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Abstract 

Calculations of ligand binding free energies and kinetic rates are important for drug design. 

However, such tasks have proven challenging in computational chemistry and biophysics. To 

address this challenge, we have developed a new computational method “LiGaMD”, which 

selectively boosts the ligand non-bonded interaction potential energy based on the Gaussian 

accelerated molecular dynamics (GaMD) enhanced sampling technique. Another boost potential 

could be applied to the remaining potential energy of the entire system in a dual-boost algorithm 

(LiGaMD_Dual) to facilitate ligand binding. LiGaMD has been demonstrated on host-guest and 

protein-ligand binding model systems. Repetitive guest binding and unbinding in the β-

cyclodextrin host were observed in hundreds-of-nanosecond LiGaMD simulations. The calculated 

binding free energies of guest molecules with sufficient sampling agreed excellently with 

experimental data (< 1.0 kcal/mol error). In comparison with previous microsecond-timescale 

conventional molecular dynamics simulations, accelerations of ligand kinetic rate constants in 

LiGaMD simulations were properly estimated using Kramers’ rate theory. Furthermore, LiGaMD 

allowed us to capture repetitive dissociation and binding of the benzamidine inhibitor in trypsin 

within 1 μs simulations. The calculated ligand binding free energy and kinetic rate constants 

compared well with the experimental data. In summary, LiGaMD provides a promising approach 

for characterizing ligand binding thermodynamics and kinetics simultaneously, which is expected 

to facilitate computer-aided drug design. 

 

Keywords: Ligand Gaussian accelerated molecular dynamics (LiGaMD), enhanced sampling, 

ligand binding, thermodynamics, free energy, kinetic rate constants. 
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Introduction 

Free energy calculations of protein-ligand binding have been central to computational chemistry 

and biophysics research for the last several decades1. This is largely motivated by designing potent 

drug molecules with high binding free energies in the pharmaceutical industry2. A number of 

computational methods that have been developed in the field include thermodynamic integration 

(TI)3, free energy perturbation (FEP)4, double decoupling method5, umbrella sampling6, steered 

molecular dynamics (SMD)7, funnel metadynamics8, molecular mechanics Poisson-Boltzmann 

surface area and generalized Born surface area (MM/PBSA and MM/GBSA)9, and so on. Ligand 

binding free energy calculations have also been the focus of Statistical Assessment of Modeling 

of Proteins and Ligands (SAMPL)10 and Drug Design Data Resource (D3R)11 community 

challenges. 

Kinetics of ligand binding have recently been recognized to be potentially more relevant 

for drug design. In particular, the dissociation rate constant that determines the drug residence time 

appears to better correlate with drug efficacy than the binding free energy12. However, ligand 

kinetic rates have proven even more difficult to compute than the binding free energies, largely 

due to slow processes of ligand binding and dissociation over long timescales12b. With remarkable 

advances in supercomputing and method developments, molecular dynamics (MD) simulations 

using specialized hardware13, Markov state model (MSM)14 and enhanced sampling15 have 

extended our capabilities to capture spontaneous ligand binding to target proteins. A number of 

enhanced sampling methods, including metadynamics16, random acceleration MD17, SMD18, 

weighted ensemble19 and selectively scaled MD20 have also been able to dissociate ligand 

molecules from the proteins. However, it remains extremely challenging to simulate repetitive 
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ligand binding and dissociation processes, precluding accurate calculations of ligand kinetic rate 

constants. 

With relatively small size and reduced complexity, host-guest binding systems has served 

as models of protein-ligand binding in SAMPL challenges10. The studied hosts include the 

cucurbit[7]uril (CB7), octa-acid, and CBClip and cyclodextrin (CD). These hosts are compounds 

that are typically much smaller than proteins but still large enough to bind guest molecules through 

non-covalent interactions, which share common characteristics as protein-ligand binding. Host-

guest systems thus represent model systems for testing and improving free energy calculation 

methods. In addition to thermodynamics, Chang and co-workers have investigated kinetics of fast 

guest binding and dissociation in the β-CD host21. Tens to hundreds of repetitive guest binding and 

dissociation events were observed in microsecond-timescale MD simulations, which enabled 

comprehensive characterization of both thermodynamics and kinetics of the host-guest binding. 

The MSM22 and metadynamics8, 23 have been applied to investigate the thermodynamics 

and kinetics of protein-ligand binding, using particularly the benzamidine inhibitor binding to 

trypsin as a model system. Multiple metadynamics trajectories with a total of 5 μs simulation time 

were obtained to predict the ligand unbinding pathways and dissociation rate constant, koff. The 

calculated koff = 9.1 ± 2.5 s-1 was suggested to be in agreement of the experimental value 𝑘!""
#$% = 

600 ± 300 s-1. Separate funnel metadynamics simulations also allowed calculations of ligand 

binding free energies, in particular -8.5 ± 0.7 kcal/mol for the trypsin-benzamidine system8. The 

MSM built with 150 μs MD simulation data provided a complex picture of ligand binding kinetics 

and protein conformational plasticity22. The simulation predicted koff = 131 ± 109 × 102 s-1 appeared 

to be faster than the experimental value, while the predicted binding rate constant kon = 6.4 ± 1.6 × 

107 M-1·s-1 compared well with the experimental value of 𝑘!&
#$% = 2.9 × 107 M-1·s-1. Repetitive ligand 
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binding and unbinding in trypsin were also captured using a selective integrated-tempering-

sampling molecular dynamics (SITSMD) method recently24. The binding free energy of 

benzamidine in trypsin was estimated as -5.06 kcal/mol, but the ligand kinetic rates were not 

calculated from the SITSMD simulations. 

Here, we present a new computational method called ligand Gaussian accelerated 

molecular dynamics (“LiGaMD”), which enables us to simulate repetitive ligand binding and 

unbinding, and thus characterize both thermodynamics and kinetics of ligand binding 

simultaneously. Gaussian accelerated molecular dynamics (GaMD) is an enhanced sampling 

computational technique that works by adding a harmonic boost potential to smooth the 

biomolecular potential energy surface.25 GaMD greatly reduces energy barriers and accelerates 

biomolecular simulations by orders of magnitude.26 GaMD does not require pre-defined collective 

variables or reaction coordinates. Compared with the enhanced sampling methods that rely on 

careful selection of the collective variables, GaMD is of particular advantage for studying complex 

biological processes such as ligand binding to proteins27. Moreover, because the boost potential 

follows a Gaussian distribution, biomolecular free energy profiles can be properly recovered 

through cumulant expansion to the second order.25 GaMD builds on the previous accelerated MD 

(aMD) method28, but solves its energetic reweighting problem29 for free energy calculations of 

large biomolecules. GaMD has been implemented in the widely used AMBER25, 30, NAMD31 and 

GENESIS32 packages. GaMD has successfully revealed physical pathways and mechanisms of 

protein folding and ligand binding, which are consistent with experiments and long-timescale 

conventional MD (cMD) simulations.25, 31, 33 It has also been applied to characterize protein-

protein34, protein-membrane,35 and protein-nucleic acid36 interactions.  
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Building upon GaMD, we have developed LiGaMD for more efficient sampling 

simulations of protein-ligand binding and unbinding processes. In LiGaMD, the non-bonded 

electrostatic and van der Waals interactions between the bound ligand and protein/environment 

are selectively boosted to enable ligand dissociation. In this context, selective acceleration has 

been found useful in previous enhanced sampling techniques, including the selective aMD37, 

selectively scaled MD20, essential energy space random walk38, replica exchange solute tempering 

(REST)39 and REST240. In addition, a number of unbound ligand molecules are added in the 

solvent and another boost potential is applied on these ligand molecules, the protein and solvent 

in a dual-boost LiGaMD (LiGaMD_Dual) algorithm to facilitate ligand rebinding. 

The LiGaMD method has been demonstrated on host-guest and protein-ligand binding 

model systems. Repetitive guest binding and unbinding in the β-CD host have been observed in 

hundreds-of-nanosecond LiGaMD simulations. The LiGaMD predicted guest binding free 

energies and kinetic rate constants agree well with those from previous cMD simulations21 and 

experimental data. Furthermore, LiGaMD has also allowed us to capture multiple dissociation and 

rebinding events of the benzamidine inhibitor in trypsin within 1 μs simulations. The reweighted 

ligand binding free energy and kinetic rate constants compared well with the experimental data. 

 

Methods  

Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD) 

Gaussian accelerated molecular dynamics (GaMD) is an enhanced sampling technique that works 

by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce 

the system energy barriers25. Details of the GaMD method have been described in previous 
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studies25, 31, 33a. A brief summary is provided in Appendix A. Here, we develop a new ligand 

GaMD (LiGaMD) method for more efficient sampling of protein-ligand binding. 

We consider a system of ligand L binding to a protein P in a biological environment E. The 

system comprises of N atoms with their coordinates 𝑟 ≡ {𝑟', ⋯ , 𝑟(}	 and momenta 𝑝 ≡

{𝑝', ⋯ , 𝑝(}	. The system Hamiltonian can be expressed as: 

 𝐻(𝑟, 𝑝) = 𝐾(𝑝) + 𝑉(𝑟), (1) 

where 𝐾(𝑝) and 𝑉(𝑟) are the system kinetic and total potential energies, respectively. Next, we 

decompose the potential energy into the following terms: 

 𝑉(𝑟) = 𝑉),+(𝑟)) + 𝑉,,+(𝑟,) + 𝑉-,+(𝑟-) 

+	𝑉)),&+(𝑟)) + 𝑉,,,&+(𝑟,) + 𝑉--,&+(𝑟-) 

+	𝑉),,&+(𝑟),) + 𝑉)-,&+(𝑟)-) + 𝑉,-,&+(𝑟,-). (2) 

where 𝑉),+, 𝑉,,+ and 𝑉-,+ are the bonded potential energies in protein P, ligand L and environment 

E, respectively. 𝑉)),&+, 𝑉,,,&+ and 𝑉--,&+ are the self non-bonded potential energies in protein P, 

ligand L and environment E, respectively. 	𝑉),,&+ , 𝑉)-,&+  and 𝑉,-,&+  are the non-bonded 

interaction energies between P-L, P-E and L-E, respectively. According to classical molecular 

mechanics force fields41, the non-bonded potential energies are usually calculated as: 

 𝑉&+ = 𝑉#.#/ + 𝑉012. (3) 

Where 𝑉#.#/  and 𝑉012  are the system electrostatic and van der Waals potential energies. 

Presumably, ligand binding mainly involves the non-bonded interaction energies of the ligand, 

𝑉,,&+(𝑟) = 𝑉,,,&+(𝑟,) + 	𝑉),,&+(𝑟),) + 𝑉,-,&+(𝑟,-) . In LiGaMD, we add a boost potential 

selectively to the ligand non-bonded potential energy as: 
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 ∆𝑉,,&+(𝑟) = 3
'
3
𝑘,,&+ 4𝐸,,&+ − 𝑉,,&+(𝑟)7

3
, 𝑉,,&+(𝑟) < 𝐸,,&+
0, 𝑉,,&+(𝑟) ≥ 𝐸,,&+

 (4) 

where EL,nb is the threshold energy for applying boost potential and kL,nb is the harmonic constant. 

For simplicity, the subscript of ∆𝑉,,&+(𝑟), EL,nb and kL,nb is dropped in the following. The LiGaMD 

simulation parameters are derived similarly as in the previous GaMD algorithm (Appendix A). 

When E is set to the lower bound E=Vmax, 	𝑘4 can be calculated as: 

  𝑘4 = min(1.0, 𝑘45 ) = min	(1.0, 6!
6"

7#$%87#&'
7#$%87$()

).   (5) 

Alternatively, when the threshold energy E is set to its upper bound 	𝐸 = 𝑉9:& +
'
;
, 	𝑘4 is set to: 

 𝑘4 = 𝑘4" ≡ (1 − 6!
6"
) 7#$%87#&'
7$()87#&'

 , (6) 

if 𝑘4"  is found to be between 0 and 1. Otherwise, 	𝑘4 is calculated using Eqn. (5). 

Next, one can add multiple ligand molecules in the solvent to facilitate ligand binding to 

proteins in MD simulations13a, 42. This is based on the fact that the ligand binding rate constant kon 

is inversely proportional to the ligand concentration. The higher the ligand concentration, the faster 

the ligand binds, provided that the ligand concentration is still within its solubility limit. In addition 

to selectively boosting the bound ligand to accelerate its dissociation, another boost potential could 

thus be applied on the unbound ligand molecules, protein and solvent to facilitate ligand rebinding. 

The second boost potential is calculated using the total system potential energy other than the non-

bonded potential energy of the bound ligand as:  

 ∆𝑉=(𝑟) = @
'
3
𝑘=A𝐸= − 𝑉=(𝑟)B

3, 𝑉=(𝑟) < 𝐸=
0, 𝑉=(𝑟) ≥ 𝐸=

 (7) 
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where ED and kD are the corresponding threshold energy for applying the second boost potential 

and the harmonic constant, respectively. This leads to dual-boost LiGaMD (LiGaMD_Dual) with 

the total boost potential ∆𝑉(𝑟) = ∆𝑉,,&+(𝑟) + ∆𝑉=(𝑟). 

 

Ligand Binding Free Energy Calculations from 3D Potential of Mean Force 

We calculate ligand binding free energy from 3D potential of mean force (PMF) of ligand 

displacements from the target protein as the following43: 

 ∆𝐺4 = −∆𝑊>= − 𝑅𝑇𝐿𝑛
7*
7!

