. Once 
single cell clones had grown sufficiently, they were screened for ACE2 expression via flow cytometry and a clone 
with high expression was expanded and named 293T-ACE2 (Figure 2A). For verifying expression via flow 
cytometry, cells were harvested with enzyme-free dissociation buffer (ThermoFisher, 13151014) and stained with 
anti-human ACE-2 polyclonal goat IgG primary antibody at 2 ug/mL and donkey anti-goat IgG (Alexa Fluor 
488) secondary antibody at a 1:1000 dilution. For each staining step, cells were incubated with antibody in the 
dark at 4 C for 30 min. Cells were washed 3 times with 3% BSA in PBS following each stain. 

The 293T-ACE2 cells can be grown in D10 growth media (DMEM with 10% heat-inactivated FBS, 2 mM L-
glutamine, 100 U/ml penicillin, and 100 ug/ml streptomycin) at 37 C and 5% carbon dioxide. Note that there is 
not a selectable marker for the ACE2 expression. The 293T-ACE2 cells are available from BEI Resources as catalog 
number NR-52511. 

4.3 Detailed protocol for generation of pseudotyped lentiviral particles.  

Pseudotyped lentiviruses can be generated by transfecting 293Ts as depicted in Figure 1A. We used the 
following protocol: 

1. Seed 293T cells in D10 growth media (see subsection 4.2 for media composition) so that they will be 
50-70% confluent the next day. For a 6-well plate, this is 5x105 cells per well (2.5x105 cells per mL).  

2. At 16-24 hours after seeding, transfect the cells with the plasmids required for lentiviral production. 
We transfect using BioT (Bioland Scientific) following the manufacturer’s instructions and using the 
following plasmid mix per well of a 6-well plate (plasmid amounts should be adjusted for larger 
plates): 

• 1 ug of lentiviral backbone–we used either the ZsGreen (NR-52520) or the Luciferase-IRES-
ZsGreen (NR-52516) backbone 

• 0.22 ug each of plasmids HDM-Hgpm2 (NR-52517), pRC-CMV-Rev1b (NR-52519), and 
HDM-tat1b (NR-52518) 

• 0.34 ug viral entry protein–either SARS-CoV-2 Spike (NR-52513, NR-52514, or NR-52515), 
VSV G (positive control), or transfection carrier DNA (Promega E4881) as a negative control.  

3. At 18 to 24 hours post-transfection, change the media to fresh, pre-warmed D10.  
4. At 60 hours post transfection, collect virus by harvesting the supernatant from each well and filtering 

it through a 0.45 um filter. Virus can be stored at 4 C for immediate use or frozen at -80 C. The titers of 
Spike- and VSV G-pseudotyped lentiviruses were found to be unaffected by a freeze-thaw cycle (data 
not shown). All titers presented here are from virus that was frozen at -80 C prior to use. 

4.4 Detailed protocol for titering pseudotyped lentiviral particles 

To determine viral titers, we used either flow cytometry (for viruses packaging the ZsGreen backbone) or a 
luciferase assay (for viruses packaging the Luciferase-IRES-ZsGreen backbone). A detailed titering protocol is 
described below and differences between these two readouts are noted: 

1. Coat a 96-well cell-culture plate with 25 uL poly-L-lysine per well (Millipore Sigma, P4707) according 
to the manufacturer’s protocol. Poly-L-lysine improves cell adherence and prevents cell disruption 
during infection. 

2. Seed a poly-L-lysine-coated 96-well plate with 1.25x104 293T-ACE2 cells per well in D10 media. 
3. The next day (12-24 hours post-seeding), count at least 2 wells of cells to determine the number of cells 

present at infection.  
4. Prepare serial dilutions of the viruses to be titered in a final volume of 150 uL D10 growth media.  

a. For ZsGreen virus, we started with a 1:5 dilution and made three 1:5 serial dilutions. 
b. For Spike-pseudotyped Luciferase_IRES_ZsGreen virus, we started with undiluted virus and 

made three 1:3 dilutions. For VSV G-pseudotyped Luciferase_IRES_ZsGreen virus, we 
started with a 1:50 dilution. 
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5. Gently remove the media from the cells and slowly add the virus dilutions.  
6. Add polybrene (Sigma Aldrich, TR-1003-G) to a final concentration of 5 ug/mL. We did this by adding 

3 uL of polybrene diluted to 250 ug/mL to our final infection volume of 150 uL. Polybrene is a 
polycation that helps facilitate lentiviral infection through minimizing charge-repulsion between the 
virus and cells [56]. 

