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Abstract   16 

 Antibiotic use in neonates can have detrimental effects on the developing gut 17 

microbiome, increasing the risk of morbidity. A majority of preterm neonates receive antibiotics 18 

after birth without clear evidence to guide this practice. Here microbiome, metabolomic, and 19 

immune marker results from the Routine Early Antibiotic use in SymptOmatic preterm Neonates 20 

(REASON) study are presented. The REASON study is the first trial to randomize symptomatic 21 

preterm neonates to receive or not receive antibiotics in the first 48 hours after birth. Using 16S 22 

rRNA sequencing of stool samples collected longitudinally for 91 neonates, the effect of such 23 

antibiotic use on microbiome diversity is assessed.  The results illustrate that type of nutrition 24 

shapes the early infant gut microbiome. By integrating data for the gut microbiome, stool 25 

metabolites, stool immune markers, and inferred metabolic pathways, an association was 26 

discovered between Veillonella and the neurotransmitter gamma-aminobutyric acid (GABA). 27 

These results suggest early antibiotic use may impact the gut-brain axis with the potential for 28 

consequences in early life development, a finding that needs to be validated in a larger cohort. 29 

Main 30 

 Premature infants are particularly susceptible to infections secondary to increased need 31 

for invasive procedures and immaturity of the immune system, skin, and gastrointestinal tract1–3. 32 

Increasingly, there is growing concern that risk factors for mortality may originate from 33 

underlying pathologies that could also be responsible for premature birth4. Symptoms of 34 

prematurity are difficult to discern from symptoms of infection which, compounded by the 35 

increased risk of infection, have led to most premature infants being exposed to antibiotics early 36 
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in life5–7. Despite high mortality rates, the incidence of culture positive early onset sepsis (EOS) 37 

is relatively low, between 0.2-0.6%8. In the absence of a positive culture, a majority of preterm 38 

infants receive antibiotics immediately after birth based on maternal risk factors (e.g. intra-39 

amniotic infection) or laboratory abnormalities (e.g. elevated serum C-reactive protein (CRP)) 40 

because of the risk of mortality8. Given the low incidence of culture-positive EOS in this 41 

population, it is possible that such high rates of antibiotic use are unnecessary and may increase 42 

morbidity in these infants9. Other morbidities in the neonatal intensive care unit (NICU) such as 43 

necrotizing enterocolitis (NEC) and late onset sepsis (LOS) also have high mortality rates and 44 

have been associated with prolonged antibiotic exposure.10,11. Nevertheless, antibiotics remain 45 

the most commonly prescribed medication in the NICU12,13. 46 

 The gut microbiome comprises a highly volatile community structure early in life14. 47 

Microbial colonization is influenced as early as birth by mode of delivery, and perhaps even in 48 

the uterine environment by maternal factors15,16. Not surprisingly, antibiotic use has been shown 49 

to also change the composition of the preterm gut community17–20. Furthermore, antibiotic use 50 

early in life has increasingly been associated with adverse outcomes both short- and long-51 

term21,22. One possible consequence is the disruption of the gut-brain axis (GBA), which 52 

involves bi-directional transmission of bio-molecular signals between the gut microbiota and the 53 

nervous system23. Aberrations in the GBA have been associated with altered immune 54 

homeostasis, as well as psychiatric, behavioral and metabolic conditions in adulthood24. It is 55 

therefore imperative to determine if such high rates of antibiotic use in preterm infants is 56 

necessary, as it could have lifelong consequences on future health. 57 

 Randomized clinical trials have the advantage of controlling for many of the numerous 58 

covariates that could interfere with answering whether preemptive antibiotic use in preterm 59 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.04.20.052142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.052142


 4 

infants affects outcomes. The Routine Early Antibiotic use in SymptOmatic preterm Neonates 60 

(REASON) study is the first to randomize symptomatic premature infants to either receive or not 61 

receive antibiotics soon after birth. Previously reported results from this study demonstrate the 62 

feasibility of such a trial and that withholding antibiotics did not lead to a significant increase in 63 

neonatal mortality or morbidity25. By employing a multi-omic approach, this cohort also 64 

provides the unique opportunity to understand how antibiotic intervention perturbs the early life 65 

gut microbiome, metabolome, and inflammatory environment in ways that may be consequential 66 

to health and development.  67 

Results   68 

Cohort and study description 69 

 Ninety-one of the total 98 enrolled infants had stool samples collected. Seven infants had 70 

no samples due to early mortality. Eligible infants were enrolled into groups based on previously 71 

described enrollment criteria25: group A – antibiotics indicated (n=28), group B – antibiotics not 72 

indicated (n=11), and group C – eligible for randomization (n=52). Twenty-six infants were from 73 

group C1 (antibiotics in first 48 hours) and 14 infants were from group C2 and did not receive 74 

antibiotics 48 hours after birth. For 12 infants (46%) randomized to group C2, antibiotics were 75 

prescribed in the first 48 hours after birth upon clinical assessment, and these infants were placed 76 

in a separate analysis group C2Bailed. One infant in group B were changed (bailed) to receive 77 

antibiotics within 48 hours after birth and was excluded from this analysis. Therefore, there are a 78 

total of 90 infants with stool samples analyzed across 5 enrollment groups, 2 of which did not 79 

receive antibiotics within 48 hours after birth (groups B and C2). Neither sex (p=0.352) nor 80 

mode of delivery (p=0.227) were significantly different between groups using the chi-square test. 81 

Both weight (p-value=0.005) and gestational age (GA) (p-value=0.002) were significantly 82 
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different between groups overall, with group A infants on average with lower GA and at lower 83 

birth weights. Neither birth weight nor GA were significantly different between the randomized 84 

subgroups (C1, C2, C2Bailed) by the Kruskal-Wallis test (p>0.05). A summary of the infants in 85 

this analysis is provided (Table 1). Likewise, a summary of the types of antibiotics and the 86 

number of times antibiotics were prescribed by group (Supplementary Table S1). A full 87 

description of enrollment has been described previously25. 88 

 Six hundred ninety-three stool samples were collected longitudinally for 91 of the total 89 

