- 1 Mendelian randomization analysis revealed causal effects from gut microbiota to
- 2 abdominal obesity
- 3
- 4 Qian Xu,^{a,b} Shan-Shan Zhang,^a Yu-Fang Pei^{a,b}# Jing-Jing Ni,^{a,c} Lei Zhang,^{b,c}
- 5 Rui-Rui Wang,^a Yu-Jing Weng,^a Xun Cui,^a Xin-Tong Wei,^{a,b}
- ⁶ ^aDepartment of Epidemiology and Health Statistics, School of Public Health,
- 7 Medical College of Soochow University, Jiangsu, PR China.
- ^bJiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric
- 9 Diseases, Medical College of Soochow University, Jiangsu, PR China.
- 10 ^cCenter for Genetic Epidemiology and Genomics, School of Public Health,
- 11 Medical College of Soochow University, Jiangsu, PR China.
- 12
- 13 Running Head: causal effect from gut microbiota to abdominal obesity
- 14
- 15 #Address correspondence to Yu-Fang Pei, ypei@suda.edu.cn
- 16 Qian Xu and Shan-Shan Zhang contributed equally to this paper. Author order was
- 17 determined on the basis of authors' contributions.
- 18 The study provided evidence of causal relationship from family *Barnesiellaceae to*
- 19 trunk fat mass.

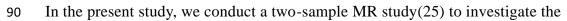
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.20.052407; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20 The word counts for the abstract are 297 and the word counts for the text are 2408.

21 ABSTRACT

Although recent studies have revealed the association between the gut microbiota 22 23 and obesity, the causality remains elusive. We performed a Mendelian Randomization (MR) analysis to determine whether there is a causal relationship 24 between gut microbiota and abdominal obesity. We used a two-sample MR 25 approach to assess the causal effect from gut microbiota to obesity based on 26 genome-wide association studies (GWAS) summary statistics. The GWAS 27 summary statistics of gut microbiota obtained from UK-twins cohort (N=1,126) 28 29 were used as discovery sample exposure, and the GWAS summary statistics from 30 the Genetic Environmental Microbial (GEM) project (N=1,098) were used as replication sample exposure. Trunk fat mass (TFM) summary statistics from the 31 UK Biobank (UKB) cohort (N=330,762) were used as outcome. Bacteria were 32 grouped into taxa features at family level. A total of 16 families were analyzed in 33 the discovery sample. Family *Barnesiellaceae* was associated with TFM at the 34 nominal significance level ($b=-3.81\times10^{-4}$, $P=1.96\times10^{-3}$). The causal association 35 was successfully replicated in the replication sample $(b=-7.34\times10^{-3}, P=2.77\times10^{-2})$. 36 37 Our findings provided evidence of causal relationship from microbiota to fat development, and may be helpful in selecting potential causal bacteria for 38 manipulating candidate gut microbiota to therapy obesity. 39

IMPORTANCE Obesity, as a global public health problem, is one of the most
important risk factors contributing to the overall global burden of disease, and is
associated with an increased risk of cardiovascular disease, type 2 diabetes, and


certain cancers. Recent studies have shown that gut microbiota is closely related to
the development of obesity, but the causal relationship is unclear. Therefore, it is
necessary to identify the causality between gut microbiota and obesity. The
significance of our research is in identifying the causal relationship from specific
bacteria to fat development, which will provide the new insights into the microbiota
mediated the fat development mechanism.