 , (9) 

where 𝑉4 is the standard volume, 𝑉+ = ∫ 𝑒8?2(A)
+ 𝑑𝑟 is the average sampled bound volume of the 

ligand with 𝛽 = 1/𝑘C𝑇, 𝑘C is the Boltzmann constant, T is the temperature, and ∆𝑊>= is the depth 

of the 3D PMF. ∆𝑊>= can be calculated by integrating Boltzmann distribution of the 3D PMF 

𝑊(𝑟) over all system coordinates except the x, y, z of the ligand: 

 ∆𝑊>= = −𝑅𝑇𝐿𝑛 ∫ #+,-(/)1A1

∫ 1A1

 , (10) 

where 𝑉E = ∫ 𝑑𝑟E  is the sampled unbound volume of the ligand. The exact definitions of the 

bound and unbound volumes 𝑉+  and 𝑉E  are not important as the exponential average cut off 

contributions far away from the PMF minima43b. A python script PyReweighting-3D.py is freely 

available in the PyReweighting tool kit (http://miao.compbio.ku.edu/PyReweighting/) for 

calculating the 3D PMF and associated ligand binding free energies. It works for both cMD 

(without energetic reweighting) and enhanced sampling simulations using LiGaMD with energetic 

reweighting (Appendix B). 
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Ligand Binding Kinetics obtained from Reweighting of LiGaMD Simulations 

Provided sufficient sampling of repetitive ligand dissociation and binding in simulations, one can 

record the time periods and calculate their averages for the ligand found in the bound (tB) and 

unbound (tU) states from the simulation trajectories. The tB corresponds to residence time in drug 

design44. Then the ligand dissociation and binding rate constants (koff and kon) were calculated as: 

 𝑘!"" =
'
F2

.  (11) 

 𝑘!& =
'

F2∙[,]
,  (12) 

where [L] is the ligand concentration in the simulation system. 

Two algorithms were implemented using the transition state theory (TST) and Kramers’ 

rate theory for reweighting kinetics of the LiGaMD simulations. According to Kramers’ Rate 

Theory (Appendix C), the rate of a chemical reaction in the large viscosity limit is calculated as26: 

 𝑘J ≅
3KL#L*

M
𝑒8NO ;2P⁄ ,  (13) 

where 𝑤9 and 𝑤+ are frequencies of the approximated harmonic oscillators (also referred to as 

curvatures of free energy surface45) near the energy minimum and barrier, respectively, 𝜉 is the 

apparent friction coefficient and Δ𝐹 is the free energy barrier of transition. The apparent friction 

coefficient 𝜉 is related to the diffusion coefficient D with 𝜉 = 𝑘C𝑇/𝐷. The apparent diffusion 

coefficient D can be obtained by dividing the kinetic rate calculated directly using the transition 

time series collected directly from simulations by that using the probability density solution of the 

Smoluchowski equation46 (Appendix C). In order to reweight ligand kinetics from the LiGaMD 

simulations using the Kramer’s rate theory, the free energy barriers of ligand binding and 

dissociation are calculated from the original (reweighted, ∆F) and modified (no reweighting, ∆F*) 
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PMF profiles, similarly for curvatures of the reweighed (w) and modified (𝑤∗, no reweighting) 

PMF profiles near the guest bound (“B”) and unbound (“U”) low-energy wells and the energy 

barrier (“Br”), and the ratio of apparent diffusion coefficients from LiGaMD simulations without 

reweighting (modified, 𝐷∗) and with reweighting (D). The resulting numbers are then plugged into 

Eq. (11) to estimate accelerations of the ligand binding and dissociation rates during LiGaMD 

simulations (Appendix C)26, which allows us to recover the original kinetic rate constants. 

In comparison, the rate of a chemical reaction in the transition state theory (TST) is 

calculated as47: 

 𝑘PSP ≅ 𝑒8NO ;2P⁄ .  (14) 

Only the energy barriers of ligand binding and dissociation need to be calculated from the original 

(reweighted, ∆F) and modified (no reweighting, ∆F*) free energy profiles for estimating the 

accelerations and recovering the ligand kinetic rate constants. 

 

Host-Guest Binding Simulations 

GaMD simulations were performed on the binding of two guest molecules (aspirin and 1-butanol) 

to the β-CD host using the same input files as in a previous study by Tang and Chang21. The CD 

host were modeled with both the GAFF and q4MD force fields. The guest molecules were modeled 

with GAFF. The LiGaMD and dual-boost LiGaMD (LiGaMD_Dual) simulations were compared 

with GaMD simulations using the previous algorithms25, 33b, including the total potential boost 

GaMD (GaMD_Tot), dual-boost GaMD (GaMD_Dual)25, non-bonded potential boost GaMD 

(GaMD_NB) and non-bonded dual-boost GaMD (GaMD_Dual_NB)33b simulations, as well as the 

previous long microsecond-timescale cMD simulations21 (Tables 1 and S1).  
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With the same restart files as used for running the cMD production simulations21, the 

GaMD simulations proceeded with 1 ns short cMD to collect potential statistics, 20 ns GaMD 

equilibration after adding the boost potential and then three independent 300 ns production runs. 

GaMD production frames were saved every 0.1 ps for analysis. The VMD48 and CPPTRAJ49 tools 

were used for simulation analysis. The number of host-guest dissociation and binding events (ND 

and NB) and the guest binding and unbinding time periods (tB and tU) were recorded from 

individual simulations (Table S2). With high fluctuations, tB and tU were recorded for only the 

time periods longer than 1 ns as applied in analysis of the previous cMD simulations21. For systems 

with more than one time of guest dissociation and binding in each of the individual simulations, 

1D, 2D and 3D PMF profiles, as well as the host-guest binding free energies, were calculated 

through energetic reweighting of the GaMD simulations. The center-of-mass distances between 

the host and guests (dHG) and the host radius of gyration (Rg) were chosen as reaction coordinates 

for calculating the 1D PMF profiles. 2D PMF profiles of (dHG, Rg) were also calculated to analyze 

conformational changes of the CD host upon guest binding. The bin size was set to 0.5 Å for the 

dHG and 0.05 Å for the Rg. The cutoff of the number of simulation frames in one bin for reweighting 

was set to 500 in 1D and 2D PMF calculations. The 3D PMF profiles of guest displacements from 

the CD host in the X, Y and Z directions were further calculated from the LiGaMD simulations. 

The bin sizes were set to 1 Å in the X, Y and Z directions. The cutoff for the number of simulation 

frames in one bin for reweighting the 3D PMF was set to 10 for LiGaMD simulations and 50 for 

LiGaMD_Dual simulations. The host-guest binding free energies (DG) were calculated using the 

reweighted 3D PMF profiles and compared with those from previous cMD simulations and 

experimental data21 (Table S1). In addition, accelerations of the ligand dissociation and binding 
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rate constants (kon and koff) in LiGaMD simulations were analyzed using the TST and Kramers’ 

rate theory as described above (Table S3). 

 

Protein-Ligand Binding Simulations 

LiGaMD simulations using the dual-boost scheme were performed on benzamidine binding to the 

trypsin protein. The X-ray crystal structure of benzamidine-bound trypsin (PDB ID: 3PTB50) was 

used with the calcium ion and water molecules kept. The missing hydrogen atoms were added 

using by the tleap module in AMBER51. The general Amber force field52 and the AMBER ff14SB 

force field53 were used for the ligand and protein, respectively. Atomic partial charges of 

benzamidine were obtained through B3LYP/6-31G* quantum calculations of the electrostatic 

potential, for which the RESP charges54 were fitted using the antechamber program51. The system 

was neutralized by adding a number of counter ions (Cl-) and immersed in a cubic TIP3P water 

55box, which was extended 13 Å from the protein-ligand complex. Testing simulations were 

performed on protonation of the protein active-site residue His57 at the Nd atom or the Ne atom. 

Results showed that benzamidine could bind to the protein target site as in the X-ray conformation 

with the Nd atom protonated, but not with atom Ne protonated. Therefore, the protein residue His57 

was protonated at the Nd atom. Moreover, a total of 10 ligand molecules (one in the X-ray bound 

conformation and another nine placed randomly in the solvent) were included in the system to 

facilitate ligand binding. This design was based on the fact that the ligand binding rate constant kon 

is inversely proportional to the ligand concentration. The higher the ligand concentration, the faster 

the ligand binds, provided that the ligand concentration is still within its solubility limit. 

The built simulation system was energy minimized with 1 kcal/mol/Å2 constraints on the 

heavy atoms of the protein and ligand, including the steepest descent minimization of 5,000 steps 
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followed by a conjugate gradient minimization of 5,000 steps. The system was then heated from 0 

K to 300 K for 200 ps. It was further equilibrated using the NVT ensemble at 300K for 800 ps and 

the NPT ensemble at 300 K and 1 bar for 1 ns with 1 kcal/mol/Å2 constraints on the heavy atoms 

of the protein and ligand, followed by 2 ns short cMD without any constraint. The LiGaMD 

simulations proceeded with 14 ns short cMD to collect the potential statistics, 54.6 ns GaMD 

equilibration after adding the boost potential and then five independent 1000 ns production runs. 

Initial testing simulations showed that when the threshold energy for applying boost potential to 

the ligand non-bonded energy was set to the lower bound (i.e., E = Vmax), the bound ligand 

maintained the X-ray conformation and did not dissociate. In comparison, when the threshold 

energy was set to the upper bound (i.e., E = Vmin+1/k), it enabled high enough boost potential to 

dissociate the ligand from the protein. Therefore, the threshold energy for applying the ligand boost 

potential was set to the upper bound in the LiGaMD_Dual simulations. For the second boost 

potential that was applied to the system total potential energy other than the ligand non-bonded 

potential energy, sufficient acceleration was obtained to sample ligand rebinding by setting the 

threshold energy to the lower bound. LiGaMD_Dual production simulation frames were saved 

every 0.2 ps for analysis. 

The VMD48 and CPPTRAJ49 tools were used for simulation analysis. The number of ligand 

dissociation and binding events (ND and NB) and the ligand binding and unbinding time periods 

(tB and tU) were recorded from individual simulations (Table S4). With high fluctuations, tB and 

tU were recorded for only the time periods longer than 5 ns. The 1D, 2D and 3D PMF profiles, as 

well as the ligand binding free energy, were calculated through energetic reweighting of the 

LiGaMD_Dual simulations. The distance between the N atom in benzamidine and CG atom of 

Asp189 in trypsin was chosen as the reaction coordinate for calculating the 1D PMF profiles. The 
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bin size was set to 1.0 Å. 2D PMF profiles of the benzamidine:N – Asp189:CG and Trp215:NE – 

Asp189:CG atom distances were also calculated to analyze conformational changes of the protein 

upon ligand binding. The bin size was set to 1.0 Å for the atom distances. The cutoff for the number 

of simulation frames in one bin was set to 500 for reweighting 1D and 2D PMF profiles. The 3D 

PMF profiles of guest displacements from the CD host in the X, Y and Z directions were further 

calculated from the LiGaMD simulations. The bin sizes were set to 1 Å in the X, Y and Z directions. 

The cutoff of simulation frames in one bin for 3D PMF reweighting (ranging from 1100-4000 for 

five individual LiGaMD_Dual simulations) was set to the minimum number below which the 

calculated 3D PMF minimum will be shifted. The ligand binding free energies (DG) were 

calculated using the reweighted 3D PMF profiles. Furthermore, structural clustering was 

performed on frames of the diffusing ligand molecules from each 1 μs LiGaMD_Dual simulation 

trajectory using the Density Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm56 in CPPTRAJ49.  The frames were sieved at a stride of 500 for clustering. The remaining 

frames were assigned to the closest cluster afterwards. The distance cutoff for DBSCAN clustering 

was set to 0.5 Å. The resulting structural clusters were reweighted to obtain energetically 

significant binding pathways of the ligand. In addition, the ligand dissociation and binding rate 

constants (kon and koff) were calculated from the LiGaMD_Dual simulations with their 

accelerations analyzed using the Kramers’ rate theory as described above (Table S5). 

 

Results 

Thermodynamics	of	Host-Guest	Binding	

For the β-cyclodextrin (CD) host as modeled with both the GAFF and q4MD force fields, all-atom 

GaMD simulations were performed to investigate the dissociation and binding of two guest 
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molecules aspirin (Fig. 1A) and 1-butanol (Fig. 1B) using a number of different potential boost 

algorithms (Table 1). The center-of-mass distances between the host and guest molecules were 

monitored as a function of time to record the number of dissociation and binding events (ND and 

NB) in each of the 300 ns GaMD simulations. The new LiGaMD method especially using the dual-

boost algorithm (LiGaMD_Dual) showed significantly improved sampling of ligand binding 

compared with the previous GaMD algorithms, including the total potential boost GaMD 

(GaMD_Tot), dual-boost GaMD (GaMD_Dual), non-bonded potential boost GaMD (GaMD_NB) 

and non-bonded dual-boost GaMD (GaMD_Dual_NB) (Table 1). Repetitive binding and 

unbinding of guest molecules were observed in 300 ns LiGaMD and LiGaMD_Dual simulations, 

except for the binding of 1-butanol to CD that was modeled with the GAFF force field (Fig. S1). 

In comparison, no guest dissociation and/or binding was observed in one or more of the 300 ns 

GaMD simulations using the other algorithms (Table 1).  

Provided improved sampling in the LiGaMD and LiGaMD_Dual simulations, we 

computed potential of mean force (PMF) free energy profiles to characterize the host-guest binding 

quantitatively (Fig. 1). The host-guest distance (dHG) was chosen as a reaction coordinate. The 

PMF profiles calculated from three 300 ns LiGaMD or LiGaMD_Dual simulations were compared 

with those from microsecond-timescale cMD simulations of CD using the GAFF force field with 

aspirin (Fig. 1C), CD using the GAFF force field with 1-butanol (Fig. 1D), CD using the q4MD 

force field with aspirin (Fig. 1E), and CD using the q4MD force field with 1-butanol (Fig. 1F). 

For binding of 1-butanol to CD modeled with GAFF, while 300 ns LiGaMD and LiGaMD_Dual 

simulations sampled the system unbound (dHG > ~15 Å) and intermediate (dHG = ~10 Å) states, 

being closely similar to the 6500 ns cMD simulations, the bound state (dHG = ~0.5 Å) was poorly 

sampled in the LiGaMD simulations (Fig. 1D). This correlated with the above finding that the 
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guest dissociation and binding were seldomly observed in these simulations (Table 1 and Figs. 

