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Abstract 

Proteasome inhibitor (PI) resistance remains a central challenge in multiple myeloma. To 

identify pathways mediating resistance, we first map proteasome-associated genetic co-

dependencies. We identify cytosolic heat shock protein 70 (HSP70) chaperones as potential 

targets, consistent with proposed mechanisms of myeloma tumor cells overcoming PI-induced 

stress. These results lead us to explore allosteric HSP70 inhibitors (JG compounds) as myeloma 

therapeutics. We show these compounds exhibit increased efficacy against acquired and intrinsic 

PI-resistant myeloma models, unlike HSP90 inhibition. Surprisingly, shotgun and pulsed-SILAC 

proteomics reveal that JGs overcome PI resistance not via the expected mechanism of inhibiting 

cytosolic HSP70s, but instead through mitochondrial-localized HSP70, HSPA9, destabilizing the 

55S mitoribosome. Analysis of myeloma patient data further supports strong effects of global 

proteostasis capacity, and particularly HSPA9 expression, on PI response. Our results 

characterize dynamics of myeloma proteostasis networks under therapeutic pressure while 

motivating further investigation of HSPA9 as a specific vulnerability in PI-resistant disease.  
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Introduction: 

Nearly all multiple myeloma (MM) patients receive a proteasome inhibitor (PI) as part of 

their therapeutic regimen1. In malignant plasma cells, treatment with PIs induces unfolded 

protein stress2,3 and it is thought that these cells are preferentially sensitive because of their 

extremely high levels of immunoglobulin synthesis. Specifically, misfolded immunoglobulins 

cannot be efficiently degraded when proteasomes are inhibited, leading to their accumulation 

within the endoplasmic reticulum (ER) and activation of apoptosis via the unfolded protein 

response (UPR)4. However, while the large majority of MM patients will initially respond to PI 

therapy, none will be cured. This inevitable relapse makes overcoming PI resistance a leading, 

and long-standing, conundrum for MM clinicians. 

Currently, there are many proposed modes of resistance to PI therapy, including changes 

in the immune microenvironment and/or mutations in PSMB5, the proteasome subunit bound by 

PIs5-7. However, the leading model of PI resistance is that MM cells rewire protein homeostasis 

(proteostasis) to decrease unfolded protein stress. For example, MM cell lines and primary 

patient samples can become resistant by decreasing immunoglobulin synthesis8. Conversely, 

MM plasma cells can increase their ability to degrade or fold proteins, allowing them to adapt to 

PI inhibition. Indeed, analysis of in vitro-evolved, PI-resistant MM cells have shown 

upregulation of both proteasome subunits, including PSMB5, and protein-folding chaperones, 

most notably HSP70 and HSP27 isoforms9. In addition, some studies have proposed that 

downregulation of 19S proteasomal regulatory “cap” subunits may relate to PI resistance, 

possibly by altering which proteins are degraded10,11. Together, these observations suggest that 

one important mechanism of PI resistance is the compensatory tuning of proteostasis.  

There are hundreds of proteins associated with proteostasis. Which of these might be 

targeted to overcome PI resistance? Our prior work12, as well as that of others13, found that acute 

PI treatment induces a heat shock response. This response leads to marked upregulation of the 

inducible cytosolic HSP70 (HSPA1A gene), as well as BAG co-chaperones, which are known to 

be required for HSP70’s activities. These observations suggest that targeting the HSP70 axis may 

partially eliminate a mechanism for acquiring PI resistance. In addition, PI-resistant cells might 

become selectively vulnerable to inhibitors of this chaperone. 

While several small molecule HSP70 inhibitors have been developed, we focused on a 

class of “JG” compounds, including JG98, that allosterically inhibit HSP70 by disrupting its 
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interaction with the BAGs14-16. Thus, these molecules target the same sub-network that was 

previously identified as being involved in resistance to PIs. Here, we investigate the potential of 

these “JG” series compounds to synergize with PI and overcome PI resistance in MM. The 

results of in vitro screening support the therapeutic potential of these agents to specifically target 

PI-resistant disease. This relationship seemed to be of particular importance, as inhibitors of 

other proteostasis proteins were not effective in this setting. To understand the mechanism of this 

interaction, we performed shotgun and pulsed-SILAC proteomics, uncovering an unexpected 

role for mitochondrial proteostasis.  Overall, these results suggest a new approach to overcome 

PI-resistance in MM, while also revealing broader interactions between sub-cellular proteostasis 

networks in this paradigmatic disease. 