49 INTROUDCTION

50	Obesity is a chronic metabolic disease characterized by excessive accumulation of
51	adipose tissue. It is one of the most important risk factors contributing to the
52	overall burden of diseases worldwide, associated with increased risk of
53	cardiovascular disease, type 2 diabetes and certain cancers(1). In 2013, the number
54	of overweight and obese individuals globally has reached 2.1 billion and the
55	prevalence has been increasing substantially(2).
56	Body mass index (BMI), which is defined as body mass in kilograms divided by
57	the square of height in meters (kg/m^2), is currently the standard measure of obesity
58	due to its simplicity. However, BMI is never the ideal phenotype to measure
59	obesity because it does not give a precise idea about the body composition(3).
60	Human body mass is composed of fat mass, lean mass, bone mass, water and soft
61	tissues; it is only fat mass that induces obesity and causes a series of adverse
62	clinical manifestations. Therefore, fat mass is the only accurate and ideal
63	phenotype to measure obesity(4, 5). Nonetheless, the research using fat mass as a
64	measure of obesity has rarely been studied. Among various types of fat-induced
65	obesity, abdominal obesity is perhaps the most severe. Fat stored in the abdomen is
66	more harmful than fat stored at other body regions. For example, fat mass stored
67	more centrally leads people to be more susceptible to cardiovascular diseases and
68	endocrine disorders(6).

69 Even though obesity can be attributable to lifestyle, culture factors and

70	genetics(7-9), mounting evidence demonstrated that the human gut microbiome
71	play an important role in the development of obesity(10-12). Mice models provide
72	the causal evidence of obesity linked to gut microbiome, but the finding are far
73	from consistent(13, 14). A case-control study found the abundance of
74	Lactobacillus reuteri was positively correlated with BMI, and Bifidobacterium
75	animalis, Methanobrevibacter smithii, and Escherichia coli were negatively
76	associated with BMI(15). A cohort study identified 34 bacterial taxa associated
77	with BMI and explained 4.5% of its variance(16). Nonetheless, the causality
78	between specific taxa of gut microbiota and obesity is still ambiguous due to many
79	confounding factors (including lifestyle, diet and disease status) that occur within
80	the population.
81	Mendelian randomization (MR) analysis is a statistics approach that uses genetic
82	variants as instrumental variables (IVs) to test the causality from potentially risk
83	exposure to health outcomes in a cross-sectional study. It is less likely to be
84	affected by confounding factors or inverse causation than conventional
85	observational studies(17, 18). Previous study has shown that host genetic
86	variations influence the composition of gut microbiota(19). Recent years,
87	increasing genome-wide association studies (GWAS) for gut microbiota(20-24)
88	make it possible to infer causal relationship by performing MR analysis base on
89	summary statistics of GWAS.

- 91 causal link from specific taxa of gut microbiota to trunk fat mass (TFM) using
- 92 summary statistics of GWAS. Specifically, the summary statistics from microbial
- 93 GWAS serve as exposure while the summary statistics from trunk fat mass GWAS
- serve as outcome.

RESULTES

96	In the discovery TwinsUK sample, there are total of 229 SNPs associated with gut
97	microbiota at the significance level $P < 1.0 \times 10^{-5}$. After clumping, there were 102
98	SNPs, categorized into 16 bacteria families (Supplementary table 1). The family
99	with the largest number SNPs is Ruminococcaceae (24 SNPs), followed by
100	Lachnospiraceae (23 SNPs) and Bacteroidaceae (21 SNPs). There were 6 families
101	each containing only one SNP, Bifidobacteriaceae, Streptococcaceae,
102	Veillonellaceae, Barnesiellaceae, Enterobacteriaceae and
103	Porphyromonadaceae .The number of IV SNPs ranged from 2 to 6 for the remaining
104	7 families.
105	To ensure that the above IVs are free from horizontal pleiotropy, we performed
106	MR-PRESSO analysis on independent SNPs to detect the potential SNPs with
107	pleiotropy effect. One out of 6 IVs in family Clostridiaceae, 1 out of 21 IVs in
108	family Bacteroidaceae, 3 out of 23 IVs in family Lachnospiraceae, 4 out of 24 IVs
109	in family Ruminococcaceae and 1 out of 6 IVs in family Pasteurellaceae were
110	detected as outliers using the MR-PRESSO outlier test (Supplementary Table 2).
111	After removing the SNPs with pleiotropy effect, we performed MR analysis on the
112	remaining SNPs. In the discovery sample, only one family Barnesiellaceae is
113	nominally significant level (<i>beta</i> =- 3.81×10^{-4} , <i>P</i> = 1.96×10^{-3}). Specifically, this family
114	Barnesiellaceae contains only one IV SNP rs4897946, which is located in the intron
115	region of MIER2 gene on chromosome 19 (Table 1).