98 enrolled infants. Stool data were not available for 7 infants due to early mortality. Sequencing 90 

data for 16S rRNA were obtained for 656 of those samples. After rarefying to an even 91 

sequencing depth of 10,000 reads per sample, 642 samples remained. Since GA is significantly 92 

different between groups, we chose to focus on corrected GA between weeks 28 to 39 because 93 

there were not enough samples among groups at younger and older timepoints. Therefore, 522 94 

stool samples remained within this corrected GA window (Supplementary Table S2). The aim 95 

for this analysis is to test the effects of randomization to antibiotics vs. no antibiotics on the 96 

developing gut microbiome, metabolome and inflammatory environment using high-throughput 97 

16S rRNA sequencing, quantitative PCR (qPCR), metabolomics, pathway inference, immune 98 

marker analysis and open-source statistical tools.  99 

Antibiotic use and trends in early gut microbiome diversity development 100 

 Using amplicon sequencing variants (ASVs), the richness and Shannon alpha diversity 101 

were not significantly different between enrollment groups at each corrected GA timepoint using 102 

the Kruskal-Wallis test (Fig. 1A, B). Furthermore, the number of copies of 16S rRNA were not 103 

significantly different between groups at any timepoint (Fig. 1C). Interestingly, group B infants 104 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.04.20.052142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.052142


 6 

who did not receive antibiotics and were typically older and had an increasing trend in copies of 105 

16S rRNA over time, but the same trend was weaker for group C2 infants who also did not 106 

receive antibiotics but were typically younger. Using a linear mixed-effects model (LME) 107 

through Qiime226–28, neither richness nor Shannon diversity changed significantly over the time 108 

frame of corrected GA between 28 – 39 weeks (p=0.407, p=0.861, respectively) (Fig. 1D, E). 109 

Notably, groups C1 and C2Bailed had significant positive trends in richness over time (p=0.019, 110 

p=0.002, respectively). Groups B and C2 had negative trends in richness that were not significant 111 

(p>0.05). All groups had positive trends in Shannon diversity development over time. However 112 

none were significant (p>0.05). Surprisingly, there was no significant difference in diversity 113 

between groups C1 (or similarly, C2Bailed) and C2, which are the informative groups for 114 

comparing effects of antibiotics or no antibiotics 48 hours after birth. Certain considerations need 115 

to be made when comparing infants by enrollment group. For example, group A infants had 116 

significantly lower GA and birth weights, particularly compared to group B infants who on 117 

average had the highest GAs and birth weights, and the shortest stays in the NICU. Comparison 118 

between group B and the other enrollment groups is limited in scope because of shorter stays, i.e. 119 

fewer longitudinal samples. Furthermore, although the randomized groups C1 and C2 had similar 120 

number of enrolled infants in the beginning, nearly half of group C2 infants were bailed to 121 

receive antibiotics 48 hours after birth. Therefore, the power to compare the randomized groups 122 

by antibiotic use with 48 hours after birth is limited. 123 

 Similar to alpha diversity, there were no apparent changes in overall bacterial community 124 

structure between groups when assessing beta-diversity over time and at each timepoint. Both the 125 
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Bray-Curtis and Jaccard distance indices were used to assess community structure, taking into 126 

account quantitative ASV abundance and qualitative ASV presence/absence information, 127 

respectively. Principle coordinates analysis (PCoA) did not reveal any immediately obvious 128 

clustering differences between groups for either metric (Fig. 2), which may suggest little or no 129 

persistent effect of antibiotic use beyond  48 hours after birth. Beta dispersion was not 130 

significantly different between groups using the Bray-Curtis metric (ANOVA; Df = 4, Sum of 131 

Squares = 0.011, Mean Squares = 0.003, F = 1.088, p = 0.362) but was significant using Jaccard 132 

(ANOVA: Df = 4, Sum of Squares = 0.048, Mean Squares = 0.012, F = 9.574, p = 1.79E-07), 133 

specifically group A versus all other groups (TukeyHSD, A vs. B: p = 0.010, A vs. C1: p-value = 134 

0.0003, A vs. C2: p = 0.004, A vs. C2Bailed: p=0.00001). This might suggest differences in 135 

dispersion heterogeneity (i.e. greater spread in variance) between group A infants and infants in 136 

other groups, which could be explained by group A infants often receiving antibiotics beyond 48 137 

hours after birth. However, when the non-parametric permutational analysis of variance 138 

(PERMANOVA) test was applied to each timepoint across groups, there were no significant 139 

differences in Bray-Curtis or Jaccard distances among all groups at any given corrected GA 140 

timepoint (Fig. 2). 141 

Feeding patterns drive changes in gut diversity and bacterial load 142 

 For preterm infants, diet generally consists of mother’s breast milk (MBM), pasteurized 143 

donor breast milk (DBM), formula, or some combination of these sources. Some infants also 144 

experienced periods of no enteral feeding (NPO: nil per os). To investigate effects of feeding 145 

while still considering effects from antibiotic use, feeding types were compared within each 146 
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respective analysis group. In addition, for purposes of comparing feeding types at each corrected 147 

GA timepoint, feeding types with only a single sample at each timepoint (n=1) were removed. 148 

This reduced the total number of stool samples from 522 to 461. The number of samples in each 149 

group at each timepoint, and also by feeding type, is summarized in Supplementary Table S3. 150 

Using the calculated alpha diversity metrics described previously, feeding type was significantly 151 

different in bacterial richness only at corrected GA week 32 in group A infants (Kruskal-Wallis, 152 

p= 0.0069), where samples collected during feeding with all or partial mother’s milk tended to 153 

have higher bacterial richness (Fig. 3A). Furthermore, Shannon diversity was significantly lower 154 

in infants not fed orally at corrected GA week 36 in group A infants (p=0.042) (Fig. 3B). The 155 

log10-transformed number of 16S rRNA copies were not significant at any timepoint in any 156 

group, although notably feeding with MBM alone typically had higher 16S rRNA copies 157 

compared with formula in all groups except for group A, which might be explained by continued 158 

antibiotic use beyond 48 hours (Fig. 3C).  159 

 Beta diversity between feeding types within groups was likewise only significant at few 160 

specific timepoints. For group A infants, Bray-Curtis distances between formula and MBM 161 

feeding were significantly different at corrected GA week 34 using PERMANOVA (R2=0.093, 162 

p=0.030). For group C1, Bray-Curtis distances were different between formula, MBM and 163 