 

Results: 

Cytosolic HSP70 shows strongest genetic co-dependency with proteasome subunits in genome-

wide CRISPR screen data 

To reveal potential mechanisms of PI resistance, we first interrogated genome-wide CRISPR-

knockout screening data in the Cancer Dependency Map (DepMap)17. We specifically asked: if 

cancer cell lines are highly dependent on the proteasome for survival, what other proteostasis-

related genes are they also dependent on? We reasoned that this “co-dependency” approach 

could allow us to identify genes that could either be favorable targets for PI combinations or to 

overcome PI resistance. For this analysis, we first manually curated a list of 441 proteostasis 

genes based on prior literature (Supplementary Dataset 1). We then evaluated the pairwise 

Pearson correlation of the survival dependency score for the 406 of these genes included in 

CRISPR screens across 558 cell lines in DepMap (Release 19Q1). We developed an overall 

landscape illustrating both positive (cells are sensitive to genetic depletion of both genes) and 

negative (cells sensitive to depletion of one gene tend not to be sensitive to depletion of the 

other) correlations (Fig. 1A-B, Supplementary Fig. 1A) 

 We found that subunits of the proteasome formed the most notable clusters of positively 

correlated genes (Fig. 1B), as expected. However, the next most prominent genes were those 

encoding several cytosolic HSP70 homologs: HSPA1A (HSP72 protein), HSPA6 (HSP70B), 

HSPA2 (HSP70-2), HSPA1L (HSP70-1L). This result supports previous analyses in MM12, 18 

underscoring that pharmacologic blockade of both the proteasome and cytosolic HSP70s might 
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be synergistic. We also observed a smaller cluster of proteasome subunits which included the 

ER-localized HSP70, HSPA5 (BiP/GRP78) (Supplementary Fig. 1B), suggesting this homolog 

as another promising target. Notably, the mitochondria-localized HSP70, HSPA9 

(MtHSP70/GRP75/mortalin), was anti-correlated with the proteasome clusters.  

 Another interesting result of this DepMap analysis was that very few other proteostasis 

pathways were linked to the proteasome. We did observe a co-dependency network involving 

several members of the ER-resident protein disulfide isomerase family (P4HB, P4HA1, P4HA2, 

P4HA3), a BiP-interacting co-chaperone (DNAJC1), and several other genes of diverse function 

(Supplementary Fig. 1C). While investigating these additional associations is beyond the scope 

of our work here, we have developed an interactive web-based tool (https://tony-

lin.shinyapps.io/proteostasis-map/) for use by others in the proteostasis field. Together, these 

results suggest that the proteasome interaction with cytosolic, and potentially ER-localized 

HSP70, might be uniquely important. 

 

PI-resistant MM models show increased sensitivity to allosteric HSP70 inhibitors  

Based on prior data and our analysis, we investigated the “JG” series of allosteric HSP70 

inhibitors in MM models. The parent compound in this series, JG98, has been explored in other 

cancer models19-21. Recently, a medicinal chemistry campaign was used to improve the potency, 

stability and safety of this molecule16. To obtain an overview of the structure-activity 

relationships (SAR) in MM models, we chose a representative set of 16 analogs from this series 

(Supplementary Fig. 2).  We evaluated the sensitivity of a well-characterized AMO-1 MM cell 

line evolved to be PI-resistant (AMO1-BtzR) and compared it to the parental counterpart 

(AMO1-WT)9,22 (Fig. 2A). We were very encouraged to find that 15 of 16 compounds 

demonstrated lower LC50’s in AMO1-BtzR vs. WT cells (Fig. 2B-C). We found this result 

particularly noteworthy as essentially all prior molecules described to overcome PI resistance in 

MM show approximately equal sensitivity between WT and PI-resistant cells (for example 

refs.23-26). The greater sensitivity of AMO1-BtzR cells to HSP70 inhibition supports a special 

dependency of PI-resistant cells on HSP70s.  