- 116 The significant family *Barnesiellaceae* is subjected to be replicated in the GEM
- replication sample. Again, only one SNP rs16901246 is assigned to this family.
- 118 Interestingly, both the causal effect direction ($beta=-7.34 \times 10^{-3}$) is consistent with
- that in the discovery sample and the p-value is significant (0.03), strengthening the
- 120 confidence towards the true association of this family. The IV SNP rs16901246 is
- located in the intron region of *CTNND2* gene on chromosome 5.

122 DISCUSSION

123	In this study, we performed a two sample MR-based causality analysis between
124	gut microbiota and TFM using summary statistics from GWAS summary statistics.
125	By combining the results from discovery and replication studies, we identified a
126	causal association from bacteria family Barnesiellaceae to TFM. Specifically, our
127	results demonstrated a reverse causal effect from the former to the latter.
128	The gut microbiota of healthy adult was primarily dominated by two phyla
129	Firmicutes (53.9% of total) and Bacteroidetes (35.3%), with other phyla including
130	proteobacteria, Verrucomicrobia, Actinobacteria, and Tenericutes(26, 27). Previous
131	studies have shown the relative abundance of Firmicutes and Bacteroidetes in obese
132	populations. For example, a twins study revealed that the proportion of
133	Bacteroidetes is higher in obese compared with lean individuals(12). Another animal
134	study found a reduction in the abundance of Bacteroidetes together with a relative
135	increase in <i>Firmicutes</i> in obese animals compared with lean animals(13). The family
136	Barnesiellaceae identified in the present study is a member of Bacteroidetes phylum.
137	A recent study found that the family Barnesiellaceae was correlated with the
138	percentage of body fat and modified by exercise(28). In a case-control study,
139	Chierico et al reported the abuandance of family Barnesiellaceae may be a microbial
140	biomarker in healthy adolescents(29). These previous observational studies provide
141	valuable clues towards the close relationship between Barnesiellaceae and fat mass
142	development. For the first time, to our best knowledge, the present study established

143 a causal link from the former to the latter.