MBM+formula at corrected GA week 36 (R2=0.370, p=0.005). Also in group C1, Jaccard 164 

distances were significantly different between formula, MBM and MBM+formula at corrected 165 

GA week 34 (R2=0.141, p=0.024), corrected GA week 35 (R2=0.158, p=0.011) and corrected 166 

GA week 36 (R2=0.296, p=0.007).  167 
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 Applying LME modelling by feeding type according to analysis group allows the 168 

observation of feeding effect over time, focusing again on the 12 weeks of corrected GA after 169 

removal of feeding type singletons at each timepoint (Fig. 4). Perhaps not surprisingly, among all 170 

groups, periods of NPO led to a lower trend in Shannon diversity over time (p=0.003) (Fig. 4G). 171 

While bacterial richness appeared to trend lower, the trend was not significant (p=0.341) (Fig. 172 

4A). For group A infants, which received antibiotics in 48 hours after birth and often beyond, 173 

MBM was associated with a slight increase in richness (p=0.009) (Fig. 4B), and periods of NPO 174 

led to a lower trend in Shannon diversity (p=0.031) (Fig. 4H). in Group B infants, who never 175 

received antibiotics and tended to be older, larger and healthier, all feeding types including 176 

formula (p=0.004), MBM (p<0.001) and MBM+formula (p=0.018) led to increasing trends in 177 

Shannon diversity (Fig. 4I).  However, no significant trends could be identified in richness (Fig. 178 

4C). It is difficult to evaluate group B infants due to lower enrollment size, shorter NICU stays, 179 

and fewer samples overall. For the randomized infants that received antibiotics 48 hours after 180 

birth, MBM and formula were associated with positive trends in richness (C1 and C2Bailed 181 

MBM: p<0.001; C1 formula: p=0.004; C2Bailed formula: p=0.016) (Figs. 4D, 4F). Only group 182 

C2Bailed infants saw increased trends in Shannon diversity for feeding MBM (MBM only: 183 

p=0.018; MBM+DBM: p=0.004; MBM_formula: p=0.002) (Fig. 4L). Finally, group C2 infants 184 

randomized to not receive antibiotics 48 hours after birth saw a lower trend in both richness and 185 

Shannon diversity during feeding with DBM (Figs. 4E, 4K).  However, neither trend was 186 

significant, likely due to the few numbers of samples. The power for detecting trends in group 187 

C2 is likely hampered because half of the infants randomized were bailed within 48 hours after 188 

birth. 189 
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Gut microbial community development is highly variable and unique to each infant 190 

 Although the infants in this study were analyzed among 5 groups, each infant’s stay in 191 

the NICU is highly personalized, by type, frequency, number or length of antibiotic use, type and 192 

length of feeding patterns, and adverse clinical events over time. To aid in visual identification of 193 

patterns throughout the NICU course, detailed charts were created for each infant that depict 194 

both clinical and laboratory data over time (Days Post Birth) integrated into a single graphic per 195 

infant (Fig. 5 and Supplementary Figure S1). This includes results from the 16S rRNA analysis 196 

as pie charts for each stool sample, color coded by bacterial taxonomy and sized based on the 197 

log10-transformed number of 16S rRNA copies per gram of stool, as well as adverse clinical 198 

events coded by a single letter code (Fig. 5). With these visualizations, patterns are more easily 199 

observed between antibiotic treatments, feeding types, and the gut microbiome. Typically, the 200 

microbiome composition after birth is homogenous in composition and diversifies, as well as 201 

increases in size over time, as might be expected. One interesting association involved the 202 

administration of the anti-fungal fluconazole and a resultant lowering of bacterial load and 203 

diversity.  However, fluconazole was often administered in conjunction with antibiotics and was 204 

administered frequently to group A infants.  205 

The more subtle effects of antibiotic use and feeding patterns become visually apparent 206 

by taking this individualized approach. To illustrate, infant 5 was exclusively fed mother’s milk 207 

from day 14 through day 71 post birth. At day 31, antibiotics vancomycin and piperacillin were 208 

administered (Supplementary Figure S1). During treatment, Veillonella was entirely removed 209 

from the stool microbiome, falling from 3.23E+06 cells per gram (73%) from the pre-treatment 210 
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time point to an undetectable level while antibiotics were used. At day 47, 9 days after antibiotic 211 

treatment ceased, Veillonella again dominated the stool at 3.83E+06 cells per gram (80%), 212 

almost a complete replacement of levels before treatment. Also, the proportions of the other 2 213 

genera found in the stool, Escherichia and an unclassified Enterobacteriaceae spp., were nearly 214 

identical after treatment and continuation of mother’s milk as before treatment (pre-treatment: 215 

Escherichia – 21%, Enterobacteriaceae spp. – 4.7%; post-treatment: Escherichia – 15%, 216 

Enterobacteriaceae spp. – 3.3%). Thus, either that mother’s milk effectively restored the stool 217 

microbiome to its pre-treatment state or this effect occurred due to removal of antibiotic selective 218 

pressure, or both. A similar effect can be seen in infant 12 between 25 and 50 DOL where the 219 

microbiome is restored post-antibiotics. In this case, the restoration is observed with MBM, 220 

DBM, and formula. In some cases, antibiotic use had no effect on the microbiome composition 221 

