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Abstract

In theory, neurons modelled as single layer perceptrons can implement all lin-
early separable computations. In practice, however, these computations may
require arbitrarily precise synaptic weights. This is a strong constraint since
both, biological neurons and their artificial counterparts, have to cope with
limited precision. Here, we explore how the non-linear processing in dendrites
helps overcoming this constraint. We start by finding a class of computations
which requires increasing precision with the number of inputs in a perceptron
and show that it can be implemented without this constraint in a neuron with
sub-linear subunits. Then, we complement this analytical study by a simulation
of a biophysical neuron model with two passive dendrites and a soma, and show
that it can implement this computation. This works demonstrates a new role of
dendrites in neural computation: by distributing the computation across inde-
pendent subunits, the same computation can be performed more efficiently with
less precise tuning of the synaptic weights. We hope that this works not only of-
fers new insight into the importance of dendrites for biological neurons, but also
paves the way for new, more efficient architectures of artificial neuromorphic
chips.

Author Summary

In theory, we know how much neurons can compute, in practice, the number
of possible synaptic weights values limits their computation capacity. Such a
limitation holds true for artificial and synthetic neurons. We introduce here a
computation where the required means evolve significantly with the number of
inputs, this poses a problem as neurons receive multiple thousands of inputs. We
study here how the neurons’ receptive element -called dendrites- can mitigate
such a problem. We show that, without dendrites, the largest synaptic weight
need to be multiple orders of magnitude larger than the smallest to implement
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the computation. Yet a neuron with dendrites implements the same computa-
tion with constant synaptic weights whatever the number of inputs. This study
paves the way for the use of dendritic neurons in a new generation of artificial
neural network and neuromorphic chips with a considerably better cost-benefit
balance.

Introduction

In theoretical studies, scientist typically represent neurons as a linear thresh-
old units (LTU; summing up the weighted inputs and comparing the sum to a
threshold) [11]. Multiple decades ago, theoreticians exactly delimited the com-
putational capacities of LTU also known as the Perceptron [12]. LTU cannot
implement computations like the exclusive (the XOR), but they can implement
all possible linearly separable computations and a sufficiently large network of
LTUs can approximate all possible computations.

Research in computer science determined the synaptic wights resolution nec-
essary and sufficient to compute all linearly separable computation [13, 8], and
they evolves exponentially with the number of inputs. Formally an LTU needs

integer-valued weights so that |wi| ≥ 1
2ne

−4nβ2
nlogn
2−n , with β a constant, to be

able to implement all linearly separable functions [8]. Consequently, an LTU
with finite means cannot compute all linearly separable functions [5].

This limitation poses multiple practical problems. In the nervous system,
neurons need to maintain a large number of synapses or synapses with a large
number of stable state. Neuromorphic chips illustrate the problem and synapses
often occupy the majority of the space, up to ten times more than the space
occupied by neurons themselves [14]. We demonstrate here that dendrites might
be a way to cope with this challenge.

Dendrites are the receptive element of neurons where most of the synapses
lay. They turn neurons into a multiple layers network [15, 20] because of their
non-linear properties [1, 16]. They enable neurons to compute linearly insepa-
rable computation like the XOR or the feature binding problem (FBP) [6, 3].
We wonder here if dendrites can also decrease the synaptic resolution necessary
to compute linearly separable computations.

First, we investigate the three inputs variables computations implementable
by an LTU with positive synaptic weights. Second, we extend the definition
of one of this computation to an arbitrarily high number of inputs. Third,
we implement this computation at a smaller cost in a neuron with two passive
dendrites.

This work not only shows the usefulness of dendrites in the nervous system,
but also paves the way for a new generation of more cost-efficient artificial neural
network and neuromorphic chips composed of dendritic neurons.
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Materials and methods

Biophysical neuron model

We performed simulations in a spatially extended neuron model, consisting a
spherical soma (diameter 10 µm) and two cylindrical dendrites (length 400 µm
and diameter 0.4 µm). The two dendrites are each divided into four compart-
ments and connect to the soma at their extremity. In contrast to a point-neuron
model, each compartment has a distinct membrane potential.