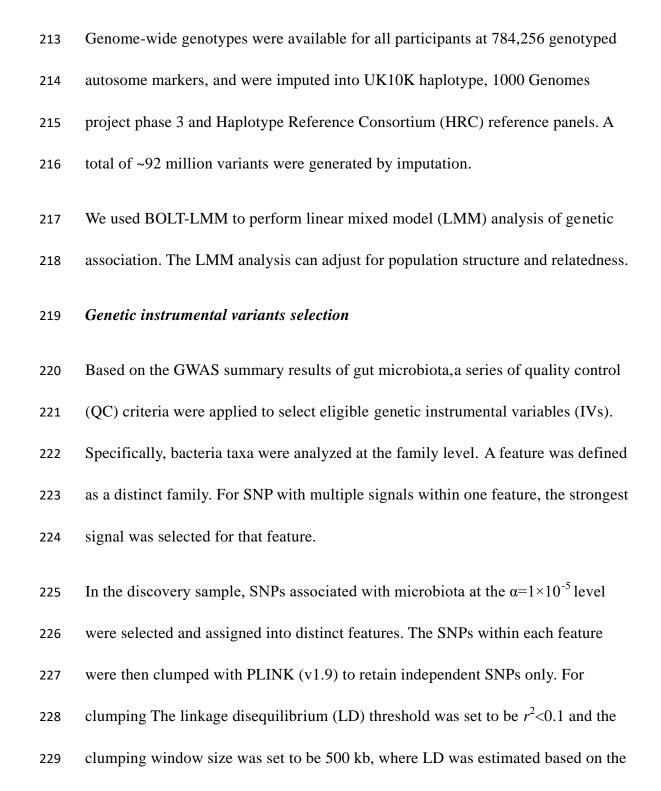
144	A possible mechanism of gut microbiota influence the development of obesity is that
145	gut microbiota can increase energy production from diet, contribute to low-grade
146	inflammation and regulate fatty acid tissue composition(30). Though it remains
147	unclear for the mechanism underlying the regulator path from Barnesiellaceae to
148	obesity developement, previous study showed that the Barnesiellaceae has been
149	associated with low-fiber consuming(31). Another study found the relative
150	abundance of Barnesiellaceae clearly decreased in a medium containing only
151	proteins and peptones, which revealed it not involve in protein breakdown and
152	fermentation(32). However, further functional investigation is warranted to validate
153	this correlation.
154	The MR approach is robust to confounding factors and reverse causality in
155	observational studies (33). In this study, we applied a two sample MR approach
156	based on summary statistics to explore the causal relationship between gut
157	microbiota and TFM. Our study has following advantages. First, it is based on
158	large-scale GWAS summary statistics that are publicly available, thus offers an
159	efficient option to mine reliable genetic information without additional experiment
160	costs. Second, we used TFM instead of BMI as a phenotype to measure abdominal
161	obesity, which provided exactly accurate risk information of obesity.
162	However, there are also some limitations in our study. Firstly, the gut microbiota
163	GWAS is still scarce, resulting in very limited t gut microbiota-associated SNPs to

164	be used for analysis. Secondly, the significant causal association identified in this
165	study were obtained using single IV, which has inferior robustness and statistical
166	power.
167	In conclusion, by performing a two sample MR analysis based on several GWAS
168	summary statistics, we identified a causal relationship from gut microbiota to
169	abdominal obesity. Our results may be helpful in selecting potential causal bacteria
170	for manipulating candidate gut microbiota to therapy obesity.

171 MATERIALS AND METHODS

172 *Ethics statement*

- 173 Gut microbiota GWAS summary statistics were accessed from published studies.
- 174 No new IRB approval was required.
- 175 Trunk fat mass sample came from the UKB cohort, which is a large prospective
- 176 cohort study of ~500,000 participants from across the United Kingdom, aged
- between 40-69 at recruitment. Ethics approval for the UKB study was obtained
- 178 from the North West Centre for Research Ethics Committee (11/NW/0382), and
- 179 informed consent was obtained from all participants. This study (project number
- 180 41542) was covered by the general ethical approval for the UKB study.


181 *GWAS summary statistics for gut microbiota*

- 182 For exposure, we collected publicly available GWAS summary statistics of gut
- 183 microbiota from two independent studies: the TwinsUK study and the Canada
- 184 Genetic Environmental Microbial (GEM) project study. The TwinsUK study was
- used as discovery sample and it consisted of 489 dizygotic (DZ) twin pairs and
- 186 637 monozygotic (MZ) twin pairs with an age range of 18-89 years(22). The GEM
- 187 project was used as replication sample, which included 1,098 healthy first-degree
- relatives of patients with Crohns disease between 6 and 35 years of age (24). Stool
- collection, DNA extraction, 16 sRNA gene sequencing and taxa filtering were
- 190 performed on both cohorts.