(e.g. infant 42, 84), suggesting the presence of resistance mechanisms in the dominant gut 222 

microbes (in these 2 cases, members of Enterobacteriaceae). In fact, Enterobacteriaceae presence 223 

followed administration of ampicillin and gentamicin, the 2 most commonly prescribed 224 

antibiotics immediately after birth. This occurred in 24 of the 91 infants. Other times antibiotic 225 

use appears to dramatically and irreversibly change microbiome composition (e.g. infant 25).  226 

Bacterial genera correlate with stool metabolites and inferred metabolic pathways 227 

 In addition to 16S rRNA profiling, 90 stool samples from 10 infants were analyzed for 228 

metabolomic profiling (Table 1). Four of the 5 groups were included in these samples for 229 

comparison (group B samples not included). Peak height responses were recorded for 454 230 

identifiable metabolites. To determine if gut bacteria were associated with relative concentrations 231 
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of metabolites in stool, the top 10 most abundant bacterial genera associated with identified 232 

metabolites were determined. Repeated measures correlation values were plotted using a 233 

heatmap, which indicated numerous significant, positive and negative, associations between 234 

bacteria and metabolites (Fig. 6A).  Interestingly, Veillonella were positively associated with the 235 

neurotransmitter 4-aminobutanoate (GABA) (R = 0.27, p = 0.013) and Veillonella counts were 236 

significantly different between groups A and C2 (p =0.0475), C1 and C2 (p=0.029), and C2 and 237 

C2Bailed (p=0.042) using the Wilcoxon paired test (Fig. 6C). Also, Veillonella counts were not 238 

significantly different between samples of infants that received antibiotics, i.e. A and C1 239 

(p=0.57) or C1 and C2Bailed (p=0.17). GABA peak height responses followed similar trends as 240 

Veillonella counts, that is, responses were significantly different between groups that received 241 

and did not receive antibiotics (A vs. C2, C1 vs. C2, C2 vs. C2Bailed) but not between groups 242 

that both received antibiotics (A vs. C1, C1 vs. C2Bailed) (Fig. 6B).  243 

 Furthermore, using PICRUSt2, functional pathway abundances were inferred based on 244 

the rarefied 16S rRNA data29. The Veillonella counts of predicted pathways were strongly 245 

correlated with biosynthesis of the GABA precursor L-glutamate (R = 0.88, p = 3.02E-27) 246 

(Supplementary Figure S2). Thus, it may be that Veillonella could be at least partially 247 

responsible for GABA neurotransmitter production and that this function is negatively impacted 248 

by antibiotic use early in life. Alternatively, Veillonella may instead be involved in biosynthesis 249 

and export of L-glutamate in the gut, which is then converted to GABA by the host glutamate 250 

decarboxylase. However, PICRUSt2 results are based on inferred pathways from reference 251 
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genomes closely related to the 16S rRNA data used here and are, at best, predictions in the 252 

absence of functional data specific to this cohort.  253 

A negative correlation between Bifidobacterium counts and glycocholic acid was 254 

observed (R = -0.39, p = 0.0098), which was also impacted by antibiotic use between groups. In 255 

addition, bifidobacteria were negatively associated with other conjugated bile acids including 256 

taurocholic (R = -0.22, p = 0.045) and glycocholic acids (R = -0.21, p = 0.048), but positively 257 

associated with deconjugated cholic (R = 0.25, p = 0.027) (Fig. 6A). Thus, gut microbiota 258 

affected by antibiotic use may be responsible for modification of neuroactive metabolites (i.e. 259 

deconjugated bile salts) in addition to production of neurotransmitters.  260 

Immune markers in stool correlate with bacterial abundance 261 

 Antibiotic use was examined for its correlation with inflammatory marker levels in stool. 262 

These levels were also correlated with gut bacterial abundances. Twelve immune markers were 263 

measured in 110 stool samples across 18 of the first enrolled infants. A summary of immune 264 

marker data samples including infants per group and number of samples per infant is given in 265 

Table 1. Ten bacterial genera had at least one significant correlation with an immune marker (p < 266 

0.05) (Fig. 7A). Significant correlations between the bacterial genera and stool immune markers 267 

were classified as either inflammatory or anti-inflammatory based on the known function of the 268 

marker (Fig. 7B). Interestingly, Enterococcus counts were negatively correlated with levels of 269 

TNF-alpha and macrophage inflammatory protein 1-alpha (MIP1). Citrobacter were positively 270 

correlated with MIP1 and IL6 (R = 0.21, p = 3.74E-05), and were significantly higher in group 271 

C1 compared to group C2 (p=7.7E-07) and group C2 compared to C2Bailed (p=0.00022) by the 272 
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Wilcoxon test (Fig. 7C). Lastly, counts of Escherichia/Shigella were significantly negatively 273 

correlated with levels of epidermal growth factor (EGF), which was the strongest correlation 274 

within the dataset. Escherichia/Shigella counts were highest among group A samples, but not 275 

significantly higher compared to other groups (Wilcoxon, p>0.05).  276 

Discussion 277 

 There is an urgent need for evidence supporting or refuting the widespread practice of 278 

routine antibiotic use after birth in symptomatic preterm neonates. The REASON study 279 

represents a significant step as it is the first randomized controlled trial to test the feasibility of 280 

randomizing symptomatic preterm infants to antibiotics versus no antibiotics, evaluating the 281 

effect of antibiotic treatment on the developing gut microbiome, metabolome, and inflammatory 282 

environment. Our results expand upon previous reports that early routine antibiotic use leads to 283 

alterations in the early life gut microbiome, even after discontinuation of antibiotics17,30,31. The 284 

results presented here suggest that antibiotic use 48 hours after birth did not tend to have a 285 

lasting effect on the development of gut microbiome diversity over time, and that the gut 286 

microbiota diversity was recoverable. However, use of antibiotics extending beyond 48 hours 287 

after birth often did have significant impacts on the microbiome over time, as evidenced in group 288 