S1C-S1D). For the other three systems, 300 ns LiGaMD and LiGaMD_Dual simulations sampled 

the same bound (dHG = ~0.5-2 Å), intermediate (dHG = ~10 Å) and unbound (dHG > ~15 Å) low-

energy states as in the microsecond timescale cMD simulations (Figs. 1C, 1E and 1F). Their global 

energy minima were all identified in the bound state. However, differences were found in the 

magnitudes of PMF profiles near the intermediate, unbound and energy barrier regions. Overall, 

the LiGaMD_Dual simulations showed better agreements with the long-timescale cMD 

simulations than LiGaMD, especially for binding of 1-butanol to CD modeled with q4MD (Fig. 

1F). The LiGaMD_Dual provided the most efficient sampling of host-guest binding and 

dissociation events (Table 1 and Fig. S1) and the closest free energy profiles as compared with 

the reference cMD simulations (Fig. 1). 

Next, we analyzed conformational changes of the CD host modeled with GAFF (Fig. 2) 

and q4MD (Fig. 3) upon guest binding. PMF profiles were calculated for the radius of gyration 

(Rg) of the CD host modeled with GAFF from the cMD simulations in the ligand-free (apo), aspirin 

and 1-butanol binding forms (Fig. 2A). Two low-energy states, including “Compact” (Rg = ~5.7 

Å) and “Open” (Rg = ~5.9 Å), were identified for the CD host. While the apo and 1-butanol bound 

CD predominantly adopted the compact conformational state, binding of aspirin biased 

conformational ensemble of CD towards the open state. In this regard, aspirin (Fig. 1A) appeared 

to be larger in size than 1-butanol (Fig. 1B). Furthermore, we calculated 2D profiles of (dHG, Rg) 

and identified low-energy conformational states of the system. For aspirin binding, three low-

energy states were found from the 9500 ns cMD simulation, including the “Bound (B)”, 

“Intermediate (I)” and “Unbound (U)” states, in which the CD host adopted primarily the Open, 

Compact and Compact conformations, respectively (Figs. 2B and 2C). The 2D PMF profile of 
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aspirin binding calculated from three 300 ns LiGaMD_Dual simulations combined was highly 

similar to that from 9500 ns cMD simulation, depicting the same three low-energy conformational 

states (Figs. 2C and 2D). In comparison, only the Bound and Unbound low-energy states were 

clearly identified for binding of 1-butanol in the 2D PMF profiles of both 6500 ns cMD (Fig. 2E) 

and three 300 ns LiGaMD_Dual simulations (Fig. 2F), while the intermediate state was hardly 

observed with apparently a very shallow energy well as shown in the 1D PMF profiles (Fig. 1D).  

Furthermore, we evaluated the effects of different force field parameters for the CD host. 

With the q4MD force field, the CD host adopted predominantly the Open conformation with Rg = 

~6.1 Å in PMF profiles of both the apo and guest-bound forms, although it still sampled the 

Compact conformation with a shallow and broad energy well in the apo form (Fig. 3A). This was 

in contrast to the above findings that the CD host using the GAFF force field preferred the Compact 

conformation in the apo form, while guest binding especially aspirin induced the host to open (Fig. 

2). Therefore, the usage of different force fields generated distinct structural dynamics and free 

energy profiles of host-guest binding. Nevertheless, consistent results were obtained from 

LiGaMD_Dual and cMD simulations provided the same system setup and force field. In this 

context, LiGaMD only enhanced conformational sampling of the studied systems, yielding similar 

results as obtained from significantly longer cMD simulations.  

In 6000 ns cMD simulation of aspirin binding to CD modeled with q4MD, three low-

energy conformational states were identified from 2D PMF profiles of the host-guest distance dHG 

and host Rg, including the “Bound (B)”, “Intermediate (I)” and “Unbound (U)” states, in which the 

CD host all adopted primarily the Open conformation (Figs. 3B and 3C). A closely similar 2D 

PMF profile was obtained from three 300 ns LiGaMD_Dual simulations combined (Figs. 3D). 

Similar 2D profiles were obtained for 1-butanol binding from three 300 ns LiGaMD_Dual 
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simulations combined and 5000 ns cMD simulation, during which CD was open in both the guest 

bound and unbound states (Figs. 3E and 3F). 

In addition to the 1D and 2D PMF profiles, we computed 3D PMF profiles of guest binding 

to the CD host in the X, Y and Z directions and then the guest binding free energies (see details in 

Methods). The host-guest binding free energies calculated from LiGaMD and LiGaMD_Dual 

simulations were compared with those obtained from previous cMD simulations and experimental 

data (Tables 2 and S1). Compared with experimental data, LiGaMD_Dual provided generally 

more accurate estimates of the guest binding free energies than LiGaMD (Table 2), being 

consistent with the finding that improved sampling with more dissociation and binding events was 

observed in the LiGaMD_Dual simulations (Table 1). For aspirin, the binding free energy errors 

were reduced from -1.16 ± 0.03 kcal/mol to 0.85 ± 0.18 kcal/mol with the CD host modeled from 

GAFF and from -1.00 ± 0.53 kcal/mol to 0.40 ± 0.15 kcal/mol with CD modeled using q4MD. For 

1-butanol, the binding free energy error was calculated from only the simulations with CD modeled 

using q4MD, during each of which multiple dissociation and binding events were observed (Table 

1). The binding free energy error of 1-butanol decreased from -1.17 ± 0.61 kcal/mol in LiGaMD 

simulations to 0.33 ± 0.21 kcal/mol in LiGaMD_Dual simulations (Table 2). The guest binding 

free energy errors from the LiGaMD_Dual simulations were less than 1 kcal/mol and mostly 

comparable to those from previous microsecond-timescale (5-9.5 μs) cMD simulations, despite 

variations in the guest binding free energies calculated using two different algorithms from the 

cMD simulations (DGcomp1 and DGcomp2) as adapted from Ref. 21. 

In summary, the PMF profiles and binding free energies of guest molecules in the CD host 

calculated from hundreds-of-nanosecond LiGaMD_Dual simulations agreed excellently with 

those from experimental data and previous microsecond-timescale cMD simulations21. Errors in 
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the guest binding free energies were smaller than 1 kcal/mol from the LiGaMD_Dual simulations 

as compared with the experimental data. Therefore, both efficient enhanced sampling and accurate 

free energy calculations of host-guest binding were achieved through the LiGaMD_Dual 

simulations. 

 

Kinetics	of	Host-Guest	Binding	

In addition to the thermodynamic free energies, kinetic dissociation and binding rate constants 

were further derived from the relevant LiGaMD and LiGaMD_Dual simulations and compared 

with those from cMD simulations (Table 3). While the binding rate constants of guest molecules 

decreased to ~30%-90% of those calculated from cMD simulations21, the dissociation rate 

constants increased by ~1.7-15 times in LiGaMD simulations and ~11-18 times in LiGaMD_Dual 

simulations (Table 3). In this context, long-timescale cMD simulations with repetitive host-guest 

binding and unbinding were available for comparison. However, in most protein-ligand binding 

studies (e.g., the trypsin-benzamidine binding described below) such cMD simulations are often 

not available, due to the extreme challenge of sampling free ligand binding and dissociation over 

long timescales. In this regard, we sought to reweight kinetics of LiGaMD and recover the original 

kinetic dissociation and binding rate constants from only the LiGaMD enhanced sampling 

simulations as follows. 

Two algorithms were implemented using the transition state theory (TST) and Kramers’ 

rate theory for reweighting kinetics of the LiGaMD simulations (see details in Methods). In both 

algorithms, the energy barriers of ligand binding and dissociation were calculated from the original 

(reweighted) and modified (no reweighting) free energy profiles of the LiGaMD simulations. Since 
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the reweighted PMF profiles were already obtained for the host-guest distances from the LiGaMD 

and LiGaMD_Dual simulations (Fig. 1), we also calculated the corresponding modified PMF 

profiles without energetic reweighting for comparative analysis (Fig. 4). Note that the bound state 

of 1-butanol in CD modeled with GAFF was poorly sampled in the LiGaMD and LiGaMD_Dual 

simulations (Figs. 1D, S1 and S2). This system was thus excluded for both binding free energy 

and kinetics calculations. For the other three systems, the energy barriers were significantly 

reduced in the modified PMF profiles of both the LiGaMD and LiGaMD_Dual simulations for 

guest dissociation (Fig. 4 and Table S3). In LiGaMD_Dual simulations of aspirin binding to CD 

modeled with GAFF, the dissociation free energy barrier (∆Foff) decreased by 73% from 2.06 ± 

0.28 kcal/mol in the reweighted PMF profile to 0.59 ± 0.37 kcal/mol in the modified PMF profile 

(Fig. 4B). In the other LiGaMD and LiGaMD_Dual simulations, ∆Foff mostly decreased by ~50% 

(Fig. 4 and Table S3). Correspondingly, koff estimated using the TST increased by ~9-22 times in 

the LiGaMD simulations of aspirin and 1-butanol binding to CD and ~6-41 times in the 

LiGaMD_Dual simulations (Table 3). On the other hand, the free energy barrier for ligand binding 

(∆Fon) actually increased in all modified PMF profiles of the LiGaMD and LiGaMD_Dual 

simulations than in the reweighted profiles (Fig. 4 and Table S3). According the TST, the 

corresponding binding rate constant (kon) decreased by a factor ~0.1-0.4 in LiGaMD simulations 

and ~0.1-0.2 in LiGaMD_Dual simulations (Table 3). Despite the slower binding, significant 

accelerations were achieved in the rate-limiting dissociation of guest molecules during LiGaMD 

and LiGaMD_Dual simulations. Therefore, the guest dissociation and binding appeared to be more 

balanced in LiGaMD than in cMD, thereby resulting in overall improved sampling.  

For applying the Kramers’ rate theory, curvatures of the reweighed (w) and modified (𝑤∗, 

no reweighting) free energy profiles were further calculated near the guest bound (“B”) and 
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unbound (“U”) energy minima and the energy barrier (“Br”), as well as the ratio of apparent 

diffusion coefficients calculated from the LiGaMD and LiGaMD_Dual simulations with 

reweighting (D) and without reweighting (modified, 𝐷∗) (Table S3). The resulting numbers were 

plugged into the Kramers’ rate equation to estimate accelerations of the guest binding and 

dissociation rate constants. Particularly, the koff increased by ~8-12 times in LiGaMD simulations 

and ~6-23 times in LiGaMD_Dual simulations (Table 3). The kon decreased by a factor of 0.02-

0.55 in LiGaMD simulation. In LiGaMD_Dual simulations, kon remained the same for 1-butanol 

binding to CD modeled with q4MD, but also decreased by factors of 0.06 and 0.23 for aspirin 

binding to CD modeled with GAFF and q4MD force fields, respectively (Table 3).  

In summary, accelerations of host-guest dissociation and binding obtained from LiGaMD 

and LiGaMD_Dual simulations were derived using the TST and Kramers’ Rate Theory. Compared 

with cMD simulations, while the binding rates decreased to a certain extent, guest unbinding was 

significantly accelerated by ~1.7-15 times in LiGaMD and 11-18 times in LiGaMD_Dual. Overall, 

the Kramers’ rate theory provided more accurate estimates of the ligand kinetic rate accelerations 

in the LiGaMD simulations than the TST (Table 3). It was thus applied for reweighting of ligand 

kinetics in analysis of further LiGaMD simulations. 

 

Thermodynamics	of	Ligand	Binding	to	the	Trypsin	Model	Protein	

In addition to host-guest binding, LiGaMD was further tested on protein-ligand binding using 

trypsin as a model system. Initial testing simulations suggested the following setup for proper 

simulations of benzamidine binding to trypsin: First, residue His57 at the protein active site was 

protonated at the Nd atom rather than the default Ne atom, which was also depicted for the catalytic 
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triad at the active site of proteases57. Testing simulations with the Ne atom protonated in residue 

His57 showed that the benzamidine inhibitor could not bind to the protein target site as in the X-

ray crystal conformation with ~4.3 Å minimum root-mean square deviation (RMSD). In 

comparison, simulations with Nd atom could capture repetitive binding of benzamidine to the 

target site with ~1.0 Å minimum RMSD compared with the X-ray conformation (Fig. S3). Second, 

the threshold energy for applying boost potential to the ligand non-bonded interaction energy was 

set to the upper bound (i.e., E = Vmin+1/k). This enabled high enough boost potential to dissociate 

the ligand from the protein active site. In comparison, the bound ligand maintained the X-ray 

conformation during ~200 ns testing simulations with the threshold energy set to the lower bound 

(i.e., E = Vmax). Moreover, higher acceleration was observed for the bound ligand as the input 

parameter 𝜎4) was increased from 1.0 kcal/mol to 6.0 kcal/mol and the ligand started to dissociate 

from the target site during the LiGaMD equilibration simulation with 𝜎4) = 4.0 kcal/mol (Fig. S3), 

which was thus used for production simulations. Third, a total of 10 ligand molecules (one in the 

X-ray bound conformation and another nine placed randomly in the solvent) were included in the 

system to facilitate ligand rebinding. This design was based on the fact that the ligand binding rate 

constant kon is inversely proportional to the ligand concentration. The higher the ligand 

concentration, the faster the ligand binds, provided that the ligand concentration is still within its 

solubility limit. By applying the second boost potential to the unbound ligand molecules, protein 

and solvent, ligand rebinding could be sampled even during the LiGaMD equilibration simulations 

(Figs. S3D and S3F).  

With the above settings, LiGaMD_Dual simulations were able to capture repetitive 

dissociation and binding of the benzamidine inhibitor in trypsin within 1 μs simulation time (Figs. 