191	In the discovery sample, the genetic associations between 945 bacteria taxa and
192	1,300,091 host SNPs were tested. A total of 307 host SNPs were identified to be
193	associated with 61 bacteria taxa (1 kingdom + 6 phyla + 9 classes + 9 orders + 16
194	families + 16 genera + 4 species) at a FDR<0.2. The P values at these SNPs
195	ranged from 4.94×10^{-9} to 7.33×10^{-5} . The summary statistics of these significant
196	SNPs were assessed through the supplemental table of the study publication(22).
197	In the replication sample, the associations between 3,727,707 host SNPs and 166
198	non-redundant bacterial taxa were examined. A total of 58 SNPs were identified to
199	be associated with the relative abundance of 33 taxa at the genome-wide
200	significance level ($P < 5 \times 10^{-8}$). The summary statistics of these significant SNPs
201	were assessed through the supplemental table of the study publication(24).
201 202	were assessed through the supplemental table of the study publication(24). UKB trunk fat mass sample
202	UKB trunk fat mass sample
202 203	UKB trunk fat mass sample All the included participants in the UKB sample are those who self-reported as
202 203 204	UKB trunk fat mass sample All the included participants in the UKB sample are those who self-reported as white (data field 21000). Participants who had a self-reported gender inconsistent
202 203 204 205	UKB trunk fat mass sample All the included participants in the UKB sample are those who self-reported as white (data field 21000). Participants who had a self-reported gender inconsistent with the genetic gender, who were genotyped but not imputed or who withdrew
202 203 204 205 206	UKB trunk fat mass sample All the included participants in the UKB sample are those who self-reported as white (data field 21000). Participants who had a self-reported gender inconsistent with the genetic gender, who were genotyped but not imputed or who withdrew their consents were removed.
202 203 204 205 206 207	UKB trunk fat mass sample All the included participants in the UKB sample are those who self-reported as white (data field 21000). Participants who had a self-reported gender inconsistent with the genetic gender, who were genotyped but not imputed or who withdrew their consents were removed. Trunk fat mass (TFM) was measured by bioelectrical impedance analysis approach.

to adjust raw phenotype. The residuals were normalized into inverse quantiles of

standard normal distribution, which were used for subsequent association analysis.

230 1000 genomes project sequencing data (phase 3).

In the replication sample, SNPs of association at the same $\alpha = 1 \times 10^{-5}$ were not

232	accessible.	In contrast,	only	SNPs	significant	at the α	$=5 \times 10^{-8}$	' level	were rep	oorted.
-----	-------------	--------------	------	-------------	-------------	-----------------	---------------------	---------	----------	---------

- 233 Therefore, all the reported SNPs were selected. SNPs were again assigned into
- features and clumped to retain independent SNPs, following the same steps as
- those used in the discovery sample.

236 Removal of horizontal pleiotropy

- 237 We applied the MR-PRESSO Global test(34) and Outlier test to detect potential
- horizontal pleiotropy. The MR-PRESSO global test evaluates overall horizontal
- pleiotropy among all SNPs, and the MR-PRESSO Outlier test evaluates the
- 240 presence of specific horizontal pleiotropic outlier variants by calculating the
- 241 p-value of each SNP pleiotropy significance. The MR-PRESSO global test was
- first applied to evaluate overall pleiotropy. In the presence of pleiotropy, the
- 243 MR-PRESSO Outlier test was then applied and the SNP with the smallest
- 244 pleiotropy p-value was removed. The MR-PRESSO Global test was again
- 245 performed on the remaining SNPs. The process repeated until the Global test was

246 non-significant (P>0.05).

- 247 The final retained SNPs were used as non-pleiotropic IVs to perform subsequent
- 248 Mendelian randomization analysis.