A infants compared to the other enrollment groups. The power to detect significant associations 289 

in this study was hampered however, mainly because many of the infants randomized to not 290 

receive antibiotics were changed to antibiotic administration. Furthermore, there were few 291 

infants who were enrolled in group B (an important antibiotic-free control group) and those 292 

enrolled in group B had few samples due to short stays in the NICU. A larger multi-center 293 

randomized study is needed to validate and expand upon the extended effect of antibiotics on the 294 

developing gut microbiome. 295 
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 Our results support the notion that feeding types likely also have a significant influence 296 

on gut microbiome richness and diversity, though in this case only at specific timepoints32–34. 297 

Exclusive or partial feeding with mother’s own milk appeared to have higher bacterial load 298 

compared to formula and NPO, though not significantly. This observation is backed by previous 299 

evidence that breast milk harbors maternal-originating bacteria, as well as nutritional 300 

components (prebiotics) that support bacterial proliferation in the intestinal tract35,36. 301 

Interestingly, formula-fed infants had comparable levels of richness and diversity as mother’s 302 

milk. This supports the idea that mother’s milk drives early colonization of a limited set of 303 

dominant microbes through nutrient and antimicrobial-mediated selection37–39. Feeding trends 304 

over time were able to be assessed for the main feeding types such as MBM, DBM and formula 305 

however again the ability to detect meaningful results for rarer feeding types (particularly 306 

combinations of sources) and group B infants was hampered by small sample size and will 307 

require a larger cohort. 308 

 Integrating detailed and personalized records of clinical and laboratory data led us to 309 

identify overlooked patterns in the data. One such peculiar pattern was that stool samples taken 310 

during administration of the anti-fungal fluconazole had lowered copies of 16S rRNA, 311 

suggesting lower bacterial load. A previous study reported that fluconazole, though not 312 

inherently bactericidal, increased the bactericidal activity of neutrophils40. Immune marker data 313 

were collected for 18 of the first enrolled infants, and one or more of those markers, such as 314 

calprotectin which is secreted by neutrophils, may help explain this pattern41. However, only 3 of 315 

the 18 infants that had immune marker data received fluconazole. Therefore more data are 316 

needed to test this hypothesis. Interestingly, counts of Enterococcus were negatively correlated 317 

with levels of pro-inflammatory markers such as TNF and MIP1, an odd finding considering 318 
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Enterococci have been associated with risk for infection in preterm neonates42,43. On the other 319 

hand, Citrobacter counts were associated with increased levels of the macrophage chemokine 320 

MIP1 and counts were significantly higher in infants randomized to receive or were bailed to 321 

receive antibiotics. Increased levels of MIP1 are likely related to recruitment of intestinal 322 

macrophages leading to a heightened inflammatory environment, suggesting that antibiotic use 323 

may select for bacteria which lead to intestinal inflammation44. Finally, Escherichia/Shigella 324 

counts had a relatively strong negative correlation with EGF levels. Previous studies have found 325 

that reduced concentrations of maternally derived EGF in mice correlated with E. coli gut 326 

translocation, and that supplementation with EGF protected the gut from colonization by 327 

enteropathogenic E. coli in a young rabbit model45,46. Perhaps such factors as EGF concentration 328 

could be important in ameliorating the effect of antibiotics on pathogen colonization in the 329 

preterm gut. Further work including a larger sample size will be needed to understand how 330 

changes in the preterm infant gut caused by routine antibiotics impacts the gut inflammatory 331 

environment. 332 

 Neurological development can be impaired in infants born very prematurely compared to 333 

their full-term counterparts; a trend that extends into delayed cognitive and behavioral 334 

development through childhood47–49. Could routine early antibiotic use, or prolonged antibiotic 335 

use, in preterm neonates play a role in this association? Intestinal microbes produce a plethora of 336 

metabolites and bio-active compounds that can be absorbed by the host50. Some of these 337 

compounds have direct neurologic implications including neurotransmitters such as GABA, 338 

which is reduced in preterm infants, is critical for early brain development, and possesses 339 

immunomodulatory properties51,52.  Antibiotic use was negatively affected the abundance of 340 

Veillonella and that Veillonella were positively correlated with GABA concentrations in the gut. 341 
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Furthermore, Veillonella correlated strongly with the L-glutamine biosynthesis pathway, the 342 

precursor to GABA production. Aside from production of neurotransmitters, negative 343 

correlations were identified between Bifidobacterium abundance and concentrations of 344 

conjugated bile acids, particularly glyco- and taurocholic acid. Conjugated bile acids were also 345 

significantly different based on antibiotic use. Bifidobacteria, which were more abundant in 346 

infants that did not receive antibiotics, are known to deconjugate bile acids to primary forms 347 

including cholic acid53,54. Cholic acid can passively diffuse into the brain where it blocks 348 

signaling in the GABAA receptor55. Bifidobacteria may therefore be essential in regulating 349 

GABA signaling in the developing brain. These are significant findings, for they suggest routine 350 

antibiotic use could be disrupting processes involved in the gut-brain axis and 351 

immunomodulatory pathways critical for neonatal and future childhood development. 352 

 Evidence-based antibiotic use to prevent infection in preterm neonates is critical in 353 

preventing unnecessary treatment that may be doing more harm than good. Overuse of 354 

antibiotics can change the developmental trajectory of the infant gut microbiome during a time of 355 

critical establishment and interaction. However, antibiotics remain a critical treatment for a 356 

population at greater risk for infection, and there naturally exists a delicate balance between 357 

when antibiotics are truly necessary for treatment or not. Given the potential for extensive 358 

crosstalk between gut microbiota and the host, changes in microbiome composition could have 359 

both short- and long-term effects on outcomes and overall health and development. Future 360 

randomized studies with greater infant enrollment will be crucial in our understanding of the 361 

effects current neonatal practice has on health which will allow for the reevaluation of practices. 362 

Such trials will need to expand on the findings from this pilot study from a multi-omic standpoint 363 

to identify direct links between antibiotic-induced dysbiosis and health outcomes.  364 
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Materials and Methods 365 