The membrane potential dynamics of the individual compartments follow
the Hodgkin-Huxley formalism with:

Cm
dVsoma

dt
= gL(V −EL) + ḡKn

4(V −EK) + ḡNam
3h(V −ENa) + Ia + Is (1)

for the somatic compartment and

Cm
dVdend
dt

= gL(V − EL) + Ia + Is (2)

for the dendritic compartments.
Here, Vsoma and Vdend are the respective membrane potentials, Cm = 1 µF cm−2

is the membrane capacitance, gL, ḡK , and ḡNa stand for the leak, the maximum
potassium and sodium conductances respectively, and EL, EK , and ENa stand
for the corresponding reversal potentials. The currents Ia represent the axial
currents due to the membrane potential difference between connected compart-
ments. The synaptic current Is arises from a synapse placed at the respective
compartment. It is described by

Is = gs(Es − V ) (3)

with Es being the synaptic reversal potential and gs the synaptic conduc-
tance. This conductance jumps up instantaneously for each incoming spike and
decays exponentially with time constant τs = 1 ms otherwise:

dgs
dt

= −gs
τs

(4)

The dynamics of the gating variables n, m, and h are adapted from [19] and
omitted here for brevity.

The parameter values are summarized in Table 1
Note that due to the absence of sodium and potassium channels in the

dendrites, the dendrites are passive and cannot generate action potentials.
All simulations were performed with Brian 2 [18]. The code is available as

a supplementary zip file. It allows reproducing the results presented in Fig 4,
Fig 5 and Fig 6. To demonstrate that the details of the neuron model do not
matter for the results presented here, the code can also be run with a simpler
leaky integrate-and-fire model.
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Equilibrium potentials Conductances
(in mV) (in mS/c2m)

EL −65 gL 10
ENa 50 ḡNa 100
EK −90 ḡK 30
Es 0

Table 1: Parameter values used in the biophysical model

Elementary neuron model and Boolean functions

We first define as a reminder Boolean functions:

Definition 1. A Boolean function of n variables is a function on {0, 1}n into
{0, 1}, where n is a positive integer.

Note that a Boolean function can also be seen as a binary classification or a
computation.

A special class of Boolean functions which are of particular relevance for
neuron are linearly separable computations:

Definition 2. f is a linearly separable computation of n variables if and only
if there exists at least a vector w ∈ Rn and a threshold Θ ∈ R such that:

f(X) =

{
1 if w ·X ≥ Θ

0 otherwise
,

where X ∈ {0, 1}n is the vector notation for the Boolean input variables.

Binary neurons are one of the simplest possible neuron models and closely
related to the functions described above: their inputs are binary variables, rep-
resenting the activity of their input pathways, and their output is a single binary
variable, representing whether the neuron is active or not. The standard model
is a linear threshold unit (LTU), defined as follows:

Definition 3. An LTU has a set of n weights wi ∈ W and a threshold Θ ∈ T
so that:

f(X) =

{
1 if

∑m
i=0 wiXi ≥ Θ

0 otherwise
,

where X = (X1, . . . , Xm) are the binary inputs to the neuron, and W and T
are the possible values for synaptic weights and the threshold, respectively.

This definition is virtually identical to Def. 2, however, wi and Θ are no
longer arbitrary real values, but chosen from a finite set of numbers depending on
the implementation peculiarities and noise at which these value can be stabilised.
It means that a neuron may not be able to implement all linearly separable
functions. For instance, a neuron with non-negative weights can only compute
positive linearly separable functions:
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Definition 4. A threshold function f is positive if and only if f(X) ≥ f(Z)
∀(X,Z) ∈ {0, 1}n such that X ≥ Z (meaning that ∀i : xi ≥ zi).

To account for saturations occurring in dendrites, we introduce the sub-linear
threshold unit (SLTU):

Definition 5. A SLTU with d dendrites and n inputs has a set of d×n weights
wi,j ∈ {0, 1} with n wi such that

∑
j wi,j = wi, d dendritic threshold θ ∈ T and

a threshold Θ ∈ T , such that:

f(X) =

{
1 if

∑d
i=0E(

∑n
j=0 wi,jXi,j) ≥ Θ

0 otherwise

with

E(Y ) =

{
1 if Y ≥ 1

0 otherwise

Such a neuron model can compute all positive Boolean functions (see Def. 4)
provided a sufficient number of dendrites and synapses [3].

We used integer-valued and non-negative parameters both for the LTU and
the SLTU without loss of generality. It allows to exactly determine the number
of similar synapses necessary to implement a given computation.