249 Mendelian randomization analysis

- 250 We performed two sample MR analysis to examine the causal effect from bacteria
- taxa to TFM. Specifically, we tested the association of the identified IVs within
- each bacteria taxa with TFM. For bacteria taxa containing multiple SNPs, we used

253	five methods to estimate the causal effect, including the inverse variance weighted
254	(IVW) test(35), the MR-Egger regression(36), the weighted median estimator(37),
255	the simple mode-based estimator and the weighted mode-based estimator(38). The
256	results were mainly based on the IVW method while the other 4 methods served as its
257	complement. For bacteria taxa containing only one SNP, the Wald Ratio method
258	was used for MR analysis. This method calculates the causal effect by using the
259	coefficient of the SNP-outcome association divided by the coefficient of the
260	SNP-exposure association(39).
261	Significant families identified in the discovery TwinsUK study were subjected to
262	be replicated in the replication GEM study, following the same MR analysis
263	procedure.
264	All the above analyses were performed with the R packages <i>TwoSampleMR</i>
265	(https://github.com/MRCIEU/TwoSampleMR)(40) and <i>MR-PRESSO</i>

266 (<u>https://github.com/rondolab/MR-PRESSO</u>)(34)

267 ACKNOWLEDGMENT

268	This research was conducted using the UK Biobank resource under application
269	number 41542. We appreciate all the volunteers who participated in this study. We
270	are grateful to the TwinsUK study and the Genetic Environmental Microbial
271	(GEM) project for releasing the gut microbiota GWAS summary statistics.
272	YFP and LZ are partially supported by the funding from national natural science
273	foundation of China (31771417 and 31571291) a project funded by the Priority
274	Academic Program Development (PAPD) of Jiangsu higher education institutions
275	and the Undergraduate Training Program for Innovation and Entrepreneurship,
276	Soochow University (201810285048Z). The numerical calculations in this paper
277	have been done on the supercomputing system of the National Supercomputing
278	Center in Changsha.

279 **REFERENCES**

- 280 1. Haslam DW, James WP (ed). 2005. Obesity.
- Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S,
 Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA,
 Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S,
 Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ,
- 285 Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD,
- 286 Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A,
- 287 Forouzanfar MH, Goto A, Green MA, Gupta R, et al. 2014. Global, regional, and national
- 288 prevalence of overweight and obesity in children and adults during 1980-2013: a
- 289 systematic analysis for the Global Burden of Disease Study 2013. Lancet 384:766-81.
- Engin A. 2017. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv
 Exp Med Biol 960:1-17.
- Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. 2001. Limits of body mass
 index to detect obesity and predict body composition. Nutrition 17:26-30.
- Liu P, Ma F, Lou H, Liu Y. 2013. The utility of fat mass index vs. body mass index and
 percentage of body fat in the screening of metabolic syndrome. BMC Public Health
 13:629.
- Pischon T, Boeing H, Hoffmann K, Bergmann M, Med ERJNEJ. 2008. General and
 Abdominal Adiposity and Risk of Death in Europe. 359:2105-2120.
- Pei YF, Ren HG, Liu L, Li X, Fang C, Huang Y, Hu WZ, Kong WW, Feng AP, You XY, Zhao W,
 Shen H, Tian Q, Zhang YH, Deng HW, Zhang L. 2017. Genomic variants at 20p11
 associated with body fat mass in the European population. Obesity (Silver Spring)
 25:757-764.
- Liu L, Pei YF, Liu TL, Hu WZ, Yang XL, Li SC, Hai R, Ran S, Zhao LJ, Shen H, Tian Q, Xiao HM,
 Zhang K, Deng HW, Zhang L. 2019. Identification of a 1p21 independent functional
 variant for abdominal obesity. Int J Obes (Lond) 43:2480-2490.
- Chatham RE, Mixer SJ. 2020. Cultural Influences on Childhood Obesity in Ethnic
 Minorities: A Qualitative Systematic Review. J Transcult Nurs 31:87-99.
- Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. 2014. Gut
 microbiota and metabolic syndrome. World J Gastroenterol 20:16079-94.
- 310 11. Okeke F, Roland BC, Mullin GE. 2014. The role of the gut microbiome in the pathogenesis