Experimental design, enrollment, and clinical sample and data collection 366 

 The REASON study was conducted from January 2017 - January 2019 at the University 367 

of Florida and was approved by the institutional review board (IRB201501045). This study is 368 

funded by the NIH (R21HD088005). A detailed description of the study design including 369 

enrollment, group selection, randomization, and collection of clinical samples and data including 370 

outcomes has been previously described25. Briefly, 98 premature infants were enrolled in the 371 

study and placed into one of three groups according to previously described criteria: group A 372 

with indication for antibiotic use, group B without indication for antibiotic use, and group C 373 

eligible for randomization to antibiotics (C1) or no antibiotics (C2) in the first 48 hours after 374 

birth. Infants not receiving antibiotics in the first 48 hours after birth (group B, C2) could be 375 

changed to receive antibiotics at any time at the medical team’s discretion. Clinical samples 376 

relevant to this analysis include weekly fecal collection starting with meconium when possible 377 

(all stored at -80°C) and results of bacterial and fungal cultures (blood, urine, sputum, and 378 

cerebrospinal fluid - when available) and laboratory measurements of CRP, white blood cell 379 

count and immature to neutrophil ratio. Clinical metadata from the mothers such as antepartum 380 

antibiotic use, type, duration, and proximity to delivery were recorded. Pertinent clinical 381 

metadata from the infants include group placement, antibiotic use status, antibiotics and 382 

antifungal use including type and duration throughout NICU course, feeding type and duration, 383 

GA at birth, sex, mode of delivery and any serious adverse events (SAEs) including NEC, late 384 

onset sepsis, spontaneous intestinal perforations, bronchopulmonary dysplasia, and death.  385 

Stool DNA extraction, 16S rRNA PCR and Sequencing Analysis 386 
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 DNA extraction and 16S rRNA barcoded PCR was carried out exactly as described 387 

previously56. Approximately 60 gigabases of nucleotide sequencing data was generated across 5 388 

Illumina Miseq flowcells for stool samples collected from 91 (of the 98 total) study participants 389 

where samples were collected (ICBR, Gainesville, FL, USA). The resulting sequencing reads 390 

were merged, demultiplexed, trimmed, filtered for quality and processed into amplicon 391 

sequencing variants (ASVs) as previously described with no alterations in method56. Briefly, 392 

sequences were processed to ASVs using the DADA2 package in R (https://www.R-project.org) 393 

and assigned taxonomy using the SILVA_v132 training dataset57–61. Samples were rarefied to 394 

10,000 reads per sample, leaving 642 of the total 656 individual longitudinal stool samples for 395 

analysis. 396 

Total bacterial quantification by universal 16S qPCR 397 

 Total bacterial load per gram of stool was determined by universal 16S rRNA qPCR 398 

using the same primer set used for amplicon sequencing (341F and 806R). QPCR assays were 399 

performed on a QuantStudio 3 system (Applied Biosystems, Life Technologies, USA). The 400 

reaction mixture contained 12.5 l PowerUp SYBR Green 2X Master Mix (Applied 401 

Biosystems), 1 l each of forward (341F) and reverse (806R) primer (10 M), 1 l of DNA 402 

template, 0.1 g/l BSA and brought to a final volume of 25 l with nuclease free water. 403 

Cycling conditions were identical to those of the endpoint PCR used for sequencing. However, 404 

with a total of 40 cycles and replacing the final elongation step with a melt curve. Each sample 405 

reaction was performed in triplicate and these values were averaged for each sample copy 406 

calculation. A standard curve was generated for copy quantification using known concentrations 407 

of the expected PCR product amplified from a similar stool sample. Copies of 16S rRNA per 408 

gram of stool was calculated by multiplying the average copy number per replicate reaction (i.e. 409 
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1 l DNA template) by the total DNA extraction volume (75 l) and dividing this value by the 410 

mass of stool extracted in grams. 411 

Absolute bacterial abundance by copy number correction  412 

 Absolute bacterial abundance was calculated on a per gram of stool basis by correcting 413 

the relative sequencing abundance by the variable number of copies of the 16S rRNA gene in 414 

each observed organism. This correction was done using the “Estimate” tool provided as part of 415 

the rrnDB copy number database62. Briefly, after rarefying each sample to an even sequencing 416 

depth, the ASV sequences were submitted through the rrnDB online portal where they were 417 

classified down to the genus level using the RDP classifier version 2.12 and copy number 418 

adjusted using rrnDB copy number data version 5.662,63. The copy number adjusted relative 419 

abundance for each observed taxon was multiplied by the total number of 16S rRNA copies 420 

obtained by qPCR, resulting in the absolute abundance of each taxon per gram of stool.  421 

Fecal inflammatory markers 422 

 Inflammatory markers were analyzed using a combination of multiplex technologies 423 

using the Bio-Rad Bio-Plex platform (Bio-Rad, California, USA). The markers evaluated include 424 

common markers of intestinal inflammation including calprotectin and S100A12, in addition to 425 

other markers such as IL-6, TNF, IL-10 and other cytokines and chemokines that may play a role 426 

in inflammatory or anti-inflammatory processes. The data were analyzed using direct 427 

comparisons of all infant groups using ANOVA and subsequent individual comparisons. Fecal 428 

calprotectin and S100A12 levels were measured using the fCal ELISA kit from BUHLMANN 429 

Laboratories AG (Schonenbuch, Switzerland) and the Inflamark S100A12 kit from Cisbio 430 

Bioassays (Codolet, France), respectively, according to the manufacturer’s instructions. Samples 431 
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were then analyzed for the presence of both pro-inflammatory and anti-inflammatory 432 

cytokines/chemokines using Multiplex Human Cytokine Magnetic kit, Milliplex MAP Kit 433 

(Millipore, Billerica, MA, USA). Twelve cytokines/chemokines, including EGF, IL-10, IL-1RA, 434 

IL-B, IL-4, IL-6, IL-8, IP-10, MCP-1, MIP-1a, TNFα, and VEGF were analyzed according to the 435 

manufacturer’s instructions. Plates were read using the MILLIPLEX Analyzer 3.1 xPONENT™ 436 

System (Luminex 200). Cytokine concentrations were determined using BeadView software 437 

