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ABSTRACT 21 

Although recent studies have revealed the association between the gut microbiota 22 

and obesity, the causality remains elusive. We performed a Mendelian 23 

Randomization (MR) analysis to determine whether there is a causal relationship 24 

between gut microbiota and abdominal obesity. We used a two-sample MR 25 

approach to assess the causal effect from gut microbiota to obesity based on 26 

genome-wide association studies (GWAS) summary statistics. The GWAS 27 

summary statistics of gut microbiota obtained from UK-twins cohort (N=1,126) 28 

were used as discovery sample exposure, and the GWAS summary statistics from 29 

the Genetic Environmental Microbial (GEM) project (N=1,098) were used as 30 

replication sample exposure. Trunk fat mass (TFM) summary statistics from the 31 

UK Biobank (UKB) cohort (N=330,762) were used as outcome. Bacteria were 32 

grouped into taxa features at family level. A total of 16 families were analyzed in 33 

the discovery sample. Family Barnesiellaceae was associated with TFM at the 34 

nominal significance level (b=-3.81×10
-4

, P=1.96×10
-3

). The causal association 35 

was successfully replicated in the replication sample (b=-7.34×10
-3

, P =2.77×10
-2

). 36 

Our findings provided evidence of causal relationship from microbiota to fat 37 

development, and may be helpful in selecting potential causal bacteria for 38 

manipulating candidate gut microbiota to therapy obesity. 39 

IMPORTANCE Obesity, as a global public health problem, is one of the most 40 

important risk factors contributing to the overall global burden of disease, and is 41 

associated with an increased risk of cardiovascular disease, type 2 diabetes, and 42 
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certain cancers. Recent studies have shown that gut microbiota is closely related to 43 

the development of obesity, but the causal relationship is unclear. Therefore, it is 44 

necessary to identify the causality between gut microbiota and obesity. The 45 

significance of our research is in identifying the causal relationship from specific 46 

bacteria to fat development, which will provide the new insights into the microbiota 47 

mediated the fat development mechanism.48 
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INTROUDCTION 49 

Obesity is a chronic metabolic disease characterized by excessive accumulation of 50 

adipose tissue. It is one of the most important risk factors contributing to the 51 

overall burden of diseases worldwide, associated with increased risk of 52 

cardiovascular disease, type 2 diabetes and certain cancers(1). In 2013, the number 53 

of overweight and obese individuals globally has reached 2.1 billion and the 54 

prevalence has been increasing substantially(2). 55 

Body mass index (BMI), which is defined as body mass in kilograms divided by 56 

the square of height in meters (kg/m
2
), is currently the standard measure of obesity 57 

due to its simplicity. However, BMI is never the ideal phenotype to measure 58 

obesity because it does not give a precise idea about the body composition(3). 59 

Human body mass is composed of fat mass, lean mass, bone mass, water and soft 60 

tissues; it is only fat mass that induces obesity and causes a series of adverse 61 

clinical manifestations. Therefore, fat mass is the only accurate and ideal 62 

phenotype to measure obesity(4, 5). Nonetheless, the research using fat mass as a 63 

measure of obesity has rarely been studied. Among various types of fat-induced 64 

obesity, abdominal obesity is perhaps the most severe. Fat stored in the abdomen is 65 

more harmful than fat stored at other body regions. For example, fat mass stored 66 

more centrally leads people to be more susceptible to cardiovascular diseases and 67 

endocrine disorders(6).  68 

Even though obesity can be attributable to lifestyle, culture factors and 69 
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genetics(7-9), mounting evidence demonstrated that the human gut microbiome 70 

play an important role in the development of obesity(10-12). Mice models provide 71 

the causal evidence of obesity linked to gut microbiome, but the finding are far 72 

from consistent(13, 14). A case-control study found the abundance of 73 

Lactobacillus reuteri was positively correlated with BMI, and Bifidobacterium 74 

animalis, Methanobrevibacter smithii, and Escherichia coli were negatively 75 

associated with BMI(15). A cohort study identified 34 bacterial taxa associated 76 

with BMI and explained 4.5% of its variance(16). Nonetheless, the causality 77 

between specific taxa of gut microbiota and obesity is still ambiguous due to many 78 

confounding factors (including lifestyle, diet and disease status) that occur within 79 

the population. 80 

Mendelian randomization (MR) analysis is a statistics approach that uses genetic 81 

variants as instrumental variables (IVs) to test the causality from potentially risk 82 

exposure to health outcomes in a cross-sectional study. It is less likely to be 83 

affected by confounding factors or inverse causation than conventional 84 

observational studies(17, 18). Previous study has shown that host genetic 85 

variations influence the composition of gut microbiota(19). Recent years, 86 

increasing genome-wide association studies (GWAS) for gut microbiota(20-24) 87 

make it possible to infer causal relationship by performing MR analysis base on 88 

summary statistics of GWAS. 89 

In the present study, we conduct a two-sample MR study(25) to investigate the 90 
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causal link from specific taxa of gut microbiota to trunk fat mass (TFM) using 91 

summary statistics of GWAS. Specifically, the summary statistics from microbial 92 