 Of the JG compounds tested, JG342 showed the lowest LC50 (122.6 nM) vs. AMO1-BtzR 

cells (Fig. 2C), leading us to focus on this molecule as a chemical probe for further mechanistic 

studies. First, we screened JG342 for activity against a panel of MM cell lines (MM.1S, RPMI-
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8226, U266, L363, AMO-1, KMS11, KMS34, JJN3) and compared these values to JG342 

activity in non-malignant bone marrow stromal cells (immortalized HS5 and HS27A lines and 

one low-passage, patient-derived line) (Fig. 2D). We found that the MM cell lines were routinely 

more sensitive to JG342, suggesting a good therapeutic index.  

We also expanded our analysis to MM cell lines recently defined in a large-scale screen 

to be intrinsically resistant (LP-1, KMS12-BM, MMM1, JIM-3) or sensitive (KMM1, MM-1144, 

KMS-18) to several different PIs, along with three evolved resistant lines (ANBL6-BtzR, RPMI-

8226-BtzR, and U266-BtzR)27. We first confirmed the findings of this prior study, demonstrating 

that lines previously defined as PI resistant or sensitive showed the same phenotype in our hands 

(Fig. 2E). We next tested four of the JG compounds versus this cell line panel. Indeed, we found 

that the PI-resistant lines again showed increased sensitivity to JGs compared to their sensitive 

counterparts (Fig. 2F, Supplementary Fig. 3A-C). 

We wondered whether the expression levels of HSP70s or BAGs might correlate with 

sensitivity across these MM and stromal cell lines. However, neither total HSP70 nor BAG3 

expression was predictive of sensitivity to JG compounds (Supplementary Fig. 3D). We also 

wondered if inhibitors of other chaperones would also provide the same selective toxicity against 

PI-resistant cells or if this property was special to HSP70 inhibitors. We found that the HSP90 

inhibitor, 17-DMAG, did not exhibit differential efficacy vs. PI-sensitive or resistant cells (Fig. 

2G). Thus, the relationship between HSP70 and proteasome inhibition was not a general 

property of other proteostasis targets, consistent with the DepMap analysis.  

 Next, we evaluated the activity of JG342 in MM animal models in vivo. Prior to these 

experiments, we first determined the pharmacokinetics (PK) of JG342 in mice.  After a single i.v. 

injection (3 mg/kg), the plasma concentrations decreased below the predicted therapeutic range 

(<150 nM) after ~6 hr (Supplementary Fig. 3E). This rate of clearance might be sufficient to 

give an anti-tumor effect if cell death is rapidly induced. To test this idea, we implanted 

luciferase-labeled RPMI-8226 cells intravenously into NOD scid gamma (NSG) mice, leading to 

disseminated disease in hematopoietic organs. After 14 days of tumor growth, we treated mice 

3x/week for 2 weeks at 3 mg/kg IV JG342; by bioluminescent imaging we indeed noted a trend 

toward decreased tumor burden in treated mice vs. vehicle control (p = 0.09) (Fig. 2H-I). 

However, we found that this treatment schedule led to a decrease in body weight 

(Supplementary Fig. 3F) and higher doses (5 mg/kg) led to rapid weight loss and mortality in a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.052456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052456


 7 

pilot cohort (data not shown). Thus, while our results suggest that targeting HSP70 carries 

significant promise to overcome PI resistance in MM, additional work is required to improve PK 

and safety. 

 

JG98 combination with proteostasis inhibitors leads to differential synergy and antagonism in 

MM cells  

 Although JG98 and its analogs were not immediately suitable for continued pre-clinical 

evaluation, we considered them useful chemical probes for further mechanistic studies.  

Accordingly, we sought to further investigate why PI-resistant MM cells are more sensitive to JG 

analogs. We also wanted to test whether targeting HSP70 in combination with PIs drives 

increased MM cell death. 