(Millipore, Billerica, MA, USA). 438 

Metabolomics  439 

 The infant stool samples were suspended in 400 µl 5 mM ammonium acetate. 440 

Homogenization was done 3 times for 30 seconds each time using a cell disruptor. Protein 441 

concentrations of the homogenates were measured using Qubit Protein Assay. Samples were 442 

normalized to 500 µg/ml protein at 25 µl for extraction. Each normalized sample was spiked 443 

with 5 µl of internal standards solution. Extraction of metabolites was performed by protein 444 

precipitation by adding 200 µl of extraction solution consisting of 8:1:1 acetonitrile: methanol: 445 

acetone to each sample. Samples were mixed thoroughly, incubated at 4°C to allow protein 446 

precipitation, and centrifuged at 20,000 x g to pellet the protein. 190 µl supernatant was 447 

transferred into clean tube and dried using nitrogen. Samples were reconstituted with 25 µl of 448 

reconstitution solution consisting of injection standards, mixed, and incubated at 4° C for 10-15 449 

min. Samples were centrifuged at 20000 x g. Supernatants were transferred into LC-vials. 450 

Global metabolomics profiling was performed as previously described using a Thermo Q-451 

Exactive Orbitrap mass spectrometer with Dionex UHPLC and autosampler64. Briefly, samples 452 

were analyzed in positive and negative heated electrospray ionization with a mass resolution of 453 

35,000 at m/z 200 as separate injections. Separation was achieved on an ACE 18-pfp 100 x 2.1 454 
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mm, 2 µm column with mobile phase A as 0.1% formic acid in water and mobile phase B as 455 

acetonitrile. The flow rate was 350 µl/min with a column temperature of 25°C. 4 µl was injected 456 

for negative ions and 2 µl for positive ions. 457 

 Data from positive and negative ions modes were processed separately. LC-MS files 458 

were first converted to open-format files (i.e. mzXML) using MSConvert from Proteowizard65. 459 

Mzmine was used to identify features, deisotope, align features and perform gap filling to fill in 460 

any features that may have been missed in the first alignment algorithm66. Features were 461 

matched with SECIM internal compound database to identify metabolites. All adducts and 462 

complexes were identified and removed from the data set prior to statistical analysis. 463 

Statistical Analysis  464 

 The ASV and taxonomy tables resulting from DADA2 were manipulated using the 465 

phyloseq R package v1.30.067. Inferred metabolic pathway abundances were determined from 466 

the rarefied 16S rRNA data using PICRUSt229. Alpha diversity measures, including the observed 467 

number of ASVs and the Shannon diversity index were calculated using the microbiome R 468 

package v1.8.0 (https://bioconductor.org/packages/devel/bioc/html/microbiome.html). Box plots 469 

(including statistical testing where applicable) were generated using the ggpubr R package v0.2.4 470 

(https://github.com/kassambara/ggpubr), which serves as a wrapper for ggplot268. The linear 471 

mixed-effects modeling and associated plots were done using the longitudinal plugin “q2-472 

longitudinal” offered in Qiime2 v2019.426–28. The biomformat R package (https://biom-473 

format.org) was used to convert data in phyloseq format to BIOM format for import into 474 

Qiime269. Bray-Curtis and Jaccard distance dissimilarities were calculated using the vegan R 475 

package v2.5.6 (https://github.com/vegandevs/vegan) and PCoA plots were made using ggplot2 476 

v3.3.068. Individual infant charts were also generated using ggplot2. Non-parametric statistical 477 
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tests including the Wilcoxon and Kruskal-Wallis tests were used for pairwise and overall 478 

comparisons of 3 or more factors, respectively70,71. The permutational analysis of variance 479 

(PERMANOVA) test was used in the vegan package to compare overall microbiome 480 

dissimilarities between antibiotic use, feeding type, and enrollment groups. P-values were 481 

adjusted for false discovery rate (FDR) via the Benjamin-Hochberg method72. Repeated 482 

measures correlation values (for non-independent repeated samples for multiple subjects) were 483 

calculated using the rmcorr R package73. 484 

Data availability 485 

 The demultiplexed 16S rRNA sequencing data generated in this study is deposited in the 486 

NCBI Sequence Read Archive (SRA) under BioProject PRJNA515272. 487 

Trial Registration 488 

 This project is registered at clinicaltrials.gov under the name “Antibiotic ‘Dysbiosis’ in 489 

Preterm Infants” with trial number NCT02784821. 490 
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Table 1 – Summary of infant enrollment, covariates, and samples 707 

Summary of the number of enrolled infants per group used in this analysis and the number of 708 

infants changed from group C2 to C2Bailed. Enrollment groups are also summarized by infant 709 

sex (male::female), mode of delivery (vaginal::caesarean), gestational ages, maternal antibiotic 710 

exposure (yes::no) and birth weight ranges in grams. The number of infants and number of stool 711 

samples used in the metabolomics and immune marker analyses are listed. 712 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.04.20.052142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.052142


 35 

 713 

 Group A Group B Group C1 Group C2 Group C2Bailed 

Total infants 28 11 26 14 12 

Sex (M::F) 14::14 4::7 11::15 7::7 9::3 

Delivery mode 

(V::C) 

13::15 7::4 10::16 6::8 2::10 

Gestational age 

range 

(median) 

24 – 32 (28) 29 – 32 (32) 25 – 32 (29) 23 – 32 (29) 24 – 32 (28) 

Maternal antibiotic 

exposure (Yes::No) 

20::8 6::5 20::6 8::6 11::1 

Birth weight range 

in grams (median) 

695 – 2132 

(1015) 

1100 – 2770 

(1820) 

525 – 2425 

(1240) 

630 – 2116 

(1223) 

605 – 1667 

(888) 

Samples post-

normalization 

232 42 171 99 98 

Average number of 

samples/infant 

(median, 1st 

quartile, 3rd 

quartile) 

8.3 

(9, 5, 11) 

3.8 

(3, 2, 5) 