7. At 48-60 hours post-infection, collect cells for analysis: 
a. For flow cytometry:  

i. Look at the cells under a fluorescent microscope and select wells that appear ~1-10% 
positive. Harvest cells from these wells using trypsin and transfer them to a V-
bottom plate or microcentrifuge tubes. Pellet cells at 300xg for 4 min and wash twice 
with 3% BSA in PBS. After the final wash, resuspend in 1% BSA in PBS and analyze 
via flow cytometry. We used a Becton Dickinson Celesta cell analysis machine with 
a 530/30 filter to detect ZsGreen in the FITC channel. Resulting FCS files were 
analyzed using FlowJo (v10). 

ii. Calculate titers using the Poisson formula. If P is the percentage of cells that are 
ZsGreen positive, then the titer per mL is: -ln(1 – P / 100) x (number of cells / well) / 
(volume of virus per well in mL). Note that when the percentage of cells that are 
ZsGreen positive is low, this formula is approximately equal to: (% ZsGreen positive 
/ 100) x (number of cells / well) / volume of virus per well in mL). Furthermore, the titers 
using even the Poisson equation will only be accurate if the percentage of cells that 
are ZsGreen positive is relatively low (ideally 1-10%).  

b. For luciferase: 
i. Thaw luciferase reagent at room temperature. We used the Bright-Glo Luciferase 

Assay System (Promega, E2610). 
ii. Prepare cells by removing 100 uL media from each well. Accounting for evaporation, 

this leaves ~30 uL of media in each well. 
iii. Add 30 uL of luciferase reagent, mix well, and transfer all 60 uL to a black-bottom 

plate (Costar 96-well solid black, Fisher, 07-200-590).  
iv. Incubate plate for 2 min at room temperature in the dark then measure luminescence 

using a plate reader. We used a Tecan Infinite M1000 Pro plate reader with no 
attenuation and a luminescence integration time of 1 second. 

v. Plot RLUs vs. virus dilution. Select an amount of virus for further assays where there 
is sufficient (>1000-fold) signal above virus-only background and a linear 
relationship between virus added and RLU. 

 

 

 
 

Figure 5: Example plate layout for neutralization assays. It is possible to run full-dilution series of two sera 
or plasma samples in duplicate on each plate with the necessary controls. These controls include media 
only, cells only, and virus only wells, as well as 4 wells of virus infecting 293T cells to confirm the lack of 
infection with Spike-pseudotyped lentivirus in the absence of ACE2. The average signal from the “Virus 
Only” and “Virus + 293Ts” wells provides the background signal. The “Virus + Cells” wells represent 
maximum infection without any serum and provide a metric for 100% virus infectivity. Note that “cells” 
here refers to the 293T-ACE2 cells. 
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4.5 Detailed protocol for neutralization assays.  

The following protocol was developed to streamline neutralization assays with Spike-pseudotyped lentiviruses. 
This protocol can be performed with either human sera or plasma, or monoclonal antibodies. Note that for safety, 
sera or plasma should be heat-inactivated in a biosafety cabinet prior to use as described in subsection 4.6. 

1. Seed a poly-L-lysine-coated 96-well plate with 1.25x104 293T-ACE2 cells (BEI NR-52511) per well in 50 
uL DMEM (2.5x105 cells per mL). Plan to infect this plate 8–12 hours post-seeding. 

2. About 1.5 hours prior to infecting cells, begin preparing serum and/or ACE2 dilutions in D10:  

a. In a separate 96-well “setup” plate, serially dilute serum samples leaving 60 uL diluted serum 
in each well. For the data in Figures 4A & 4C, we started at an initial serum dilution of 1:80 
and did serial 2.5-fold dilutions, meaning each replicate of the assay requires 5 uL of sera. For 
ACE2 (Fig. 4) we started with a concentration of 200 ug/mL and did serial 3-fold dilutions. 

b. Add 60 uL of D10 to wells corresponding to virus only and virus plus cells control wells. Add 
120 uL of D10 to media only and cells only control wells. See Figure 5 for an example plate 
layout. 

3. Dilute virus to ~2-4x106 RLU per mL. Add 60 uL of diluted virus to all wells containing serum dilutions 
and the virus only and virus plus cells control wells. 

4. Incubate virus and serum at 37 C for 1 hr.  

5. Carefully add 100 uL from each well of the setup plate containing the sera and virus dilutions to the 
corresponding wells of the plate of 293T-ACE2 cells.  

6. Add polybrene (Sigma Aldrich, TR-1003-G) as described in subsection 4.4 for a final concentration of 5 
ug/mL in each well.  

7. Incubate at 37 C for 48-60 hours before reading out luminescence or fluorescence as described in 
subsection 4.4. 

8. Plot the data. For the curves shown in Figure 4, we fit and plotted the data using the neutcurve Python 
package (https://jbloomlab.github.io/neutcurve/). 

4.6 Human plasma sample and soluble ACE2. 
The human plasma sample used in Figure 4A was collected at 19 days post-symptom onset from a patient with 
a confirmed SARS-CoV-2 infection. Prior to use, the plasma was heat-inactivated in a biosafety cabinet at 56 C 
for one hour. This duration of heat treatment has been shown to be sufficient to inactivate SARS-CoV-2 [26,57], 
which is also not reported to be present at high titers in the blood [58,59]. The negative control serum pools came 
from Gemini Biosciences (Cat:100-110). The naïve serum pool collected in 2017-2018 is lot H86W03J. The age-
matched negative control serum comes from serum residuals collected by Bloodworks Northwest. It was 
collected on 12/19/1989 and stored at -80 C. 

Soluble human ACE2 protein fused to the Fc region of human IgG was produced as described in [28]. This 
ACE2-Fc fusion protein was used in Figure 4B. 

Supplementary Materials: File S1: A zip file containing all the plasmid maps in Genbank format.  
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