GWAS serve as exposure while the summary statistics from trunk fat mass GWAS 93 

serve as outcome.  94 
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RESULTES 95 

In the discovery TwinsUK sample, there are total of 229 SNPs associated with gut 96 

microbiota at the significance level P<1.0×10
-5

. After clumping, there were 102 97 

SNPs, categorized into 16 bacteria families (Supplementary table 1). The family 98 

with the largest number SNPs is Ruminococcaceae (24 SNPs), followed by 99 

Lachnospiraceae (23 SNPs) and Bacteroidaceae (21 SNPs). There were 6 families 100 

each containing only one SNP, Bifidobacteriaceae, Streptococcaceae, 101 

Veillonellaceae, Barnesiellaceae, Enterobacteriaceae and 102 

Porphyromonadaceae .The number of IV SNPs ranged from 2 to 6 for the remaining 103 

7 families. 104 

To ensure that the above IVs are free from horizontal pleiotropy, we performed 105 

MR-PRESSO analysis on independent SNPs to detect the potential SNPs with 106 

pleiotropy effect. One out of 6 IVs in family Clostridiaceae, 1 out of 21 IVs in 107 

family Bacteroidaceae, 3 out of 23 IVs in family Lachnospiraceae, 4 out of 24 IVs 108 

in family Ruminococcaceae and 1 out of 6 IVs in family Pasteurellaceae were 109 

detected as outliers using the MR-PRESSO outlier test (Supplementary Table 2). 110 

After removing the SNPs with pleiotropy effect, we performed MR analysis on the 111 

remaining SNPs. In the discovery sample, only one family Barnesiellaceae is 112 

nominally significant level (beta=-3.81×10
-4

, P=1.96×10
-3

). Specifically, this family 113 

Barnesiellaceae contains only one IV SNP rs4897946, which is located in the intron 114 

region of MIER2 gene on chromosome 19 (Table 1). 115 
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The significant family Barnesiellaceae is subjected to be replicated in the GEM 116 

replication sample. Again, only one SNP rs16901246 is assigned to this family. 117 

Interestingly, both the causal effect direction (beta=-7.34×10
-3

) is consistent with 118 

that in the discovery sample and the p-value is significant (0.03), strengthening the 119 

confidence towards the true association of this family. The IV SNP rs16901246 is 120 

located in the intron region of CTNND2 gene on chromosome 5.  121 
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DISCUSSION 122 

In this study, we performed a two sample MR-based causality analysis between 123 

gut microbiota and TFM using summary statistics from GWAS summary statistics. 124 

By combining the results from discovery and replication studies, we identified a 125 

causal association from bacteria family Barnesiellaceae to TFM. Specifically, our 126 

results demonstrated a reverse causal effect from the former to the latter. 127 

The gut microbiota of healthy adult was primarily dominated by two phyla 128 

Firmicutes (53.9% of total) and Bacteroidetes (35.3%), with other phyla including 129 

proteobacteria, Verrucomicrobia, Actinobacteria, and Tenericutes(26, 27). Previous 130 

studies have shown the relative abundance of Firmicutes and Bacteroidetes in obese 131 

populations. For example, a twins study revealed that the proportion of 132 

Bacteroidetes is higher in obese compared with lean individuals(12). Another animal 133 

study found a reduction in the abundance of Bacteroidetes together with a relative 134 

increase in Firmicutes in obese animals compared with lean animals(13). The family 135 

Barnesiellaceae identified in the present study is a member of Bacteroidetes phylum. 136 

A recent study found that the family Barnesiellaceae was correlated with the 137 

percentage of body fat and modified by exercise(28). In a case-control study, 138 

Chierico et al reported the abuandance of family Barnesiellaceae may be a microbial 139 

biomarker in healthy adolescents(29). These previous observational studies provide 140 

valuable clues towards the close relationship between Barnesiellaceae and fat mass 141 

development. For the first time, to our best knowledge, the present study established 142 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.052407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.052407