311		and treatment of obesity. Glob Adv Health Med 3:44-57.
312 313 314	12.	Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. 2009. A core gut microbiome in obese and lean twins. Nature 457:480-4.
315 316	13.	Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. 2005. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070-5.
317 318 319	14.	Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027-31.
320 321 322 323	15.	Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, Vialettes B, Raoult D. 2013. Correlation between body mass index and gut concentrations of Lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes (Lond) 37:1460-6.
324 325 326 327	16.	Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA, Brandsma E, Marczynska J, Imhann F, Weersma RK, Franke L, Poon TW, Xavier RJ, Gevers D, Hofker MH, Wijmenga C, Zhernakova A. 2015. The Gut Microbiome Contributes to a Substantial Proportion of the Variation in Blood Lipids. Circ Res 117:817-24.
328 329	17.	Evans DM, Davey Smith G. 2015. Mendelian Randomization: New Applications in the Coming Age of Hypothesis-Free Causality. Annu Rev Genomics Hum Genet 16:327-50.
330 331	18.	Davies NM, Holmes MV, Davey Smith G. 2018. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. Bmj 362:k601.
332 333 334	19.	Org E, Parks BW, Joo JW, Emert B, Schwartzman W, Kang EY, Mehrabian M, Pan C, Knight R, Gunsalus R, Drake TA, Eskin E, Lusis AJ. 2015. Genetic and environmental control of host-gut microbiota interactions. Genome Res 25:1558-69.
335 336 337	20.	Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C, Gilad Y. 2015. Genome-Wide Association Studies of the Human Gut Microbiota. PLoS One 10:e0140301.
338 339 340 341 342	21.	Bonder MJ, Kurilshikov A, Tigchelaar EF, Mujagic Z, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeekens SP, Zhernakova DV, Jankipersadsing SA, Jaeger M, Oosting M, Cenit MC, Masclee AA, Swertz MA, Li Y, Kumar V, Joosten L, Harmsen H, Weersma RK, Franke L, Hofker MH, Xavier RJ, Jonkers D, Netea MG, Wijmenga C, Fu J, Zhernakova A. 2016. The effect of host genetics on the gut microbiome. Nat Genet 48:1407-1412.

Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell
 JT, Clark AG, Ley RE. 2016. Genetic Determinants of the Gut Microbiome in UK Twins. Cell
 Host Microbe 19:731-43.
 Wang J, Thingholm LB, Skieceviciene J, Rausch P, Kummen M, Hov JR, Degenhardt F,

- Heinsen FA, Ruhlemann MC, Szymczak S, Holm K, Esko T, Sun J, Pricop-Jeckstadt M,
 Al-Dury S, Bohov P, Bethune J, Sommer F, Ellinghaus D, Berge RK, Hubenthal M, Koch M,
 Schwarz K, Rimbach G, Hubbe P, Pan WH, Sheibani-Tezerji R, Hasler R, Rosenstiel P,
 D'Amato M, Cloppenborg-Schmidt K, Kunzel S, Laudes M, Marschall HU, Lieb W,
 Nothlings U, Karlsen TH, Baines JF, Franke A. 2016. Genome-wide association analysis
 identifies variation in vitamin D receptor and other host factors influencing the gut
 microbiota. Nat Genet 48:1396-1406.
- Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, Guttman DS, Griffiths
 A, Panaccione R, Otley A, Xu L, Shestopaloff K, Moreno-Hagelsieb G, Paterson AD,
 Croitoru K. 2016. Association of host genome with intestinal microbial composition in a
 large healthy cohort. Nat Genet 48:1413-1417.
- 25. Lawlor DA. 2016. Commentary: Two-sample Mendelian randomization: opportunities
 and challenges. Int J Epidemiol 45:908-15.
- 26. Dethlefsen L, McFall-Ngai M, Relman DA. 2007. An ecological and evolutionary
 perspective on human-microbe mutualism and disease. Nature 449:811-8.
- 362 27. Anonymous. 2012. Structure, function and diversity of the healthy human microbiome.363 Nature 486:207-14.
- Bressa C, Bailen-Andrino M, Perez-Santiago J, Gonzalez-Soltero R, Perez M,
 Montalvo-Lominchar MG, Mate-Munoz JL, Dominguez R, Moreno D, Larrosa M. 2017.
 Differences in gut microbiota profile between women with active lifestyle and sedentary
 women. PLoS One 12:e0171352.
- 368 29. Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, Capoccia D, Caccamo R,
 369 Ginanni Corradini S, Nobili V, De Peppo F, Dallapiccola B, Leonetti F, Silecchia G, Putignani
 370 L. 2018. Gut Microbiota Markers in Obese Adolescent and Adult Patients:
 371 Age-Dependent Differential Patterns. Front Microbiol 9:1210.
- 372 30. Cox AJ, West NP, Cripps AWJLDE. Obesity, inflammation, and the gut microbiota.
- 373 3:207-215.
- Whisner CM, Maldonado J, Dente B, Krajmalnik-Brown R, Bruening M. 2018. Diet,
 physical activity and screen time but not body mass index are associated with the gut
 microbiome of a diverse cohort of college students living in university housing: a