5A, S4 and S5 and Movies S1-S5). In five independent LiGaMD_Dual simulations as summarized 
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in Table 4, the average of the GaMD boost potential DV was ~21-22 kcal/mol with ~4.2-4.3 

kcal/mol standard deviation. The ligand dissociated for 3-11 times and rebound for 3-10 times 

during the five 1 μs LiGaMD_Dual simulations. In the X-ray bound conformation, the distance 

between the N atom in benzamidine and CG atom of Asp189 in trypsin was 3.9 Å. During the 

LiGaMD_Dual simulations, the bound ligand dissociated from the protein and diffused into the 

bulk solvent with the benzamidine:N – ASP189:CG distance increased up to ~60 Å (Figs. 5A and 

S5), similarly for the ligand RMSD relative to the X-ray conformation (Fig. S4). Then after 

sufficient sampling of the bulk solvent space, one of the ten ligand molecules rebound to the 

protein with a salt bridge formed between the charged benzamidine and side chain of protein 

residue Asp189, for which the benzamidine:N – Asp189:CG distance and ligand RMSD dropped 

back to ~3.9 Å (Fig. 5A) and ~1.0 Å (Fig. S4), respectively. When the benzamidine:N – 

Asp189:CG distance dropped below a threshold value (3.7 Å defined here), atomic coordinates, 

velocities and forces of the bound ligand were swapped with those of the original bound ligand in 

the simulation starting structure (denoted “Lig0”). Upon dissociation of Lig0 from the protein, the 

high concentration of ten ligand molecules in the solvent facilitated ligand rebinding to the protein. 

Through such cycles, repetitive dissociation and binding of the benzamidine ligand in trypsin were 

efficiently sampled in the LiGaMD_Dual simulations. 

Next, we calculated PMF free energy profiles to characterize ligand binding to trypsin. 

Since plots of the benzamidine:N – Asp189:CG distance and ligand RMSD depicted the ligand 

binding processes similarly (Figs. S4 and S5) and extra efforts were needed to calculate symmetry-

corrected RMSD of benzamidine, the PMF profiles were calculated for the benzamidine:N – 

Asp189:CGdistance. The resulting reweighted and modified 1D PMF profiles were shown in Fig. 

5B. In the reweighted PMF profile, three low-energy wells were identified for the ligand in the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

Bound, Intermediate and Unbound states, for which the benzamidine:N – Asp189:CG distance 

was centered around ~4.5 Å, ~15 Å and ~35 Å, respectively. A high energy barrier of 12.17 ± 1.54 

kcal/mol was observed for the ligand dissociation (Table S5). In the modified PMF profile without 

reweighting, the energy barrier decreased to 1.37 ± 0.56 kcal/mol for ligand dissociation and the 

energy wells became significantly shallower for the ligand in the Bound, Intermediate and 

Unbound states. This justified enhanced sampling of protein-ligand binding and unbinding in the 

LiGaMD_Dual simulations. 

Furthermore, we computed 2D PMF profiles to analyze conformational changes of the 

protein upon ligand binding. Upon close examination of the system trajectories, residue Trp215 

and its associated loop in trypsin underwent the largest conformational changes during ligand 

binding (Movies S1-S5). In this regard, a distance between the Ne atom in the Trp215 side chain 

and CG atom of Asp189 was selected as another reaction coordinate. The calculated reweighted 

and modified 2D PMF profiles of the benzamidine:N – Asp189:CG and Trp215:NE – Asp189:CG 

atom distances are plotted in Fig. 5C and 5D, respectively. Five 1000 ns LiGaMD_Dual 

simulations were combined for calculating the PMF profiles. The reweighted and modified 2D 

PMF profiles calculated from five individual LiGaMD_Dual simulations separately are also shown 

in Figs. S6 and S7, respectively. 

In the reweighted 2D PMF, low-energy wells were identified for the trypsin-benzamidine 

system in the Bound, Intermediate I1, Intermediate I2, Unbound U1 and Unbound U2 states, for 

which the (benzamidine:N – Asp189:CG, Trp215:NE – Asp189:CG) atom distances were centered 

around (4.0 Å, 12.5 Å), (17.0 Å, 12.5 Å), (7.5 Å, 7.5 Å), (35.0 Å, 12.5 Å) and (35.0 Å, 8.0 Å), 

respectively (Fig. 5C). In the modified 2D PMF profile (Fig. 5D), low-energy wells were also 

identified for the system in the Bound, Intermediate I1, Unbound U1 and Unbound U2 states in 
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similar locations as in the reweighted 2D PMF. A distinct low-energy well was identified for the 

system in an Intermediate I3 state in the modified PMF with (14.0 Å, 9.0 Å) for the (benzamidine:N 

– Asp189:CG, Trp215:NE – Asp189:CG) atom distances, rather than the I2 state in the reweighted 

2D PMF. These low-energy wells were also observed in the reweighed and modified PMF profiles 

of five individual LiGaMD_Dual simulations (Figs. S6 and S7). 

Next, we extracted six representative low-energy conformations of the trypsin-

benzamidine system as identified from the PMF profiles, including the “Bound” (Fig. 6A), 

“Intermediate I1” (Fig. 6B), “Intermediate I2” (Fig. 6C), “Intermediate I3” (Fig. 6D), “Unbound 

U1” (Fig. 6E), and “Unbound U2” (Fig. 6F). In the Bound conformational state, the benzamidine 

ligand bound to protein residue Asp189 in the S1 pocket as in the X-ray crystal structure. Protein 

residue Trp215 closed the S1* pocket, but left the S1 pocket open, which was located between the 

Asp189 loop and the Trp215 loop (Fig. 6A). In the Intermediate I1 state, the benzamidine ligand 

bound to a site out of the Trp215 “gate”, being close to the His57-Asp102-Ser214 catalytic triad 

(Fig. 5B). In the Intermediate I3 state, residue Trp215 flipped its side chain to close the S1 pocket, 

while the S1* pocket became open with rearrangement of the Trp215 loop compared with the X-

ray structure. The benzamidine ligand bound to the open S1* pocket (Fig. 6C). In the Intermediate 

I3 state, the side chain of protein residue Trp215 rotated to a conformation perpendicular to the X-

ray conformation such that both S1 and S1* pockets became open and the benzamidine ligand 

bound to a site in close proximity of Trp215 and catalytic residues Asp102 and Ser214 (Fig. 6D). 

In the Unbound U1 state, trypsin adopted a conformation similar to the X-ray structure with the 

S1 pocket open and the S1* pocket closed by Trp215, while the benzamidine ligand was found far 

away from the protein (Fig. 6E). In the Unbound U2 state, trypsin flipped its side chain to close 
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the S1 pocket, similar to the Intermediate I2 conformation, while the benzamidine ligand stayed 

far away from the protein (Fig. 6F). 

In addition to the 1D and 2D PMF profiles, 3D PMF was calculated from each individual 

1 μs LiGaMD_Dual simulation of benzamidine binding to trypsin in terms of displacements of the 

benzamidine N atom from the CG atom in protein residue Asp189 in the X, Y and Z directions. 

We then calculated the ligand binding free energy from each 3D reweighted PMF (see Methods). 

The average of resulting free energy values was -6.13 kcal/mol and the standard deviation was 

0.35 kcal/mol. This was in excellent agreement with the experimental value of -6.2 kcal/mol for 

the ligand binding free energy of benzamidine in trypsin58 (Table 5). 

 

Pathways	and	kinetics	of	Ligand	Binding	to	Trypsin	

With accurate prediction of the ligand binding free energy, we analyzed the LiGaMD_Dual 

simulations further to determine the pathways and kinetic rate constants of benzamidine binding 

to trypsin. For each 1 μs simulation trajectory, structural clustering was performed on snapshots 

of the diffusing ligand molecules using the DBSCAN algorithm and the resulting structural clusters 

were reweighted to obtain energetically significant pathways of the ligand (see Methods). Fig. 7 

depicts the dissociation and binding pathways of the benzamidine ligand in trypsin obtained from 

the five individual LiGaMD_Dual simulations. The ligand clusters along each pathway were 

colored according to the reweighted PMF values in a blue (0 kcal/mol)-white (7.5 kcal/mol)-red 

(15.0 kcal/mol) scale. The lowest-energy ligand cluster was consistently identified at the target site 

with benzamidine forming ionic interaction with trypsin residue Asp189 as determined in the X-

ray crystal structure (Fig. 7).  
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During the LiGaMD_Dual simulations, benzamidine first dissociated predominantly 

through the protein opening between the Asp189 loop and the Trp215 loop, denoted pathway “P1” 

(Fig. 7). Then benzamidine molecules could rebind spontaneously to trypsin. Negatively charged 

residues on the protein surface, including Glu70, Asp71, Glu77, Glu80 and Asp153, appeared to 

steer the positively charged ligand towards the enzyme catalytic site formed by residues His57-

Asp102-Ser214. This was consistent with previous findings of “electrostatic steering” in ligand 

recognition by proteins59. Subsequently, the ligand bound to the target site via two pathways, one 

being the pathway “P1” and the other connecting the S1* pocket and the Trp215 side chain gate 

as closed in the X-ray structure (denoted pathway “P1*”) (Fig. 7). In Sim1 and Sim2, because the 

Trp215 side chain maintained the X-ray conformation and closed the S1* pocket, the benzamidine 

ligand dissociated and bound to the S1 pocket repetitively through the P1 pathway (Figs. 7A and 

7B and Movies S1 and S2). In the other three simulations Sim3-Sim5, the Trp215 side chain 

underwent conformational changes to open either the S1 or S1* pocket or both pockets. 

Benzamidine dissociated and bound to the protein via either of the P1 and P1* pathways (Figs. 

7C-7E and Movies S3-S5). Notably, binding of the ligand was able to switch from pathway P1* 

to pathway P1 via the S1* binding pocket to the final target site in the S1 pocket as observed near 

286 ns in the Sim5 trajectory (Movie S5). In addition, two ligand molecules were found to bind 

both the S1 and S1* pockets simultaneously during 310.5 ns-333.5 ns in the Sim5 trajectory 

(Movie S5 and Fig. S5E). 

To calculate kinetic rate constants of benzamidine binding to trypsin, we recorded the time 

periods for the ligand found in the bound (tB) and unbound (tU) states throughout the 

LiGaMD_Dual simulations (Table S4). Since a total of 10 ligand molecules and 10,478 water 

molecules were included in the simulation system, the ligand concentration was 0.053 M in the 
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simulations. Without reweighting of the LiGaMD_Dual simulations, the benzamidine ligand 

binding (kon*) and dissociation (koff*) rate constants were calculated as 1.58 ± 1.09 ´ 108 M×s-1 and 

3.40 ± 1.36 ´ 107 s-1, respectively. 

Following the same protocol as described for analyzing the host-guest binding simulations, 

we reweighted the trypsin-benzamidine binding simulations to calculate acceleration factors of the 

ligand binding and dissociation (Table S5) and recover the original kinetic rate constants using 

the Kramers’ rate theory. The original (reweighted) and modified PMF profiles of protein-ligand 

distance are shown in Fig. 5B. The dissociation free energy barrier (∆Foff) decreased by ~90% 

from 12.17 ± 1.54 kcal/mol in the reweighted PMF profile to 1.37 ± 0.56 kcal/mol in the modified 

PMF profile (Table S5). On the other hand, the free energy barrier for ligand binding (∆Fon) 

decreased from 3.04 ± 2.04 kcal/mol in the reweighted profile to 2.40 ± 0.41 kcal/mol in the 

modified PMF profile (Fig. 5B and Table S5). Furthermore, curvatures of the reweighed (w) and 

modified (𝑤∗, no reweighting) free energy profiles were calculated near the guest bound (“B”) and 

unbound (“U”) low-energy wells and the energy barrier (“Br”), as well as the ratio of apparent 

diffusion coefficients calculated from the LiGaMD_Dual simulations with reweighting (D) and 

without reweighting (modified, 𝐷∗) (Table S5). According to the Kramers’ rate theory, the ligand 

binding and acceleration were accelerated by 13.76 and 9.62 ´ 107 times, respectively. Therefore, 

the reweighted kon and koff were calculated as 1.15 ± 0.79 ´ 107 M-1×s-1 and 3.53 ± 1.41 s-1, 

respectively. They were comparable to the experimental data58 of 𝑘!&
#$% = 2.9 ́  107 M-1×s-1 and 𝑘!""

#$% 

= 600 ± 300 s-1 (Table 5). 
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Discussion 

A new LiGaMD method has been developed to selectively boost the ligand non-bonded interaction 

potential energy, which enables enhanced sampling simulations of repetitive ligand dissociation 

and binding as demonstrated on the host-guest and protein-ligand binding model systems. 

LiGaMD provides a promising approach for simultaneously calculating the free energy and kinetic 

rate constants of ligand binding. 

For host-guest binding, LiGaMD and dual-boost LiGaMD (LiGaMD_Dual) significantly 

improved the sampling efficiency compared with the previous GaMD_Tot, GaMD_Dual, 

GaMD_NB and GaMD_NB_Dual algorithms (Table 1). For simulations that captured multiple 

events of ligand binding and dissociation, the accuracy of calculated ligand binding free energies 

and kinetic rate constants was similar to those obtained from much longer cMD simulations as 

compared with the experimental data. Notably, the CD host exhibited distinct structural dynamics 

when modeled with the different GAFF and q4MD force fields. Nevertheless, similar results were 

obtained from LiGaMD and cMD simulations provided the same force field. Therefore, LiGaMD 

only enhanced conformational sampling of the studied systems, but did not change statistics related 

to the force field. Apart from enhanced sampling, it remains critical to develop accurate force fields 

for systems of our interest such as the proteins and ligand molecules. 

For the trypsin model protein-ligand binding system, the threshold energy for applying 

LiGaMD boost potential to non-bonded potential energy of the bound ligand was set to the upper 

bound so that high enough acceleration was obtained to allow for ligand dissociation. Multiple 

ligand molecules (e.g., 10 in the present simulations) were included in the system to facilitate 

binding. This was based on the fact that higher ligand concentration would lead to faster binding 
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rate constant kon. Multiple events of ligand dissociation and binding were observed in each of the 

five independent 1 μs LiGaMD_Dual simulations of the trypsin-benzamidine system. Trypsin 

residue Trp215 appeared to be a gate for ligand binding through the P1 and P1* pathways.  