Results

Function implementations for three input variables

In the following, we will look at computations that cannot be implemented in
an LTU without using different strictly positive synaptic weights. The simplest
case where this can occur is for three inputs. We list all such computation in
Tab 2. Of these computations, the first three (OR, AND/OR, and AND) do
not require distinct synaptic weights; they can all be implemented in an LTU
by having the same weight for all synapses, by only varying the threshold. This
is not the case for the last two computations that we coined the Dominant AND
(D-AND) and the Dominant OR (D-OR): here, an LTU implementation needs
to have one synaptic weight that is twice as big as the others (see Fig. 1).

We have named the first new computation the D-AND because it requires
the activation of a dominant (D) input AND the activation of another input.
The D-OR is the Boolean dual of the D-AND, i.e. obtained by replacing AND
operations by OR, and vice versa. In this function, an activation of the dominant
input alone triggers an output. The other way to trigger an output is to activate
bothX1 andX2 at the same time. These functions have a “dominant input“ – an
input that is sufficient to make the output true (D-OR), respectively necessary
to make the output true (D-AND).
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Inputs OR AND/OR AND D-OR D-AND
000 0 0 0 0 0
001 1 0 0 0 0
010 1 0 0 0 0
011 1 1 0 1 0
100 1 0 0 1 0
101 1 1 0 1 1
110 1 1 0 1 1
111 1 1 1 1 1

Table 2: The five computations for n = 3 inputs with their associated truth
tables. We have assigned a name to each class for easier reference.

In the present paper, we always chose X0 as the dominant input, but we
could have picked X1 or X2. There is nothing comparable in the other three
computations which treat all inputs identically.

Figure 1: Minimal implementation of the Dominant AND computation
(D-AND) and its dual by a linear threshold unit (LTU). Implementa-
tions of the D-AND where X0 is the dominant input. Squares represent synapses
with their synaptic weight, and circles stand for transfer functions. Here, the
transfer functions are threshold functions with the given value as their thresh-
old. A: Implementation of the D-AND, note that X0 has twice the synaptic
weight compare to the others. B: Implementation of the D-OR, note that we
keep the same synaptic architecture and we only change the threshold of the
transfer function.

An LTU (Fig. 1) implements the computation by using synaptic strength.
We employed here integer valued synaptic weights to reflect their finite precision.
Even if synaptic weights can take real values, a finite precision means a finite
number of values, and one could consider each integer to represent the index
of this value. The weight and threshold values to implement a function are
obviously not unique. For example, we could multiply all the weights by 2
and set the threshold to 6 (D-AND), or 4 (D-OR) and obtain the same results.
Here we always use the lowest possible integer valued synaptic weights, and the
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corresponding lowest possible threshold.
Then, we wanted to implement the D-AND and D-OR computation in

threshold units with non-linear dendritic subunits, as an abstraction of neu-
rons with dendrites [15].

We consider two types of non-linearities: a threshold function to model
supra-linear summation; and a saturating function to model sub-linear summa-
tion (SLTU; see Material and Methods). Both types of summations have been
observed in dendrites. Dendritic spikes are a well-known example of supra-linear
summation [6], while sub-linear summation can be observed in completely pas-
sive dendrites due to the intrinsic saturation of synaptic conductances [1].

Fig. 2 shows a minimal implementation of D-AND in a dendritic neuron,
with a supra-linear summation in Fig 2A and a sub-linear summation (SLTU)
in Fig 2B. In both cases, all synapses are of identical strength. However, note
that in the supra-linear implementation in Fig 2A, the X0 input connects to
both dendrites. Therefore, as we define an input’s synaptic weight as the total
effect it has in the final summation stage (analogous to depolarisation measured
in the soma of a neuron), we have to consider the weight of X0 as twice as
high as the other inputs. Note that this makes this implementation similar to
the implementation in an LTU (Fig 1A): the dominance of X0 is expressed by
a stronger weight. This is not the case for the sub-linear implementation in
Fig 2B, where the synaptic weights are identical. Here, the dominance of X0 is
only expressed by its placement.

Since the D-OR is the dual of the D-AND, its implementation also follows
the same structure as the D-AND, but with the sub- and supra-linear implemen-
tations reversed. In this case, the supra-linear implementation uses placement
to implement the dominance of X0 whereas the sub-linear implementation uses
strength.

In real neurons, spiking and saturating dendrites both integrate inputs sub-
linearly in a given range [1, 6]. Therefore, we will focus on D-AND in the
following section and further explore the potential of threshold units with sub-
linear sub-units (SLTUs) as an abstraction of dendritic integration in neurons.