377 cross-sectional study. BMC Microl	biol 18:210.

- 378 32. Amaretti A, Gozzoli C, Simone M, Raimondi S, Righini L, Perez-Brocal V, Garcia-Lopez R,
 379 Moya A, Rossi M. 2019. Profiling of Protein Degraders in Cultures of Human Gut
 380 Microbiota. Front Microbiol 10:2614.
- 381 33. Grover S, Del Greco M. F, Stein CM, Ziegler A. 2017. Mendelian Randomization, p
 382 581-628. *In* Elston RC (ed), Statistical Human Genetics: Methods and Protocols
 383 doi:10.1007/978-1-4939-7274-6_29. Springer New York, New York, NY.
- 384 34. Verbanck M, Chen CY, Neale B, Do R. 2018. Detection of widespread horizontal
 385 pleiotropy in causal relationships inferred from Mendelian randomization between
 386 complex traits and diseases. Nat Genet 50:693-698.
- 387 35. Burgess S, Butterworth A, Thompson SG. 2013. Mendelian randomization analysis with
 388 multiple genetic variants using summarized data. Genet Epidemiol 37:658-65.
- 389 36. Bowden J, Davey Smith G, Burgess S. 2015. Mendelian randomization with invalid
 390 instruments: effect estimation and bias detection through Egger regression. Int J
 391 Epidemiol 44:512-25.
- 392 37. Bowden J, Davey Smith G, Haycock PC, Burgess S. 2016. Consistent Estimation in
 393 Mendelian Randomization with Some Invalid Instruments Using a Weighted Median
 394 Estimator. Genet Epidemiol 40:304-14.
- 38. Hartwig FP, Davey Smith G, Bowden J. 2017. Robust inference in summary data
 Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol
 46:1985-1998.
- 398 39. Hwang LD, Lawlor DA, Freathy RM, Evans DM, Warrington NM. 2019. Using a two-sample
 399 Mendelian randomization design to investigate a possible causal effect of maternal lipid
 400 concentrations on offspring birth weight. Int J Epidemiol 48:1457-1467.
- 40. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S,
 402 Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C,
 403 Martin RM, Davey Smith G, Gaunt TR, Haycock PC. 2018. The MR-Base platform supports
 404 systematic causal inference across the human phenome. Elife 7.

Table 1 Causal estimations of gut microbiome on trunk fat mass in the discovery and replication cohorts

stage	Gut microbiota	MR test		SNP	Nearby gene
		b _{xy}	P-value	5111	ivearby gene
Discovery	_ Family <i>Barnesiellaceae</i>	-3.81×10 ⁻⁴	1.96×10 ⁻³	rs4897946	MIER2
Replication		-7.34×10 ⁻³	2.77×10 ⁻²	rs16901246	CTNND2

Notes: b_{xy} is the estimated effect coefficient. Significant p-values were marked in bold.