The low-energy conformational states (Fig. 6) and ligand pathways (Fig. 7) of the trypsin-

benzamidine system identified from LiGaMD_Dual simulations were mostly consistent with those 

obtained from previous simulation studies, especially the MSM22. However, LiGaMD_Dual 

simulations further revealed two novel findings. First, two benzamidine molecules were able to 

bind both the S1 and S1* pockets simultaneously during one of the five LiGaMD_Dual simulation 

trajectories (Movie S5). While this finding could result from a relatively high ligand concentration 

(0.053 M) with 10 benzamidine molecules in the simulation system, such rare event is worthy 

further investigation in the future. Second, binding of the benzamidine ligand was able to switch 

from the P1* pathway to the P1 pathway in the LiGaMD_Dual simulations. The ligand bound to 

the S1 pocket via an intermediate site in the S1* pocket. LiGaMD_Dual appeared to provide 

improved sampling compared with MD simulations used in the MSM so that such binding process 

could be captured. This LiGaMD_Dual simulation finding also suggested that the final target 

binding site of benzamidine is located in the S1 pocket as determined in the X-ray crystal structure. 

Ligand binding in the X-ray conformational state corresponded the global free energy minimum 

in the calculated PMF profiles. 

Furthermore, the ligand binding free energy calculated from five 1 μs LiGaMD_Dual 

simulations ∆𝐺4 = -6.13 ± 0.35 kcal/mol was in excellent agreement with the experimental value 

∆𝐺#$%4  = -6.2 kcal/mol. The ligand kinetic rate constants calculated by reweighting of the 

LiGaMD_Dual simulations were 𝑘!& = 1.15 ± 0.79 ´ 107 M-1×s-1 and 𝑘!"" = 3.53 ± 1.41 s-1. The 
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binding rate constant kon agreed excellently with the experimental value 𝑘!&
#$% = 2.9 ´ 107 M-1×s-1, 

while the dissociation rate constant koff appeared to be slower than the experimental value 𝑘!""
#$% = 

600 ± 300 s-1 58 (Table 5).  

In comparison, the ligand dissociation rate constant estimated from five 1 μs 

LiGaMD_Dual simulations 𝑘!"" = 3.53 ± 1.41 s-1 was similar to the value of koff = 9.1 ± 2.5 s-1 

obtained from previous metadynamics simulations also performed at a total of 5 μs length16a. 

However, the benzamidine binding free energy calculated from LiGaMD_Dual simulations ∆𝐺4 

= -6.13 ± 0.35 kcal/mol was more accurate than the values of 8.5 ± 0.7 kcal/mol obtained from 

separate funnel metadynamics simulations8 and -5.06 kcal/mol from the SITSMD simulations24, 

as compared with experimental data ∆𝐺#$%4  = -6.2 kcal/mol. In this regard, previous MSM 

predicted accurate ligand binding free energy ∆𝐺4 = -6.05 ± 1 kcal/mol and binding rate constant 

kon = 6.4 ± 1.6 × 107 M-1·s-1, while the model predicted koff = 131 ± 109 × 102 s-1 appeared to be 

faster than the experimental value22. Both MSM and LiGaMD_Dual could be applied to calculate 

the ligand binding free energy and kinetic rate constants simultaneously, but more expensive and 

significantly longer simulations were needed for the MSM (~150 μs in total) than for the 

LiGaMD_Dual simulations (1 μs × 5). 

In summary, LiGaMD provides a promising approach to calculate both free energy and 

kinetic rate constants of ligand binding simultaneously. The ligand binding free energy is 

calculated based on unconstrained enhanced sampling and 3D PMF profiles, being distinct from 

previous methods such as the TI3, FEP4 and funnel metadynamics8. Beyond thermodynamics, 

LiGaMD also presents a new approach to estimate the ligand kinetic dissociation and binding rate 

constants. While LiGaMD has been demonstrated on host-guest and trypsin protein-ligand binding 

model systems, the method awaits further testing on many other ligand binding systems, notably 
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membrane proteins. Although a total number of 10 ligand molecules has been included in the 

trypsin-benzamidine simulations to facilitate ligand binding, it will be more systematic to optimize 

the number of ligand molecules for future simulations according to the ligand solubility. 

Furthermore, a distance cutoff has been implemented in the current LiGaMD to determine when a 

ligand molecule binds to the protein target site and higher boost potential will be applied 

accordingly to enable ligand dissociation. More metrics that can serve in this purpose for a wide 

range of ligand binding systems with different chemical and physical properties will be 

implemented in the future. These developments are expected to further improve the LiGaMD 

method for applications in characterizing both ligand binding thermodynamics and kinetics, which 

should facilitate computer-aided drug design. 
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Appendix A Gaussian accelerated molecular dynamics (GaMD) 

Consider a system with N atoms at positions 𝑟 ≡ {𝑟', ⋯ , 𝑟(}	. When the system potential 𝑉(𝑟)	is 

lower than a reference energy E, the modified potential 𝑉∗(𝑟) of the system is calculated as: 

 𝑉∗(𝑟) = 𝑉(𝑟) + ∆𝑉(𝑟),  

 ∆𝑉(𝑟) = @
'
3
𝑘A𝐸 − 𝑉(𝑟)B3, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸
 (A1) 

where k is the harmonic force constant. The two adjustable parameters E and k are automatically 

determined based on three enhanced sampling principles25. The reference energy needs to be set 

in the following range: 

 𝑉9T$ ≤ 𝐸 ≤ 𝑉9:& +
'
;
 , (A2) 

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure that Eqn. 

(A2) is valid, k has to satisfy: 𝑘 ≤ '
7#$%87#&'

 Let us define 𝑘 ≡ 𝑘4 ∙
'

7#$%87#&'
 , then 0 < 𝑘4 ≤ 1 . 

The standard deviation of ∆𝑉 needs to be small enough (i.e., narrow distribution) to ensure proper 

energetic reweighting60: 𝜎∆7 = 𝑘A𝐸 − 𝑉T0VB𝜎7 ≤ 𝜎4  where 𝑉T0V  and 𝜎7  are the average and 

standard deviation of the system potential energies, 𝜎∆7 is the standard deviation of ∆𝑉 with 𝜎4 as 

a user-specified upper limit (e.g., 10kBT) for proper reweighting. When E is set to the lower bound 

E=Vmax, 	𝑘4 can be calculated as: 

  𝑘4 = min(1.0, 𝑘45 ) = min	(1.0, 6!
6"
∙ 7#$%87#&'
7#$%87$()

).   (A3) 

Alternatively, when the threshold energy E is set to its upper bound 	𝐸 = 𝑉9:& +
'
;
, 	𝑘4 is set to: 

 𝑘4 = 𝑘4" ≡ (1 − 6!
6"
) 7#$%87#&'
7$()87#&'

 , (A4) 

if 𝑘4"  is found to be between 0 and 1. Otherwise, 	𝑘4 is calculated using Eqn. (A3). 
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GaMD provides options to boost only the total potential boost (GaMD_Tot), only the 

dihedral potential energy (GaMD_Dih), both the total and dihedral potential energies 

(GaMD_Dual), the non-bonded potential energy (GaMD_NB), both the non-bonded potential and 

dihedral energies (GaMD_Dual_NB), only non-bonded potential energy of the bound ligand 

(LiGaMD), and both the ligand non-bonded potential energy of the bound ligand and the remaining 

potential energy of the entire system (LiGaMD_Dual). The dual-boost simulation generally 

provides higher acceleration than the other single-boost simulations for enhanced sampling. The 

simulation parameters comprise of settings for calculating the threshold energy values and the 

effective harmonic force constants of the boost potentials. 

 

Appendix B Energetic reweighting of GaMD simulations 

For energetic reweighting of GaMD simulations to calculate potential of mean force (PMF), the 

probability distribution along a reaction coordinate is written as 𝑝∗(𝐴) . Given the boost potential 

∆𝑉(𝑟)
 
of each frame, 𝑝∗(𝐴) can be reweighted to recover the canonical ensemble distribution, 

𝑝(𝐴), as: 

 𝑝A𝐴WB = 𝑝∗A𝐴WB
〈#,∆"(/)〉4

∑ 〈%∗([&)#,∆"(/)〉&6
&78

, 𝑗 = 1,… ,𝑀,  (A5) 

where M is the number of bins, 𝛽 = 𝑘C𝑇 and 〈𝑒?∆7(A)〉W
 
is the ensemble-averaged Boltzmann 

factor of ∆𝑉(𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 

 〈𝑒?∆7(A)〉 = 𝑒𝑥𝑝 ^∑ ?9

;!
𝐶;]

;^' a, (A6) 

where the first two cumulants are given by: 
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𝐶' = 〈∆𝑉〉,

𝐶3 = 〈∆𝑉3〉 − 〈∆𝑉〉3 = 𝜎03.
 (A7) 

The boost potential obtained from GaMD simulations usually follows near-Gaussian 

distribution33a. Cumulant expansion to the second order thus provides a good approximation for 

computing the reweighting factor25, 60. The reweighted free energy 𝐹(𝐴) = −𝑘C𝑇	ln	𝑝(𝐴)  is 

calculated as: 

 𝐹(𝐴) = 𝐹∗(𝐴) − ∑ ?9

;!
𝐶;3

;^' + 𝐹/,   (A8) 

where 𝐹∗(𝐴) = −𝑘C𝑇	ln	𝑝∗(𝐴) is the modified free energy obtained from GaMD simulation and 

𝐹/ is a constant. 

 

Appendix C Reweighting of Biomolecular Kinetics with Kramers’ Rate Theory 

A brief summary is provided here for reweighting of biomolecular kinetics from GaMD 

simulations with Kramers rate theory as described recently26. For a particle climbing over potential 

energy barriers, Kramers showed that the reaction rate depends on temperature and viscosity of 

the host medium61. The reaction rates were derived for both limiting cases of small and large 

viscosity. In the context of biomolecular simulations in aqueous medium, it is relevant for us to 

focus on the large viscosity limiting case. Biomolecules move in the high friction (“overdamping”) 

regime and energy barriers are much greater than kBT (kB is the Boltzmann’s constant and T is 

temperature). In this case, the reaction rate is calculated as: 

 𝑘J ≅
3KL#L*

M
𝑒8NO ;2P⁄ ,  (A9) 
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where 𝑤9 and 𝑤+ are frequencies of the approximated harmonic oscillators (also referred to as 

curvatures of free energy surface45) near the energy minimum and barrier, respectively, 𝜉 is the 

apparent friction coefficient and Δ𝐹 is the free energy barrier of transition. 

Without the loss of generality, we consider a 1D potential of mean force (PMF) free energy 

profile of a reaction coordinate F(A). Near minimum at Am, the free energy can be approximated 

by a harmonic oscillator61 of frequency 𝑤9, i.e., 𝐹(𝐴) = '
3
(2𝜋𝑤9)3(𝐴 − 𝐴9)3. Near barrier at Ab, 

the free energy is approximated as 𝐹(𝐴) = 𝐹+ −
'
3
(2𝜋𝑤+)3(𝐴 − 𝐴+)3  , where 𝐹+  is the free 

energy at Ab and 𝑤+  is the frequency of the approximated harmonic oscillator. Then we can 

calculate 𝑤9 and 𝑤+ as: 

 𝑤 = e|O"([)|
3K

,  (A10) 

where 𝐹"(𝐴) is the second-order derivative of the PMF profile. 

The apparent friction coefficient 𝜉  or diffusion coefficient D with 𝜉 = 𝑘C𝑇/𝐷  can be 

estimated as follows. First, we calculate a survival function S(t) as the probability that the system 

remains in an energy well longer than time t. In a direct approach46, we count the events that the 

system visits the energy well throughout a simulation. We record and measure the time intervals 

of each visiting event until the system escapes over an energy barrier. Then we have a time series 

Ti, where i=1, 2, …, N, and N is the total number barrier transitions observed in the simulation. 

The time series is subsequently ordered such that 𝑇g' ≤ 𝑇g3 ≤ ⋯ ≤ 𝑇g( . With that, the survival 

function is estimated as 𝑆A𝑇g:B ≈ 	1 − 𝑖/𝑁, which is the probability that the system is trapped in 

the energy well for time longer than 𝑇g: . Alternatively, we can numerically calculate the time-

dependent probability density of reaction coordinate A, 𝜌(𝐴, 𝑡)	by solving the Smoluchowski 

equation along 1D PMF profile of the reaction coordinate:  
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 `a([,b)
`b

= 𝐷 `
`[
n𝑒8O([) ;2P⁄ `

`[
A𝑒O([) ;2P⁄ 𝜌Bo.  (A11) 

Then the survival function is calculated as 𝑆(𝑡) = 	∫ ∫ 𝜌(𝐴, 𝑡)𝑑𝐴𝑑𝑡[*:
[*8

]
b , where 𝐴+' and 𝐴+3	are 

two boundaries of the energy well. The initial condition is often set as the Boltzmann distribution 

of reaction coordinate A in the energy well, i.e., 𝜌(𝐴, 0) = 𝑒8O([) ;2P⁄ . 

Second, using the above survival functions, we estimate the effective kinetic rates as the 

negative of the slopes in linear fitting of the ln[S(t)] versus t, i.e., 𝑘 = −𝑑ln[𝑆(𝑡)]/𝑑𝑡	. This is 

based on the assumption that the survival function exhibits exponential decay as observed in earlier 

studies46, 62. Finally, the apparent diffusion coefficient D is obtained by dividing the kinetic rate 

calculated directly using the transition time series collected from the simulation by that using the 

probability density solution of the Smoluchowski equation46. 

The curvatures and energy barriers of the reweighted and modified free energy profiles, as 

well as the apparent diffusion coefficients, are calculated and used in Kramers’ rate equation to 

determine accelerations of biomolecular kinetics in the GaMD simulations26. 

 

Appendix D: Implementation of ligand Gaussian accelerated molecular dynamics  

Ligand Gaussian accelerated molecular dynamics (LiGaMD) is currently implemented in the GPU 

version of AMBER 2063, but should be transferable to other molecular dynamics programs as well. 