 Toward this latter point, previous work in MM models has suggested that simultaneously 

targeting other parts of the proteostasis network can be synergistic with PIs25. Extending from 

these findings, we aimed to measure the effects of inhibiting HSP70 at the same time as 

inhibiting three other, key proteostasis nodes: the proteasome, HSP90, and p97. In these 

experiments, we selected the representative inhibitors: bortezomib (PI), 17-DMAG (Hsp90 

inhibitor)28, and CB-5083 (p97 inhibitor)29. We performed these combination treatment studies 

in three MM cell lines (RPMI-8226, MM.1S, KMS-34), as well as one acute myeloid leukemia 

(AML) cell line (CMK) to evaluate possible MM-specific effects. To inhibit HSP70 in these 

combinatorial studies we used JG98, the most well-characterized of the JG series. Cell 

proliferation was measured using CellTiterGlo and compound treatments were performed at the 

same time. Then, we assessed the effects of each pairwise drug combination on proliferation 

using the ZIP synergy score method30 (examples of raw viability data shown in Fig. 3A-B). By 

this metric, a score of zero is consistent with additivity, a positive score denotes synergy, a 

negative score antagonism, and the absolute value of the score reflects the strength of the 

interaction (Fig. 3C).  

 Contrary to our hypothesis, we found that the JG98 plus bortezomib combination was 

essentially additive, with either weak synergy or antagonism noted across all four cell lines. Of 

the combinations tested, only the CB-5083 plus JG98 combination did not show any antagonism 

across all tested cell lines. For other combinations, we surprisingly found that synergy and 

antagonism was largely cell line specific (Fig. 3C, Supplementary Fig. 4A). For example, we 
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noted strong synergy between JG98 and 17-DMAG in RPMI-8226 cells, but moderate 

antagonism in KMS-34. As one potential explanation for this finding, we examined available 

RNA-seq data from the Cancer Cell Line Encyclopedia (CCLE) to assess whether transcript 

expression of each target or their interaction partners may offer some explanation for these 

differential combination effects. However, we found no clear baseline alterations across lines 

(Supplementary Fig. 4B). Overall, these results indicate that MM proteostasis networks, even if 

“wired” similarly at baseline, can still drive differential responses under pharmacologic pressure. 

   

JG98 selectively destabilizes the mitochondrial ribosome 

To further explore these unexpected results, we aimed to investigate how the cellular 

proteome is remodeled after HSP70 inhibition in comparison to blockade of other proteostasis 

nodes. We performed multiplexed tandem mass tag (TMT) proteomics on three MM cell lines 

treated with the four compounds above, with each perturbation in biological duplicate (Fig 4A). 

Agents were dosed in each cell line at the LD30 from our drug screens above to ensure cellular 

drug-responsive phenotype but avoid large-scale cytotoxicity (see Methods). Surprisingly, we 

found that JG98, but none of the other compounds, led to marked depletion of 55S mitochondrial 

ribosome subunits when results were aggregated over all three cell lines (Fig 4B, 

Supplementary Fig. 5A-C). For JG98, this depletion was highly selective, standing out over 

essentially all other cellular quantified proteins (4852-5101 protein groups per line, 4033 across 

all three lines; minimum two unique peptides per protein group) (Supplementary Fig. 5D-F; 

Supplementary Dataset 2). Western blot confirmed marked depletion of the mitoribosome 

subunit MRPL11 after JG98 treatment but not other drugs (Supplementary Fig. 6A). 

Additionally, the mitochondrial enzyme SOD2 (Superoxide Dismutase 2) was the most increased 

protein under JG98 (Supplementary Fig. 5D-E), further supporting that JG98 causes a 

mitochondrial stress response in myeloma cells66,67. 

These findings raised an unexpected hypothesis: as opposed to the predicted effect on 

cytosolic HSP70’s, could JGs instead overcome PI resistance by inhibiting the mitochondrial 

HSP70 isoform, mtHsp70/HSPA9/mortalin? Prior work on the precursor molecule MKT-077 

suggested that it partitioned into mitochondria but could interact with both mtHsp70 and 

cytosolic HSPA831,32. To estimate the subcellular localization of JG98, we took advantage of its 

intrinsic fluorescence33. For these live-cell imaging experiments, we used adherent HS5 bone 
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marrow stromal cells, as imaging myeloma cells in suspension at the required resolution was not 

technically feasible in our hands. After treatment with JG98 or JG342, we visualized 

mitochondria using a far-red MitoTracker dye to avoid spectral interference from the JG 

compounds. Indeed, we found that both compounds were almost entirely localized to 

mitochondria (Fig. 4D). As further validation, we performed flow cytometry on intact 

mitochondria isolated from AMO-1 myeloma cells treated with JG98 and JG342 and found that 

mitochondria contained high levels of compound (Supplementary Fig. 6C). This localization is 

consistent with other recent data34 and might be expected because of the cationic property of 

JG98 and JG342, as positively charged molecules often localize to this compartment.  