  11 

 

a causal link from the former to the latter.  143 

A possible mechanism of gut microbiota influence the development of obesity is that 144 

gut microbiota can increase energy production from diet, contribute to low-grade 145 

inflammation and regulate fatty acid tissue composition(30). Though it remains 146 

unclear for the mechanism underlying the regulator path from Barnesiellaceae to 147 

obesity developement, previous study showed that the Barnesiellaceae has been 148 

associated with low-fiber consuming(31). Another study found the relative 149 

abundance of Barnesiellaceae clearly decreased in a medium containing only 150 

proteins and peptones, which revealed it not involve in protein breakdown and 151 

fermentation(32). However, further functional investigation is warranted to validate 152 

this correlation. 153 

The MR approach is robust to confounding factors and reverse causality in 154 

observational studies (33). In this study, we applied a two sample MR approach 155 

based on summary statistics to explore the causal relationship between gut 156 

microbiota and TFM. Our study has following advantages. First, it is based on 157 

large-scale GWAS summary statistics that are publicly available, thus offers an 158 

efficient option to mine reliable genetic information without additional experiment 159 

costs. Second, we used TFM instead of BMI as a phenotype to measure abdominal 160 

obesity, which provided exactly accurate risk information of obesity.  161 

However, there are also some limitations in our study. Firstly, the gut microbiota 162 

GWAS is still scarce, resulting in very limited t gut microbiota-associated SNPs to 163 
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be used for analysis. Secondly, the significant causal association identified in this 164 

study were obtained using single IV, which has inferior robustness and statistical 165 

power.  166 

In conclusion, by performing a two sample MR analysis based on several GWAS 167 

summary statistics, we identified a causal relationship from gut microbiota to 168 

abdominal obesity. Our results may be helpful in selecting potential causal bacteria 169 

for manipulating candidate gut microbiota to therapy obesity.170 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.052407doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.052407


  13 

 

MATERIALS AND METHODS 171 

Ethics statement  172 

Gut microbiota GWAS summary statistics were accessed from published studies. 173 

No new IRB approval was required. 174 

Trunk fat mass sample came from the UKB cohort, which is a large prospective 175 

cohort study of ~500,000 participants from across the United Kingdom, aged 176 

between 40-69 at recruitment. Ethics approval for the UKB study was obtained 177 

from the North West Centre for Research Ethics Committee (11/NW/0382), and 178 

informed consent was obtained from all participants. This study (project number 179 

41542) was covered by the general ethical approval for the UKB study.  180 

GWAS summary statistics for gut microbiota 181 

For exposure, we collected publicly available GWAS summary statistics of gut 182 

microbiota from two independent studies: the TwinsUK study and the Canada 183 

Genetic Environmental Microbial (GEM) project study. The TwinsUK study was 184 

used as discovery sample and it consisted of 489 dizygotic (DZ) twin pairs and 185 

637 monozygotic (MZ) twin pairs with an age range of 18-89 years(22). The GEM 186 

project was used as replication sample, which included 1,098 healthy first-degree 187 

relatives of patients with Crohns disease between 6 and 35 years of age (24). Stool 188 

collection, DNA extraction, 16 sRNA gene sequencing and taxa filtering were 189 

performed on both cohorts. 190 
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In the discovery sample, the genetic associations between 945 bacteria taxa and 191 

1,300,091 host SNPs were tested. A total of 307 host SNPs were identified to be 192 

associated with 61 bacteria taxa (1 kingdom + 6 phyla + 9 classes + 9 orders + 16 193 

families + 16 genera + 4 species) at a FDR<0.2. The P values at these SNPs 194 

ranged from 4.94×10
−9 

to 7.33×10
−5

. The summary statistics of these significant 195 

SNPs were assessed through the supplemental table of the study publication(22).  196 

In the replication sample, the associations between 3,727,707 host SNPs and 166 197 

non-redundant bacterial taxa were examined. A total of 58 SNPs were identified to 198 

be associated with the relative abundance of 33 taxa at the genome-wide 199 

significance level (P<5×10
-8

). The summary statistics of these significant SNPs 200 

were assessed through the supplemental table of the study publication(24). 201 

UKB trunk fat mass sample 202 

All the included participants in the UKB sample are those who self-reported as 203 

white (data field 21000). Participants who had a self-reported gender inconsistent 204 

with the genetic gender, who were genotyped but not imputed or who withdrew 205 

their consents were removed.  206 

Trunk fat mass (TFM) was measured by bioelectrical impedance analysis approach. 207 