6.6 

(6, 4, 8.75) 

7.1 

(6, 4.5, 10) 

8.2 

(9.5, 4.25, 

11.25) 

Number of infants 

with metabolomic 

samples 

4 0 2 2 2 

Number of 

metabolomic 

samples 

(samples per 

infant) 

32 (8, 10, 5, 9) 0 17 (12, 5) 16 (6, 10) 25 (14, 11) 

Number of infants 

with immune 

marker samples 

7 0 5 3 3 

Number of 

immune marker 

samples 

(samples per 

infant) 

40 

(7, 7, 1, 3, 5, 7, 

10) 

0 22 

(12, 2, 2, 5, 1) 

21 

(5, 10, 6) 

26 

(13, 11, 2) 

714 
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Figure 1 – Antibiotic use 48 hours after birth does not significantly affect alpha diversity 715 

development 716 

Boxplots displaying (A) the observed ASV richness (B) the Shannon diversity and (C) log10-717 

transformed copies of 16S rRNA by enrollment group across corrected gestational ages between 718 

weeks 28 and 39. P-values were calculated at each corrected GA timepoint between enrollment 719 

groups using the non-parametric Kruskal-Wallis test. Linear mixed-effects modeling of the (D) 720 

observed ASV richness and (E) Shannon diversity over time between enrollment groups. Time 721 

scale on the x-axis is days of life (DOL) for corrected GA weeks 28 – 39. Greyed areas around 722 

each regression line represent 95% confidence intervals upper and lower around the coefficients. 723 

 724 

Figure 2 – Antibiotic use explains little effect on beta diversity 725 

PCoA ordination of stool samples using the (A) abundance-based Bray-Curtis and (B) 726 

presence/absence-based Jaccard distance metric among enrollment groups of corrected GA 727 

between 28 -39. Ellipses are calculated based on a 95% confidence interval of a multivariate t-728 

distribution.  729 

 730 

Figure 3 – Effects of feeding patterns on the gut microbiome are transient over time 731 

Effect of various feeding patterns on the (A) observed ASV richness (B) Shannon diversity and 732 

(C) log10-transformed copies of 16S rRNA by enrollment group over corrected GA from weeks 733 

28 – 39. Only feeding patterns that have at least 2 samples at each timepoint were kept. 734 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.04.20.052142doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.052142


 37 

Statistical comparison of feeding patterns at each corrected GA timepoint was performed using 735 

the non-parametric Kruskal-Wallis test.  736 

 737 

Figure 4 – Linear mixed effects modelling identifies feeding effects by group over time 738 

Linear mixed-effects results plotted as observed bacterial richness over time by group and 739 

feeding types (A – F) and the Shannon diversity over time by group and feeding types (G – L). 740 

The number of samples used in this analysis by group and by feeding type are listed in 741 

Supplementary Table S3.  742 

 743 

Figure 5 – Integration of clinical and laboratory data gives detailed view of infant stay in 744 

NICU 745 

Extensive clinical and laboratory data, when combined, provide a detailed summary of each 746 

infant’s stay in the NICU. Data included in each chart from top to bottom include: the infant ID, 747 

group assignment, antibiotic change status (bail), gestational age, any adverse clinical events 748 

(which are further described in Supplementary Figure S1), the type and duration of antibiotic use 749 

(if any), the copy-number corrected absolute composition of each weekly stool sample and it’s 750 

log10-scale number of bacterial 16S rRNA copies, the type and duration of each feeding 751 

including administration of human milk fortifier, the relative levels of C-reactive protein 752 

measured from blood, and relative concentrations of measured stool immune markers (for infants 753 

where these measurements were performed). DBM: donor breast milk, MBM: mother’s breast 754 

milk, NPO: no enteral nutrition, CRP: C-reactive protein, EGF: epidermal growth factor. Listed 755 

below is a key for the color-coded bacterial taxa used in the stool 16S rRNA copy-number 756 
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corrected composition pie chart for each infant chart. A key for the bacterial color codes, adverse 757 

clinical events (including infections by body site) and the administration of human milk fortifier 758 

for each infant chart is given below.  759 

 760 

Figure 6 – Metabolites in stool correlate with abundance of bacterial genera 761 

(A) Heatmap of repeated measures correlation coefficients between peak response heights of 762 

identified metabolites in stool and the top 10 bacterial genera from the same samples (n=90 stool 763 

samples). Significant correlations are indicated by a ‘+’ with FDR-corrected p-values < 0.05. (B) 764 

Boxplot comparing the peak response heights for 4-aminobutyric acid (GABA) between 765 

enrollment groups. Statistical comparisons were made using the Wilcoxon test. (C) Boxplot 766 

comparing the number of rarefied Veillonella counts between the enrollment groups. Statistical 767 

comparisons were made using the Wilcoxon test. A summary of the number of infants and 768 

samples by group for metabolomics is given in Table 1. 769 

 770 

Figure 7 – Stool immune marker levels show modest correlation with gut microbiota 771 

(A) Heatmap of repeated measures correlation coefficients between immune markers measured 772 

from stool and the most abundant bacterial genera from the same samples (n=110 stool samples). 773 

Only the bacterial genera with at least one significant correlation with an immune marker are 774 

displayed (10 genera). Significant correlations are marked with an ‘*’ by the coefficient, with 775 

FDR-adjusted p-values < 0.05. (B) Table listing the immune markers used for correlation 776 

analysis and their commonly known general functions. (C) Comparison of log10-transformed 777 

number of Citrobacter counts by enrollment group and their significance by the Wilcoxon test. A 778 
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summary of the number of infants and samples by group for immune marker analysis is given in 779 

Table 1. 780 
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A

B

p=0.714 p=0.236 p=0.889 p=0.737

p=0.553 p=0.188 p=0.242 p=0.395

p=0.185 0.199 p=0.654 p=0.636

p=0.944 p=0.063 p=0.988 p=0.219

p=0.652 p=0.101 p=0.245 p=0.231

p=0.158 p=0.573 p=0.563 p=0.463
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