Implementing the D-AND for an arbitrary number of input
variables

In the previous section, we have limited our analysis to computations with three
input variables. We will now extend the definition of the D-AND to an arbitrary
number of input variables. As in the three-variable case, we will consider one
input to be the dominant input (assumed to be X0, without loss of generality).
This input has to be activated together with at least one of the non-dominant
inputs. Formally, we therefore define fn(X) as follows:

fn(X) =

(
n−1∨
i=1

Xi

)
∧X0, (5)

where X is the n-dimensional input vector with elements X0 . . . Xn.
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Figure 2: Two implementation of the D-AND in threshold units with
non-linear sub-units (“dendritic neurons”). Squares represent synapses
and circles represent transfer functions and their respective threshold/satura-
tion values. Note that the final transfer functions (“somatic integration”) are
always threshold units, whereas the transfer functions of the sub-units (“den-
drites”) are threshold functions as an example for supra-linear summation in
A, and saturating functions as examples of sub-linear summation in B. A: D-
AND Implementation using supra-linear summation. Note that X0 has two
synapses and therefore a synaptic weight of two. B: D-AND Implementation
using sub-linear summation. Here, all inputs have identical synaptic weights.

We can implement this function in an LTU (Fig 3A), as well as in a SLTU
(Fig 3B)

In the LTU implementation (Fig 3A), the D-AND of n variables requires
that an input has a synaptic weight at least n − 1 times bigger than the other
inputs, and the threshold has to grow accordingly.

We can summarise these observations in a proposition.

Proposition 1. To implement the D-AND, an LTU requires that an input has
a synaptic weight n− 1 times bigger than the smallest synaptic weight.

Proof. The LTU must stay silent whenX0 is not active, even ifX1, X2, . . . , Xn−1

are active. Therefore w1 +w2 + ...+wn−1 < Θ, thus Θ must be greater or equal
than n× wmin with wmin the smallest synaptic weight.

Conversely, the output should be active as soon as X0 is co-active with any
other input Xj (for j ≥ 1). So w0+wmin ≥ Θ, this means w0+wmin ≥ n×wmin,
thus w0 ≥ wmin(n− 1).

In contrast, Fig 3B provides a constructive proof that an SLTU can im-
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Figure 3: Extending the D-AND implementation to n inputs Synaptic
weights are in squares, and transfer functions are in circles. A: Minimal D-AND
implementation in an LTU. Note that this implementation requires a synaptic
weight that is n− 1 times bigger than the smallest weight. B: Implementation
in an SLTU with sub-linear summation.

plement the D-AND with equal synaptic weights. In this implementation, the
distinguishing feature of the dominant input is that it targets the second den-
drite; the synaptic weights and the threshold do not have to change with the
number of inputs. If one would only measure the response to single inputs at
the “soma” (last stage of summation), the dominant input would be indistin-
guishable from the other inputs, despite its dramatically different importance.

We will see next how these insights transfer to a more realistic biophysical
model.

Implementation of the D-AND in a biophysical model

We are going to use here an illustrative example: consider a predator of a certain
shape (triggering input X0) and either coloured green or blue (inputs X1 and
X2). For an animal that is a potential prey, a stimulus should only trigger a
fleeing response if the predator’s shape is accompanied by one of the correct
colours. Neither its shape alone nor either or both of the colours without the
shape should trigger it.

Fig 4A presents a single neuron biophysical model implementing this func-
tion. One synapse comes from an input encoding for the shape of an object,
and this synapse connects to the upper dendrite. The two others encode for two
different colours, either green or blue, and they connect to the lower dendrite.
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Figure 4: A biophysical model sensitive to synapses’ spatial distribu-
tion. A: A biophysical model with two dendrites and a soma (lines: dendrites,
circle: soma). Coloured squares depicts synapses. The model has three equiva-
lent synapses. One comes from an input encoding the shape (black square), and
two situated on the other dendrite encode the colour (blue or green). B: Mem-
brane voltage traces responding to either clustered (the two synapses activate
on the same dendrite; aquamarine) or dispersed (the two synapses activate on
distinct dendrites; black) synaptic activation at five distinct locations (dendrite
where two synapses cluster at 350 µm, 250 µm, 150 µm, 50 µm, and soma). Note
that at the point where two synapses cluster the clustered activation is larger
than the dispersed activation, whereas in the soma the opposite is the case.