Phenotypic outliers were monitored by the Tukey method. Covariates, including 208 

age, sex, assessment center (23 levels), genotyping batch (2 levels) and the top 10 209 

principal components (PCs) derived from genome-wide genotype data, were used 210 

to adjust raw phenotype. The residuals were normalized into inverse quantiles of 211 
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standard normal distribution, which were used for subsequent association analysis.  212 

Genome-wide genotypes were available for all participants at 784,256 genotyped 213 

autosome markers, and were imputed into UK10K haplotype, 1000 Genomes 214 

project phase 3 and Haplotype Reference Consortium (HRC) reference panels. A 215 

total of ~92 million variants were generated by imputation. 216 

We used BOLT-LMM to perform linear mixed model (LMM) analysis of genetic 217 

association. The LMM analysis can adjust for population structure and relatedness.  218 

Genetic instrumental variants selection 219 

Based on the GWAS summary results of gut microbiota,a series of quality control 220 

(QC) criteria were applied to select eligible genetic instrumental variables (IVs). 221 

Specifically, bacteria taxa were analyzed at the family level. A feature was defined 222 

as a distinct family. For SNP with multiple signals within one feature, the strongest 223 

signal was selected for that feature.  224 

In the discovery sample, SNPs associated with microbiota at the α=1×10
-5 

level 225 

were selected and assigned into distinct features. The SNPs within each feature 226 

were then clumped with PLINK (v1.9) to retain independent SNPs only. For 227 

clumping The linkage disequilibrium (LD) threshold was set to be r
2
<0.1 and the 228 

clumping window size was set to be 500 kb, where LD was estimated based on the 229 

1000 genomes project sequencing data (phase 3). 230 

In the replication sample, SNPs of association at the same α=1×10
-5

 were not 231 
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accessible. In contrast, only SNPs significant at the α=5×10
-8

 level were reported. 232 

Therefore, all the reported SNPs were selected. SNPs were again assigned into 233 

features and clumped to retain independent SNPs, following the same steps as 234 

those used in the discovery sample. 235 

Removal of horizontal pleiotropy 236 

We applied the MR-PRESSO Global test(34) and Outlier test to detect potential 237 

horizontal pleiotropy. The MR-PRESSO global test evaluates overall horizontal 238 

pleiotropy among all SNPs, and the MR-PRESSO Outlier test evaluates the 239 

presence of specific horizontal pleiotropic outlier variants by calculating the 240 

p-value of each SNP pleiotropy significance. The MR-PRESSO global test was 241 

first applied to evaluate overall pleiotropy. In the presence of pleiotropy, the 242 

MR-PRESSO Outlier test was then applied and the SNP with the smallest 243 

pleiotropy p-value was removed. The MR-PRESSO Global test was again 244 

performed on the remaining SNPs. The process repeated until the Global test was 245 

non-significant (P>0.05). 246 

The final retained SNPs were used as non-pleiotropic IVs to perform subsequent 247 

Mendelian randomization analysis. 248 

Mendelian randomization analysis 249 

We performed two sample MR analysis to examine the causal effect from bacteria 250 

taxa to TFM. Specifically, we tested the association of the identified IVs within 251 

each bacteria taxa with TFM. For bacteria taxa containing multiple SNPs, we used 252 
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five methods to estimate the causal effect, including the inverse variance weighted 253 

(IVW) test(35), the MR-Egger regression(36), the weighted median estimator(37), 254 

the simple mode-based estimator and the weighted mode-based estimator(38). The 255 

results were mainly based on the IVW method while the other 4 methods served as its 256 

complement. For bacteria taxa containing only one SNP, the Wald Ratio method 257 

was used for MR analysis. This method calculates the causal effect by using the 258 

coefficient of the SNP-outcome association divided by the coefficient of the 259 

SNP-exposure association(39). 260 

Significant families identified in the discovery TwinsUK study were subjected to 261 

be replicated in the replication GEM study, following the same MR analysis 262 

procedure. 263 

All the above analyses were performed with the R packages TwoSampleMR 264 

(https://github.com/MRCIEU/TwoSampleMR)(40) and MR-PRESSO 265 

(https://github.com/rondolab/MR-PRESSO)(34)  266 
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Table 1 Causal estimations of gut microbiome on trunk fat mass in the discovery and replication cohorts  406 

stage Gut microbiota 

MR test 

SNP Nearby gene 

bxy P-value 

Discovery 

Family Barnesiellaceae 

-3.81×10
-4

 1.96×10
-3

 rs4897946 MIER2 

Replication -7.34×10
-3

 2.77×10
-2

 rs16901246 CTNND2 

 Notes: bxy is the estimated effect coefficient. Significant p-values were marked in bold. 407 
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