LiGaMD provides enhanced sampling of protein-ligand binding and unbinding. Following is a list 

of the input parameters for a LiGaMD simulation: 

igamd   Flag to apply boost potential 

= 0 (default) no boost is applied 

= 1 boost on the total potential energy only (GaMD_Tot) 
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= 2 boost on the dihedral energy only (GaMD_Dih) 

= 3 dual boost on both dihedral and total potential energy (GaMD_Dual) 

= 4 boost on the non-bonded potential energy only (GaMD_NB) 

= 5 dual boost on both dihedral and non-bonded potential energy (GaMD_NB_Dual) 

= 10 boost on ligand non-bonded potential energy (LiGaMD) 

= 11 dual boost on both non-bonded potential energy of the bound ligand and the 

remaining potential energy of the entire system (LiGaMD_Dual) 

iE   Flag to set the threshold energy E for applying all boost potentials 

  = 1 (default) set the threshold energy to the lower bound E = Vmax 

  = 2 set the threshold energy to the upper bound E = Vmin + (Vmax - Vmin)/k0 

iEP  Flag to overwrite iE and set the threshold energy E for applying the first boost 

potential in dual-boost schemes 

  = 1 (default) set the threshold energy to the lower bound E = Vmax 

  = 2 set the threshold energy to the upper bound E = Vmin + (Vmax - Vmin)/k0 

iED  Flag to overwrite iE and set the threshold energy E for applying the second boost 

potential in dual-boost schemes 

  = 1 (default) set the threshold energy to the lower bound E = Vmax 

  = 2 set the threshold energy to the upper bound E = Vmin + (Vmax - Vmin)/k0 

ntcmdprep The number of preparation conventional molecular dynamics steps. This is used for 

system equilibration and the potential energies are not collected for calculating their 

statistics. The default is 200,000 for a simulation with 2 fs timestep. 

ntcmd  The number of initial conventional molecular dynamics simulation steps used to 

calculate the maximum, minimum, average and standard deviation of the system 
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potential energies (i.e., Vmax, Vmin, Vavg, σV). The default is 1,000,000 for a 

simulation with 2 fs timestep. 

ntebprep The number of preparation biasing molecular dynamics simulation steps. This is 

used for system equilibration after adding the boost potential and the potential 

statistics (i.e., Vmax, Vmin, Vavg, σV) are not updated during these steps. The default 

is 200,000 for a simulation with 2 fs timestep. 

nteb  The number of biasing molecular dynamics simulation steps. Potential statistics 

(Vmax, Vmin, Vavg, σV) are updated between the ntebprep and nteb steps and used to 

calculate the GaMD acceleration parameters, particularly E and k0. The default is 

1,000,000 for a simulation with 2 fs timestep. A greater value may be needed to 

ensure that the potential statistics and GaMD acceleration parameters level off 

before running production simulation between the nteb and nstlim (total simulation 

length) steps. Moreover, nteb can be set to nstlim, by which the potential statistics 

and GaMD acceleration parameters are updated adaptively throughout the 

simulation. This in some cases provides more appropriate acceleration. 

ntave  The number of simulation steps used to calculate the average and standard deviation 

of potential energies. This variable has already been used in Amber. The default is 

set to 50,000 for GaMD simulations. It is recommended to be updated as about 4 

times of the total number of atoms in the system. Note that ntcmd and nteb need to 

be multiples of ntave. 

irest_gamd  Flag to restart GaMD simulation 

= 0 (default) new simulation. A file "gamd-restart.dat" that stores the maximum, 

minimum, average and standard deviation of the potential energies needed to 
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calculate the boost potentials (depending on the igamd flag) will be saved 

automatically after GaMD equilibration stage. 

= 1 restart simulation (ntcmd and nteb are set to 0 in this case). The "gamd-

restart.dat" file will be read for restart. 

sigma0P The upper limit of the standard deviation of the first potential boost that allows for 

accurate reweighting. The default is 6.0 (unit: kcal/mol). 

sigma0D The upper limit of the standard deviation of the second potential boost that allows 

for accurate reweighting in dual-boost simulations (e.g., igamd = 2, 3, 5 and7). The 

default is 6.0 (unit: kcal/mol). 

timask1 Specifies atoms of the bound ligand in ambmask format. This variable has already 

been used in Amber. The default is an empty string. 

scmask1 Specifies atoms of the bound ligand that will be described using soft core in 

ambmask format. This variable has already been used in Amber. The default is an 

empty string. 

nlig The total number of ligand molecules in the system. The default is 0. 

ibblig The flag to boost the bound ligand selectively with nlig > 1 

= 0 (default) no selective boost 

= 1 boost the bound ligand selectively out of nlig ligand molecules in the system 

atom_p Serial number of a protein atom (starting from 1 for the first protein atom) used to 

calculate the ligand distance. It is used only when ibblig = 1. The default is 0. 

atom_l Serial number of a ligand atom (starting from 1 for the first ligand atom) used to 

calculate the ligand distance to the protein. It is used only when ibblig = 1. The 

default is 0. 
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dblig The cutoff distance between atoms atom_p and atom_l for determining whether the 

ligand is bound in the protein. It is used only when ibblig = 1. The default is 4.0 Å. 

 

Example input parameters used in LiGaMD_Dual simulations of ligand binding to trypsin include 

the following: 

    igamd = 11, irest_gamd = 0, 
    ntcmd = 700000, nteb = 27300000, ntave = 140000, 
    ntcmdprep = 280000, ntebprep = 280000, 
    sigma0P = 4.0, sigma0D = 6.0, iEP = 2, iED=1, 
 
    icfe = 1, ifsc = 1, gti_cpu_output = 0, gti_add_sc = 1, 
    timask1 = ':225', scmask1 = ':225', 
    timask2 = '', scmask2 = '',  
     
    ibblig = 1, nlig = 10, atom_p = 2472, atom_l = 4, dblig = 3.7 
 

The LiGaMD algorithm is summarized as the following: 

LiGaMD { 
     If (irest_gamd == 0) then 
        For i = 1, …, ntcmd // run initial conventional molecular dynamics  
           If (i >= ntcmdprep) Update Vmax, Vmin 
           If (i >= ntcmdprep && i%ntave ==0) Update Vavg, sigmaV 
        End 
       Save Vmax,Vmin,Vavg,sigmaV to “gamd_restart.dat” file 
       Calc_E_k0(iE,sigma0,Vmax,Vmin,Vavg,sigmaV) 

       For i = ntcmd+1, …, ntcmd+nteb // Run biasing molecular dynamics simulation steps 
             deltaV = 0.5*k0*(E-V)**2/(Vmax-Vmin) 
             V = V + deltaV 
             If (i >= ntcmd+ntebprep) Update Vmax, Vmin 
             If (i >= ntcmd+ntebprep && i%ntave ==0) Update Vavg, sigmaV 
             Calc_E_k0(iE,sigma0,Vmax,Vmin,Vavg,sigmaV) 
       End 
       Save Vmax,Vmin,Vavg,sigmaV to “gamd_restart.dat” file 
     else if (irest_gamd == 1) then 
       Read Vmax,Vmin,Vavg, sigmaV from “gamd_restart.dat” file 
     End if  
      
     lig0=1 // ID of the bound ligand 
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     For i = ntcmd+nteb+1, …, nstlim // run production simulation 
       If (ibblig>0 && i%ntave ==0) then // swap the bound ligand with lig0 for selective boost 
         For ilig = 1, …, nlig  
            dlig = distance(atom_p, atom_l) 
            If (dlig <= dblig) blig=ilig 
         End  
         If (blig != lig0) Swap atomic coordinates, forces and velocities of ligands blig with lig0 
       End if 
      
       deltaV = 0.5*k0*(E-V)**2/(Vmax-Vmin) 
       V = V + deltaV 
     End 
} 

Subroutine Calc_E_k0(iE,sigma0,Vmax,Vmin,Vavg,sigmaV) { 
if iE = 1 : 
         E = Vmax 
         k0’ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg) 
         k0 = min(1.0, k0’) 
else if iE = 2 : 
         k0” = (1-sigma0/sigmaV) * (Vmax-Vmin)/(Vavg-Vmin) 
         if 0 < k0” <= 1 : 
                        k0 = k0” 
                        E = Vmin + (Vmax-Vmin)/k0 
         else 
                        E = Vmax 
                        k0’ = (sigma0/sigmaV) * (Vmax-Vmin)/(Vmax-Vavg) 
                        k0 = min(1.0, k0’) 
         end 
end 
} 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 44 

Acknowledgements 

We appreciate the help of Prof. David Case for accessing the AMBER git repository to develop 

our new simulation algorithms. We thank Prof. Chia-en Chang and Dr. Zhiye Tang for kindly 

sharing molecular dynamics simulation files of the host-guest binding and valuable discussions. 

We thank Dr. Ferran Feixas for preliminary simulations and valuable discussions on the trypsin-

benzamidine system. We also thank Prof. Darrin York and Dr. Taisung Lee for valuable 

discussions on coding in AMBER. This work used supercomputing resources with allocation 

award TG-MCB180049 through the Extreme Science and Engineering Discovery Environment 

(XSEDE), which is supported by National Science Foundation grant number ACI-1548562, and 

project M2874 through the National Energy Research Scientific Computing Center (NERSC), 

which is a U.S. Department of Energy Office of Science User Facility operated under Contract No. 

DE-AC02-05CH11231, and the Research Computing Cluster at the University of Kansas. This 

work was supported in part by the American Heart Association (Award 17SDG33370094), the 

National Institutes of Health (R01GM132572) and the startup funding in the College of Liberal 

Arts and Sciences at the University of Kansas. 

 

Supporting Information 

Five supplementary Tables S1 – S5, seven Figures S1 - S7 and five Movies S1 – S5 are provided 

in the supporting information. This information is available free of charge via the Internet at 

http://pubs.acs.org. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 45 

References 

 
1. Gilson, M. K.; Zhou, H. X., Calculation of protein-ligand binding affinities. Annu Rev 
Bioph Biom 2007, 36, 21-42. 
2. Jorgensen, W. L., The many roles of computation in drug discovery. Science 2004, 303 
(5665), 1813-8. 
3. Kirkwood, J. G., Statistical Mechanics of Fluid Mixtures. The Journal of Chemical 
Physics 1935, 3 (5), 300-313. 
4. Zwanzig, R. W., High‐Temperature Equation of State by a Perturbation Method. I. 
Nonpolar Gases. The Journal of Chemical Physics 1954, 22 (8), 1420-1426. 
5. Gilson, M. K.; Given, J. A.; Bush, B. L.; McCammon, J. A., The statistical-
thermodynamic basis for computation of binding affinities: A critical review. Biophysical 
Journal 1997, 72 (3), 1047-1069. 
6. Torrie, G. M.; Valleau, J. P., Nonphysical sampling distributions in Monte Carlo free-
energy estimation: Umbrella sampling. Journal of Computational Physics 1977, 23 (2), 187-199. 
7. Villarreal, O. D.; Yu, L.; Rodriguez, R. A.; Chen, L. Y., Computing the binding affinity 
of a ligand buried deep inside a protein with the hybrid steered molecular dynamics. Biochem 
Biophys Res Commun 2017, 483 (1), 203-208. 
8. Limongelli, V.; Bonomi, M.; Parrinello, M., Funnel metadynamics as accurate binding 
free-energy method. Proc Natl Acad Sci 2013, 110 (16), 6358-63. 
9. Srinivasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A., Continuum 
Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate−DNA Helices. J Am Chem 
Soc 1998, 120 (37), 9401-9409. 
10. (a) Yin, J.; Henriksen, N. M.; Slochower, D. R.; Shirts, M. R.; Chiu, M. W.; Mobley, D. 
L.; Gilson, M. K., Overview of the SAMPL5 host-guest challenge: Are we doing better? J 
Comput Aided Mol Des 2017, 31 (1), 1-19; (b) Muddana, H. S.; Fenley, A. T.; Mobley, D. L.; 
Gilson, M. K., The SAMPL4 host-guest blind prediction challenge: an overview. J Comput 
Aided Mol Des 2014, 28 (4), 305-17; (c) Muddana, H. S.; Varnado, C. D.; Bielawski, C. W.; 
Urbach, A. R.; Isaacs, L.; Geballe, M. T.; Gilson, M. K., Blind prediction of host-guest binding 
affinities: a new SAMPL3 challenge. J Comput Aided Mol Des 2012, 26 (5), 475-87. 
11. (a) Gaieb, Z.; Parks, C. D.; Chiu, M.; Yang, H.; Shao, C.; Walters, W. P.; Lambert, M. 
H.; Nevins, N.; Bembenek, S. D.; Ameriks, M. K.; Mirzadegan, T.; Burley, S. K.; Amaro, R. E.; 
Gilson, M. K., D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity 
rankings. J Comput Aided Mol Des 2019; (b) Gathiaka, S.; Liu, S.; Chiu, M.; Yang, H.; Stuckey, 
J. A.; Kang, Y. N.; Delproposto, J.; Kubish, G.; Dunbar, J. B., Jr.; Carlson, H. A.; Burley, S. K.; 
Walters, W. P.; Amaro, R. E.; Feher, V. A.; Gilson, M. K., D3R grand challenge 2015: 
Evaluation of protein-ligand pose and affinity predictions. J Comput Aided Mol Des 2016, 30 
(9), 651-668; (c) Gaieb, Z.; Liu, S.; Gathiaka, S.; Chiu, M.; Yang, H.; Shao, C.; Feher, V. A.; 
Walters, W. P.; Kuhn, B.; Rudolph, M. G.; Burley, S. K.; Gilson, M. K.; Amaro, R. E., D3R 
Grand Challenge 2: blind prediction of protein-ligand poses, affinity rankings, and relative 
binding free energies. J Comput Aided Mol Des 2018, 32 (1), 1-20. 
12. (a) Schuetz, D. A.; de Witte, W. E. A.; Wong, Y. C.; Knasmueller, B.; Richter, L.; Kokh, 
D. B.; Sadiq, S. K.; Bosma, R.; Nederpelt, I.; Heitman, L. H.; Segala, E.; Amaral, M.; Guo, D.; 
Andres, D.; Georgi, V.; Stoddart, L. A.; Hill, S.; Cooke, R. M.; De Graaf, C.; Leurs, R.; Frech, 
M.; Wade, R. C.; de Lange, E. C. M.; IJzerman, A. P.; Muller-Fahrnow, A.; Ecker, G. F., 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 46 

Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug 
Discov Today 2017, 22 (6), 896-911; (b) Tonge, P. J., Drug-Target Kinetics in Drug Discovery. 
ACS chemical neuroscience 2018, 9 (1), 29-39. 
13. (a) Dror, R. O.; Pan, A. C.; Arlow, D. H.; Borhani, D. W.; Maragakis, P.; Shan, Y.; Xu, 
H.; Shaw, D. E., Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc 
Natl Acad Sci 2011, 108 (32), 13118-23; (b) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; 
Seeliger, M. A.; Shaw, D. E., How does a drug molecule find its target binding site? J Am Chem 
Soc 2011, 133 (24), 9181-3. 
14. Buch, I.; Giorgino, T.; De Fabritiis, G., Complete reconstruction of an enzyme-inhibitor 
binding process by molecular dynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 
(25), 10184-10189. 
15. (a) Kappel, K.; Miao, Y.; McCammon, J. A., Accelerated Molecular Dynamics 
Simulations of Ligand Binding to a Muscarinic G-protein Coupled Receptor. Quarterly Reviews 
of Biophysics 2015, 48 (04), 479-487; (b) Saglam, A. S.; Chong, L. T., Protein-protein binding 
pathways and calculations of rate constants using fully-continuous, explicit-solvent simulations. 
Chemical Science 2019, 10 (8), 2360-2372. 
16. (a) Tiwary, P.; Limongelli, V.; Salvalaglio, M.; Parrinello, M., Kinetics of protein-ligand 
unbinding: Predicting pathways, rates, and rate-limiting steps. Proc Natl Acad Sci 2015, 112 (5), 
E386-E391; (b) Casasnovas, R.; Limongelli, V.; Tiwary, P.; Carloni, P.; Parrinello, M., 
Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations. J 
Am Chem Soc 2017, 139 (13), 4780-4788. 
17. (a) Kokh, D. B.; Amaral, M.; Bomke, J.; Gradler, U.; Musil, D.; Buchstaller, H. P.; 
Dreyer, M. K.; Frech, M.; Lowinski, M.; Vallee, F.; Bianciotto, M.; Rak, A.; Wade, R. C., 
Estimation of Drug-Target Residence Times by tau-Random Acceleration Molecular Dynamics 
Simulations. J Chem Theory Comput 2018, 14 (7), 3859-3869; (b) Wang, T.; Duan, Y., 
Chromophore channeling in the G-protein coupled receptor rhodopsin. J. Am. Chem. Soc. 2007, 
129 (22), 6970-6971. 
18. (a) Park, S.; Khalili-Araghi, F.; Tajkhorshid, E.; Schulten, K., Free energy calculation 
from steered molecular dynamics simulations using Jarzynski's equality. J Chem Phys 2003, 119 
(6), 3559-3566; (b) Gonzalez, A.; Perez-Acle, T.; Pardo, L.; Deupi, X., Molecular Basis of 
Ligand Dissociation in beta-Adrenergic Receptors. PLoS One 2011, 6 (9), e23815. 
19. Dickson, A.; Lotz, S. D., Multiple Ligand Unbinding Pathways and Ligand-Induced 
Destabilization Revealed by WExplore. Biophys J 2017, 112 (4), 620-629. 
20. Deb, I.; Frank, A. T., Accelerating Rare Dissociative Processes in Biomolecules Using 
Selectively Scaled MD Simulations. J Chem Theory Comput 2019, 15 (11), 5817-5828. 
21. Tang, Z. Y.; Chang, C. E. A., Binding Thermodynamics and Kinetics Calculations Using 
Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. J Chem Theory 
Comput 2018, 14 (1), 303-318. 
22. Plattner, N.; Noe, F., Protein conformational plasticity and complex ligand-binding 
kinetics explored by atomistic simulations and Markov models. Nat Commun 2015, 6, 7653. 
23. Tiwary, P.; Parrinello, M., From Metadynamics to Dynamics. Phys Rev Lett 2013, 111 
(23). 
24. Shao, Q.; Zhu, W., Exploring the Ligand Binding/Unbinding Pathway by Selectively 
Enhanced Sampling of Ligand in a Protein-Ligand Complex. J Phys Chem B 2019, 123 (38), 
7974-7983. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 47 

25. Miao, Y.; Feher, V. A.; McCammon, J. A., Gaussian Accelerated Molecular Dynamics: 
Unconstrained Enhanced Sampling and Free Energy Calculation. J Chem Theory Comput 2015, 
11 (8), 3584-3595. 
26. Miao, Y., Acceleration of Biomolecular Kinetics in Gaussian Accelerated Molecular 
Dynamics. J Chem Phys 2018, 149 (7), 072308. 
27. Miao, Y.; McCammon, J. A., Unconstrained enhanced sampling for free energy 
calculations of biomolecules: a review. Molecular simulation 2016, 42 (13), 1046-1055. 
28. (a) Hamelberg, D.; Mongan, J.; McCammon, J. A., Accelerated molecular dynamics: A 
promising and efficient simulation method for biomolecules. J Chem Phys 2004, 120 (24), 
11919-11929; (b) Voter, A. F., Hyperdynamics: Accelerated molecular dynamics of infrequent 
events. Physical Review Letters 1997, 78 (20), 3908. 
29. Shen, T. Y.; Hamelberg, D., A statistical analysis of the precision of reweighting-based 
simulations. J Chem Phys 2008, 129 (3), 034103. 
30. Case, D.; Babin, V.; Berryman, J.; Betz, R.; Cai, Q.; Cerutti, D.; Cheatham III, T.; 
Darden, T.; Duke, R.; Gohlke, H., Amber 14, University of California, San Francisco. 2014. 
31. Pang, Y. T.; Miao, Y.; Wang, Y.; McCammon, J. A., Gaussian Accelerated Molecular 
Dynamics in NAMD. J Chem Theory Comput 2017, 13 (1), 9-19. 
32. Oshima, H.; Re, S.; Sugita, Y., Replica-Exchange Umbrella Sampling Combined with 
Gaussian Accelerated Molecular Dynamics for Free-Energy Calculation of Biomolecules. J 
Chem Theory Comput 2019, 15 (10), 5199-5208. 
33. (a) Miao, Y.; McCammon, J. A., Gaussian Accelerated Molecular Dynamics: Theory, 
Implementation and Applications. Annual Reports in Computational Chemistry 2017, 13, 231-
278; (b) Pawnikar, S. P.; Miao, Y., Pathway and Mechanism of Drug Binding to Chemokine 
Receptors Revealed by Accelerated Molecular Simulations. Future Med Chem 2020, In Press. 
34. (a) Wang, J.; Miao, Y., Mechanistic Insights into Specific G Protein Interactions with 
Adenosine Receptors. The Journal of Physical Chemistry B 2019, 123 (30), 6462-6473; (b) 
Miao, Y.; McCammon, J. A., Mechanism of the G-Protein Mimetic Nanobody Binding to a 
Muscarinic G-Protein-Coupled Receptor. Proc Natl Acad Sci U S A 2018, 115 (12), 3036-3041. 
35. Bhattarai, A.; Wang, J.; Miao, Y., G-Protein-Coupled Receptor-Membrane Interactions 
Depend on the Receptor Activation State. J Comput Chem 2019, 41, 460-471. 
36. (a) East, K. W.; Newton, J. C.; Morzan, U. N.; Narkhede, Y. B.; Acharya, A.; Skeens, E.; 
Jogl, G.; Batista, V. S.; Palermo, G.; Lisi, G. P., Allosteric Motions of the CRISPR-Cas9 HNH 
Nuclease Probed by NMR and Molecular Dynamics. J Am Chem Soc 2020, 142 (3), 1348-1358; 
(b) Ricci, C. G.; Chen, J. S.; Miao, Y.; Jinek, M.; Doudna, J. A.; McCammon, J. A.; Palermo, G., 
Deciphering Off-Target Effects in CRISPR-Cas9 through Accelerated Molecular Dynamics. ACS 
Central Science 2019, 5 (4), 651-662. 
37. Wereszczynski, J.; McCammon, J. A., Using Selectively Applied Accelerated Molecular 
Dynamics to Enhance Free Energy Calculations. J Chem Theory Comput 2010, 6 (11), 3285-
3292. 
38. (a) Zheng, L. Q.; Yang, W., Essential energy space random walks to accelerate molecular 
dynamics simulations: Convergence improvements via an adaptive-length self-healing strategy. J 
Chem Phys 2008, 129 (1), 014105; (b) Li, H.; Min, D.; Liu, Y.; Yang, W., Essential energy space 
random walk via energy space metadynamics method to accelerate molecular dynamics 
simulations. J Chem Phys 2007, 127 (9), 094101. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 48 

39. Liu, P.; Kim, B.; Friesner, R. A.; Berne, B. J., Replica exchange with solute tempering: A 
method for sampling biological systems in explicit water. Proc Natl Acad Sci 2005, 102 (39), 
13749-13754. 
40. Wang, L.; Friesner, R. A.; Berne, B. J., Replica exchange with solute scaling: a more 
efficient version of replica exchange with solute tempering (REST2). J Phys Chem B 2011, 115 
(30), 9431-8. 
41. (a) Vanommeslaeghe, K.; MacKerell, A. D., Jr., CHARMM additive and polarizable 
force fields for biophysics and computer-aided drug design. Biochimica et biophysica acta 2014; 
(b) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G. M.; Zhang, W.; Yang, R.; Cieplak, 
P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J. M.; Kollman, P., A point-charge force field for 
molecular mechanics simulations of proteins based on condensed-phase quantum mechanical 
calculations. J Comput Chem 2003, 24 (16), 1999-2012. 
42. Miao, Y.; Bhattarai, A.; Nguyen, A. T. N.; Christopoulos, A.; May, L. T., Structural 
Basis for Binding of Allosteric Drug Leads in the Adenosine A1 Receptor. Sci. Rep. 2018, 8 (1), 
16836. 
43. (a) Doudou, S.; Burton, N. A.; Henchman, R. H., Standard Free Energy of Binding from 
a One-Dimensional Potential of Mean Force. J Chem Theory Comput 2009, 5 (4), 909-18; (b) 
Buch, I.; Giorgino, T.; De Fabritiis, G., Complete reconstruction of an enzyme-inhibitor binding 
process by molecular dynamics simulations. Proc Natl Acad Sci 2011, 108 (25), 10184-10189. 
44. Ferruz, N.; De Fabritiis, G., Binding Kinetics in Drug Discovery. Mol Inform 2016, 35 
(6-7), 216-26. 
45. (a) Doshi, U.; Hamelberg, D., Extracting Realistic Kinetics of Rare Activated Processes 
from Accelerated Molecular Dynamics Using Kramers’ Theory. J Chem Theory Comput 2011, 7 
(3), 575-581; (b) Frank, A. T.; Andricioaei, I., Reaction Coordinate-Free Approach to 
Recovering Kinetics from Potential-Scaled Simulations: Application of Kramers’ Rate Theory. 
The Journal of Physical Chemistry B 2016, 120 (33), 8600-8605. 
46. Hamelberg, D.; Shen, T.; McCammon, J. A., Relating kinetic rates and local energetic 
roughness by accelerated molecular-dynamics simulations - art. no. 2411003. J. Chem. Phys. 
2005, 122 (24). 
47. Truhlar, D. G.; Garrett, B. C.; Klippenstein, S. J., Current Status of Transition-State 
Theory. The Journal of Physical Chemistry 1996, 100 (31), 12771-12800. 
48. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of 
Molecular Graphics & Modelling 1996, 14 (1), 33-38. 
49. Roe, D. R.; Cheatham, T. E., PTRAJ and CPPTRAJ: Software for Processing and 
Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput 2013, 9 (7), 3084-
3095. 
50. Marquart, M.; Walter, J.; Deisenhofer, J.; Bode, W.; Huber, R., The geometry of the 
reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors. 
Acta Crystallographica Section B 1983, 39 (4), 480-490. 
51. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, 
A.; Simmerling, C.; Wang, B.; Woods, R. J., The Amber biomolecular simulation programs. J 
Comput Chem 2005, 26 (16), 1668-1688. 
52. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and 
testing of a general amber force field. Journal of computational chemistry 2004, 25 (9), 1157-
1174. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 49 

53. Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, 
C., ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from 
ff99SB. Journal of Chemical Theory and Computation 2015, 11 (8), 3696-3713. 
54. Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A., Application of the multimolecule 
and multiconformational RESP methodology to biopolymers: charge derivation for DNA, RNA, 
and proteins. Journal of Computational Chemistry 1995, 16 (11), 1357-1377. 
55. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., 
Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys 1983, 79 
(2), 926-935. 
56. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X., A density-based algorithm for discovering 
clusters in large spatial databases with noise. Knowledge Discovery and Data Mining 1996, 96 
(34), 226-231. 
57. Voet, D.; Voet, J. G.; Pratt, C. W., Fundamentals of Biochemistry, 4th ed. Ch. 11, 339-
349. 
58. Guillain, F.; Thusius, D., The use of proflavin as an indicator in temperature-jump studies 
of the binding of a competitive inhibitor to trypsin. J Am Chem Soc 1970, 92 (18), 5534-6. 
59. Wade, R. C.; Gabdoulline, R. R.; Ludemann, S. K.; Lounnas, V., Electrostatic steering 
and ionic tethering in enzyme-ligand binding: insights from simulations. Proc Natl Acad Sci 
1998, 95 (11), 5942-9. 
60. Miao, Y.; Sinko, W.; Pierce, L.; Bucher, D.; McCammon, J. A., Improved reweighting of 
accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput 
2014, 10 (7), 2677–2689. 
61. Kramers, H. A., Brownian motion in a field of force and the diffusion model of chemical 
reactions. Physica 1940, 7, 284-304. 
62. Xin, Y.; Doshi, U.; Hamelberg, D., Examining the limits of time reweighting and 
Kramers' rate theory to obtain correct kinetics from accelerated molecular dynamics. J Chem 
Phys 2010, 132 (22), 224101. 
63. Le Grand, S.; Gotz, A. W.; Walker, R. C., SPFP: Speed without compromise-A mixed 
precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 
2013, 184 (2), 374-380. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.20.051979doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051979
http://creativecommons.org/licenses/by-nc-nd/4.0/


 50 

Table 1 Summary of host-guest binding thermodynamics and kinetics obtained from GaMD 

simulations on the binding of two guest molecules (aspirin and 1-butanol) to the β-cyclodextrin 

(CD) host. The CD host is modeled with the GAFF and q4MD force fields. DV is the system boost 

potential applied in GaMD simulations. DG is the ligand binding free energy. ND and NB are the 

number of host-guest dissociation and binding events collected from the individual simulations. 

kon* and koff* are the kinetic dissociation and binding rate constants, which are calculated from 

only the GaMD simulations with ND > 0 and NB > 0.  