All the synapses, taken individually, produce the exact same depolarisation at
the soma because we place them at the same distance (350 µm) and give them
the same maximal conductance (20 nS).

We first look at the sub-threshold behaviour by disabling the sodium chan-
nels (gmax

Na = 0). Fig 4B plots the voltage response at distinct locations on the
lower dendrite, and finally in the soma. To probe the response we either activate
a shape and one of the colours (black line Fig 4B), or both colours (aquama-
rine line). In both cases, we activate two synapses, but in the first case this
activation is dispersed over the two dendrites whereas in the second case it is
clustered on the lower dendrite. Despite activating the same number of synapses
in both cases, and despite them all having the same strength, the depolarisation
markedly differs. At the tip of the dendrite – where the synaptic stimulation
takes place –, a dispersed activation leads to a smaller depolarisation than the
clustered activation. In the soma, we observe the opposite: the dispersed ac-
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tivation leads to a bigger depolarisation than the clustered activation. For the
dispersed activation, we record a depolarisation of 9.3 mV at the soma, whereas
it is only 6.2 mV for the clustered activation.

We can explain this observation by considering the synaptic driving force [9].
The synaptic current induced by the activation of the synapse depends on the
distance between the membrane potential and the synapses’ reversal potential;
when several inputs drive the membrane potential closer to the reversal poten-
tial (here 0 mV, this driving force diminishes. The combined effect of multiple
synaptic inputs is therefore smaller then what is expected from summing the
individual effects. In other words, the dendrite performs sub-linear summation.

Note that we could have expected a difference of up to 100% between the
clustered and dispersed stimulation in the soma. In the actual simulation, the
difference is closer to 50%, showing the non-trivial interaction taking place at
the soma.

This means that even if all synapses have the same impact on the soma
individually; even if we have a complete synaptic democracy [10], the relative
placement of the synapses strongly influences the somatic response.

Based on the sub-threshold behaviour presented above, we will now show
that we can implement the D-AND in a spiking neuron model. It is crucial
to look at the supra-threshold behaviour as it is how the neuron communicate
with the rest of the network. Moreover, back propagated action potentials might
indeed undermine the dendritic non-linearity disrupting the implementation [2].

We can interpret Boolean inputs and outputs in different ways when we ap-
ply them to a biophysical spiking neuron model. Here, we will consider two
interpretations. Firstly, we can think of an active input as corresponding to
a continuous stimulation where the individual spikes arrive at random times ,
and of an active output as some spiking activity of the neuron (“rate interpre-
tation”). Alternatively, we can think of active inputs as coincidentally arriving
spikes within a certain time window, and accordingly of an active output as a
single spike emitted in response (“spike interpretation”).

We present the model implementing the rate interpretation in Fig 5. We
introduced this model earlier (Fig 4), except that it has now active sodium
channels (gmax

Na = 650 mS cm−2). Each of its inputs (colours corresponding to
the colours in Fig 4) activates 25 times according to a Poisson process.

The Fig 5 displays, from top to bottom, the model’s responses in five different
situations:

• A single input activates, in this case the neuron remains silent. We obtain
the same outcome whatever the chosen input.

• Two dispersed inputs activate (black + green or black + blue), in these
two scenarios the neuron fires.

• The two clustered inputs (green + blue) activate, in this case the neuron
remains silent as expected from our observation in Fig 4B.

• All inputs activate, in this last case the neuron does not overly fire notably
because of the refractory period.
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Figure 5: A biophysical model implementing the Dominant AND
(rate interpretation) Top: activity of the three input synapses, the two first
synapses impinge on the same dendrite while the black one impinges on an-
other. Bottom: Eight somatic membrane responses depending on the active
inputs. (gray: no synapse/only black/green/blue, green: black + green, blue:
black + blue, aquamarine: green + blue, black: all inputs active). Note that
this activity reproduces the truth table from Tab 2.

This figure thus presents the response of the neuron model to all non-trivial
cases, we have only omitted the case without any input activation (and therefore
without any output activity).