Host Ligand GaMD  
(300 ns x 3) 

DV 
(kcal/mol) ND NB DG 

(kcal/mol) 
kon* 

(×108 M-1·s-1) 
koff* 

(×106 s-1) 

CD: 
GAFF 

Aspirin 

GaMD_Tot 6.48 ± 2.59 0, 2, 1 0, 1, 0 - - - 
GaMD_Dual 10.37 ± 2.98 0, 3, 0 0, 3, 0 - - - 
GaMD_NB 4.15 ± 2.26 1, 1, 2 1, 0, 1 - - - 

GaMD_NB_Dual 8.75 ± 2.82 0, 1, 0 0, 1, 0 - - - 
LiGaMD 2.60 ± 1.27 3, 1, 2 2, 1, 1 -4.90 ± 0.03 3.05 ± 0.92 40.67 ± 24.25 

LiGaMD_Dual 9.18 ± 2.84 2, 4, 2 2, 3, 2 -2.89 ± 0.18 3.93 ± 0.98 275.6 ± 57.5 
1-

Butanol 
LiGaMD 2.54 ± 1.00 1, 0, 0 1, 0, 0 - - - 

LiGaMD_Dual 9.51 ± 2.85 1, 0, 1 1, 0, 1 - - - 

CD: 
q4MD 

Aspirin 

GaMD_Tot 6.22 ± 2.52 0, 2, 0 0, 2, 0 - - - 
GaMD_Dual 10.77 ± 3.02 1, 0, 0 1, 0, 0 - - - 
GaMD_NB 4.13 ± 2.17 0, 2, 2 0, 2, 2 - - - 

GaMD_NB_Dual 8.78 ± 2.83 0, 2, 2 0, 2, 2 - - - 
LiGaMD 2.84 ± 1.34 4, 3, 2 3, 2, 2 -4.74 ± 0.53 8.99 ± 5.02 42.82 ± 15.41 

LiGaMD_Dual 10.06 ± 3.15 8, 7, 4 8, 6, 3 -3.34 ± 0.15 10.37 ± 2.60 56.61 ± 19.05 
1-

Butanol 
LiGaMD 2.87 ± 1.12 9, 4, 7 9, 4, 7 -2.84 ± 0.58 8.76 ± 2.93 482.8 ± 246.3 

LiGaMD_Dual 9.74 ± 2.93 9, 13, 8 9, 13, 8 -1.34 ± 0.10 13.53 ± 2.15 436.8 ± 90.7 
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Table 2 Comparison of the host-guest binding free energies calculated from the LiGaMD 

simulations, LiGaMD_Dual simulations, cMD simulations21 and experimental data21. 

Host Ligand 
DGsim - DGexp (kcal/mol) 

cMD 
(DGcomp1) 

cMD 
(DGcomp2) 

LiGaMD LiGaMD_Dual 

CD: 
GAFF Aspirin -0.10 ± 0.35 1.47 ± 0.06 -1.16 ± 0.03 0.85 ± 0.18 

CD: 
q4MD 

Aspirin -2.59 ± 0.37 -0.37 ± 0.05 -1.00 ± 0.53 0.40 ± 0.15 
1-Butanol 0.34 ± 0.39 -0.60 ± 0.19 -1.17 ± 0.61 0.33 ± 0.21 
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Table 3 Accelerations of host-guest dissociation and binding rate constants obtained from (A) 

LiGaMD and (B) LiGaMD_Dual simulations as compared directly with previous cMD 

simulations21 and those derived using the Transition State Theory and Kramers’ Rate Theory.  

Host Ligand LiGaMD vs. cMD Transition State Theory Kramer’s Rate Theory 
kon*/kon koff*/koff kon*/kon koff*/koff kon*/kon koff*/koff 

CD: 
GAFF Aspirin 0.28 ± 0.08 1.69 ± 1.03 0.12 ± 0.09 15.07 ± 12.94 0.20 ± 0.16 12.19 ± 10.47 

CD: 
q4MD 

Aspirin 0.28 ± 0.16 13.81 ± 6.39 0.19 ± 0.16 21.59 ± 16.11 0.02 ± 0.02 12.36 ± 9.22 
1-Butanol 0.58 ± 0.20 14.63 ± 7.47 0.43 ± 0.34 8.77 ± 6.72 0.55 ± 0.43 7.91 ± 6.06 

(A) LiGaMD simulations 

Host Ligand LiGaMD_Dual vs. cMD Transition State Theory Kramer’s Rate Theory 
kon*/kon koff*/koff kon*/kon koff*/koff kon*/kon koff*/koff 

CD: 
GAFF Aspirin 0.36 ± 0.09 11.48 ± 2.79 0.09 ± 0.07 11.89 ± 9.36 0.06 ± 0.05 7.97 ± 6.27 

CD: 
q4MD 

Aspirin 0.32 ± 0.09 18.26 ± 8.12 0.18 ± 0.14 41.37 ± 22.17 0.23 ± 0.18 22.82 ± 12.23 
1-Butanol 0.90 ± 0.14 13.24 ± 2.76 0.23 ± 0.11 5.54 ± 2.73 1.03 ± 0.47 5.96 ± 2.94 

(B) LiGaMD_Dual simulations 
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Table 4 Summary of LiGaMD_Dual production simulations performed on the benzamidine ligand 

binding to trypsin. DV is the GaMD boost potential. ND and NB are the number of host-guest 

dissociation and binding events recorded from individual simulations.  

System Method ID Length 
(ns) DV (kcal/mol) ND NB 

Trypsin - 
benzamidine LiGaMD_Dual 

Sim1 1000 20.93 ± 4.24 3 3 
Sim2 1000 21.64 ± 4.67 5 4 
Sim3 1000 20.99 ± 4.23 11 10 
Sim4 1000 20.87 ± 4.18 4 4 
Sim5 1000 20.94 ± 4.18 4 4 
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Table 5 Comparison of trypsin protein-ligand binding free energy and kinetic rates obtained from 

experimental data and LiGaMD_Dual simulations. DG is the ligand binding free energy. kon and 

koff are the kinetic dissociation and binding rate constants, respectively, from experimental data or 

LiGaMD_Dual simulations with reweighting using Kramers’ rate theory. kon* and koff* are the 

accelerated kinetic dissociation and binding rate constants calculated directly from LiGaMD_Dual 

simulations without reweighting. 

Method DG 
(kcal/mol) 

kon 
(M-1·s-1) 

koff 
(s-1) 

kon* 
(M-1·s-1) 

koff* 
(s-1) 

Experiment -6.2  2.9 × 107 600 ± 300 - - 
LiGaMD_Dual -6.13 ± 0.35 1.15 ± 0.79 × 107 3.53 ± 1.41 1.58 ± 1.09 × 108 3.40 ± 1.36 × 107  
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Figure Captions 

Fig. 1 Comparison of potential of mean force (PMF) free energy profiles calculated from 

conventional MD (cMD), LiGaMD and dual-boost LiGaMD (LiGaMD_Dual) simulations of host-

guest binding: (A-B) Computational models of the β-cyclodextrin (CD) host (balls-and-sticks) in 

the presence of guest (A) aspirin and (B) 1-butanol (thick sticks) in aqueous medium (cyan). (C-

F) PMF profiles calculated from microsecond-timescale cMD simulations and three independent 

300 ns LiGaMD and LiGaMD_Dual simulations of (C) CD using the GAFF force field with aspirin, 

(D) CD using the GAFF force field with 1-butanol, (E) CD using the q4MD force field with aspirin, 

(F) CD using the q4MD force field with 1-butanol. 

Fig. 2 Free energy profiles and low-energy conformational states of guest binding to the CD host 

that was modeled with the GAFF force field: (A) PMF profiles of the host radius of gyration (Rg) 

calculated from cMD simulations in the ligand-free (apo), aspirin and 1-butanol binding forms. 

Two low-energy states (“Compact” and “Open”) are identified for the CD host. (B) Three 

representative conformational states observed in simulations of guest aspirin binding to CD 

modeled with GAFF: the “Bound (B)”, “Intermediate (I)” and “Unbound (U)”, in which the CD 

host adopted primarily the Open, Compact and Compact conformations, respectively. (C-E) 2D 

PMF profiles of the host Rg versus the center-of-mass distance between host-guest of (C) aspirin 

binding from 9500 ns cMD simulation, (D) aspirin binding from three 300 ns LiGaMD_Dual 

simulation combined, (E) 1-butanol binding from 6500 ns cMD simulation, and (F) 1-butanol 

binding from three 300 ns LiGaMD_Dual simulation combined. The low-energy states are labeled. 

Fig. 3 Free energy profiles and low-energy conformational states of guest binding to the CD host 

that was modeled with the q4MD force field: (A) PMF profiles of the host radius of gyration (Rg) 

calculated from cMD simulations in the ligand-free (apo), aspirin and 1-butanol binding forms.  
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Two low-energy states (“Compact” and “Open”) are labeled for the CD host. (B) Three 

representative conformational states observed in simulations of aspirin binding to CD modeled 

with q4MD: the “Bound (B)”, “Intermediate (I)” and “Unbound (U)”, in which the CD host all 

adopted primarily the Open conformation. (C-E) 2D PMF profiles regarding the host Rg versus 

center-of-mass distance between host-guest of (C) aspirin binding from 6000 ns cMD simulation, 

(D) aspirin binding from three 300 ns LiGaMD_Dual simulation combined, (E) 1-butanol binding 

from 5000 ns cMD simulation, and (F) 1-butanol binding from three 300 ns LiGaMD_Dual 

simulation combined. The low-energy states are labeled. 

Fig. 4 (A-F) The original (reweighted) and modified (no reweighting) PMF profiles of (A) 

LiGaMD simulations of CD using the GAFF force field with aspirin, (B) LiGaMD_Dual 

simulations of CD using the GAFF force field with aspirin, (C) LiGaMD simulations of CD using 

the q4MD force field with aspirin, (D) LiGaMD_Dual simulations of CD using the q4MD force 

field with aspirin, (E) LiGaMD simulations of CD using the q4MD force field with 1-butanol, and 

(F) LiGaMD_Dual simulations of CD using the q4MD force field with 1-butanol. 

Fig. 5 LiGaMD_Dual simulations have captured repetitive binding and unbinding of the 

benzamidine ligand in the trypsin protein: (A) time courses of distances between the N atom in 

benzamidine and CG atom of Asp189 in trypsin calculated from a representative 1 μs 

LiGaMD_Dual simulation (Sim2 in Table 5). Distance plots of the other simulations are provided 

in Figure S5. (B) The original (reweighted) and modified (no reweighting) PMF profiles of the 

distance between the N atom of benzamidine ligand and CG atom of protein residue Asp189. (C) 

Reweighted and (D) modified 2D PMF profiles of the benzamidine:N – Asp189:CG and 

Trp215:NE – Asp189:CG atom distances. The PMF profiles were calculated by combining all five 

1000 ns LiGaMD_Dual simulations.  
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Fig. 6 Six representative low-energy conformational states as identified from PMF profiles of 

benzamidine (BEN) ligand (spheres) binding to trypsin (blue ribbons): (A) “Bound (B)”, (B) 

“Intermediate 1 (I1)”, (C) “Intermediate 2 (I2)”, (D) “Intermediate 3 (I3)”, (E) “Unbound (U1)”, 

and (F) “Unbound (U2)”. Reference X-ray conformations of the ligand and protein (PDB: 3PTB) 

are shown in green spheres and grey ribbons, respectively. Protein residues Asp189 and Trp215 

that are important for ligand binding and those in the catalytic triad (His57, Asp102 and Ser214) 

are highlighted in thick sticks. 

Fig. 7 Pathways of the benzamidine (BEN) ligand (sticks) in trypsin (ribbons) obtained from 

structural clustering of five 1000 ns LiGaMD_Dual simulations: (A) Sim1, (B) Sim2, (C) Sim3, 

(D) Sim4 and (E) Sim5. The ligand is represented by sticks that are colored by reweighted PMF 

values of the ligand clusters in a blue (0 kcal/mol)-white (7.5 kcal/mol)-red (15.0 kcal/mol) scale. 

X-ray conformation of the ligand is shown in green spheres for reference. Protein residues Asp189 

and Trp215 that are important for ligand binding and those in the catalytic triad (His57, Asp102 

and Ser214) are highlighted in thick sticks. Other negatively charged residues in the protein 

including Glu70, Asp71, Glu77, Glu80 and Asp153 are shown in thin sticks. The protein loops 

containing residues Asp189 and Trp215 are highlighted in yellow and green, respectively. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Fig. 7 
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TOC graphic 

 
All-atom ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations captured 
repeptitive binding of the benzamidine (BEN) ligand to the trypsin model protein, which enabled 
us to characterize the ligand binding free energy profiles, pathways and kinetic rate constants.  
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