Finally, we show an implementation of the spike interpretation in Fig 6. This
model is identical to the model shown previously (Fig 5), except for a slightly
lowered activation threshold of the sodium channels (VT = −55 mV instead of
VT = −50 mV) to make it spike more easily. We discretize time into bins of
25 ms and decide randomly for each input whether it is active in each bin. If
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Figure 6: A biophysical model implementing the Dominant AND
(spike interpretation) Top: The biophysical model receives input from three
sources, where activation happens at regular intervals of 25 ms, with a random
jitter of ±1 ms for each spike. We translate this activity into a binary pattern
for each time bin of 25 ms. Bottom: The model’s membrane potential as mea-
sured in the soma. The response spikes implement the output of the D-AND
computation as described in Tab 2.

it is active, it activates at the beginning of the bin with a small temporal jitter
(1 ms); inputs activating in the same bin therefore spike coincidentally. We can
directly link these activations to Boolean variables that are either 0 (no spike)
or 1 (spike). As Fig 6 shows, the neuron implements the D-AND and only spikes
whenever the “shape input” (black) is active together with at least one of the
“colour inputs” (blue and green).

We have shown that a biophysical model can implement the D-AND com-
putation using a different strategy than the LTU. Each input has the same
synaptic weight producing the same depolarisation at the soma. To distinguish
between the inputs, the biophysical model uses location instead of strength: the
dominant input (black) targets its own dendrite, while the two other inputs
cluster on the same dendrite. With this strategy, the model can implement the
D-AND. This implementation also works for two interpretations of the Boolean
inputs and outputs – as elevated rates of spiking without temporal alignment,
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or as precisely timed coincident spikes.

Discussion

In the present work, we demonstrate a computation for which an LTU imple-
mentation requires a synaptic weight many times higher than the other. In an
implementation using dendrites, however, all synaptic weights can remain equal.

Two observations support this conclusion: 1) we have proven that an LTU
requires that an input has a synaptic weight n− 1 times larger than the small-
est input to implement a computation slightly more complex than coincidence
detection. 2) A biophysical model with two dendrites can implement the same
computation with all synaptic weights being equal.

The two first result sections look at a computation and one of its possi-
ble extension for an arbitrary number of uncorrelated inputs. Note that this
extension of the D-AND from three to an arbitrary number of inputs is not
the only possibility. We think that the extension we chose is a reasonable one
and it allowed us to demonstrate an advantageous implementation in an SLTU
compared to an LTU.

Note also that our denomination of one input as “dominant” and the others
as “non-dominant” is very related to the distinction between “driver” and “mod-
ulator” inputs [17]. This concept, where driver inputs are necessary to activate
a neuron, but this activity can be modulated by other inputs, is ubiquitous in
the sensory system. For example, neurons in the primary visual cortex require a
stimulus in their classical receptive field. Stimuli in the so-called extra-classical
receptive field cannot activate the neuron by themselves, but strongly modulate
the response if presented together with a stimulus in the classical receptive field
[7]. This distinction is not entirely applicable in our example, since the dom-
inant input X0 is not sufficient to activate the neuron by itself. Nevertheless,
both computations rely on making a distinction between synaptic inputs, which
can be implemented by placing inputs on different dendrites as we have shown
in this study.

Our results also relate to a study [4] where we made use of dendrites to
implement another computation with relevance to biology, namely direction
selectivity. In the earlier study, we demonstrated how dendrites make the im-
plementation resilient to massive synaptic failure, and this past work shows that
dendrites improve the computing robustness. The present work introduces an-
other aspect of robustness. Thanks to the saturating dendrite, the weights of the
”non-dominant” synapses do not have to be set precisely; the only requirement
is that a single input is enough to saturate the dendrite.

Several of our model properties fit with experimental observations. At least
in some neurons, synapses at different positions tend to create the same depolar-
isation at the soma [10]. Furthermore, other experimental studies demonstrate
examples of sublinear summation in dendrites [20, 1], notably in interneurons.

Our findings might also have implications beyond neuroscience, in particular
for engineering applications. Studies in computer science assert that even prob-
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lems solvable by an LTU might not have a solution when weights have a limited
precision [5]. Being able to implement functions with equal synaptic weights,
or with a small range of weights as we have demonstrated for the implementa-
tions in an SLTU, therefore may be advantageous for computations with limited
resources.

In conclusion, dendrites enable to implement computations in more efficient
and robust ways than without. This is not only of interest to neuroscientists, but
might also inspire the design of future artificial neural networks and compact
neuromorphic chips.
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[3] Romain D. Cazé, Mark D. Humphries, and Boris S. Gutkin. Spiking and
saturating dendrites differentially expand single neuron computation ca-
pacity. Nips, pages 1–9, 2012.
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