To evaluate functional impacts on mitochondria, we performed seahorse respirometry 

after JG98, JG342, or bortezomib. We found that only the JG compounds led to a decrease in 

oxygen consumption rate, underscoring a selective mitochondrial perturbation of these agents 

(Fig. 4E). However, we found that neither of these compounds substantially disrupted 

mitochondrial morphology nor did they lead to mitochondrial depolarization (Supplementary 

Fig. 6D-E). Finally, CRISPR interference-mediated partial knockdown of HSPA9 in RPMI-8226 

myeloma cells stably expressing dCas9-KRAB35 (we could not successfully isolate MM cells 

with CRISPR deletion of HSPA9, nor more complete knockdown of HSPA9, presumably due to 

the essential nature of this gene) demonstrated selective loss of MRPL11 but not the cytosolic 

ribosome subunit RPS6 (Supplementary Fig. 6F), illustrating that HSPA9 knockdown can 

phenocopy the mitoribosome depletion induced by JG98. 

In line with these findings, recent results using two different in vitro-generated models of 

PI resistance also showed that targeting mitochondrial homeostasis may be a selective 

vulnerability in PI-resistant disease36,37 (see also Discussion). Taken together, these results 

support the notion that JG compounds function primarily via mitochondrial perturbation to drive 

enhanced efficacy vs. PI-resistant MM. 

 

Pulsed SILAC illustrates that JG342 leads to loss of nascent mitoribosome subunits  

HSP70 family chaperones are primarily thought to function in stabilizing newly-synthesized 

proteins, though they also may have an array of functions maintaining folded proteins and 

complexes38. We therefore investigated whether the depletion of mitoribosome subunits was 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.052456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052456


 10 

primarily due to loss of nascent polypeptides, or, alternatively, destabilization of pre-existing, 

“mature” proteins. 

 For these experiments we utilized JG342, to also evaluate if a similar phenotype is 

present across JG compounds. To distinguish effects on nascent vs. mature proteins and compare 

multiple timepoints in the same mass spectrometry experiment, we employed a modified version 

of recently-described methods of TMT combined with pulsed-SILAC proteomics39, 40. Most 

commonly, SILAC (Stable Isotope Labeling of Amino acids in Cell culture) is utilized to 

compare the steady-state abundance of proteins under two different experimental conditions by 

incorporating different stable isotope-labeled amino acids resolvable by mass spectrometry41.  In 

the design here, though, at t = 0 MM.1S cells previously grown in “light” media were switched 

to “heavy” media containing either JG342 or DMSO as well as stable isotope-labeled arginine 

and lysine. Three timepoints (16h, 21h, 26h) for both conditions were collected in biological 

duplicate, and combined into two multiplexed TMT mass spec experiments (Fig. 5A).  

In this experiment, monitoring 3104 nascent and 4181 mature proteins (overlap = 2940) 

(Supplementary Dataset 3), we first observed that the large majority of nascent proteins were 

decreased in abundance after JG342 treatment compared to DMSO control (Fig. 5B). This 

finding was consistent with induction of the Integrated Stress Response (ISR), a conserved 

response to diverse cellular stresses, where a major outcome is a global decrease in mRNA 

translation42. Consistent with this hypothesis, puromycin incorporation assays biochemically 

confirmed a global shutdown of protein synthesis (Fig. 6B). We also observed marked depletion 

of nascent 80S ribosome subunits, typically the most prominent translational effect of the ISR12, 

43 (Supplementary Fig. 7A-B).  

 However, even among this overall decrease in nascent proteins, we observed that two of 

the most-depleted proteins were subunits of the mitoribosome (MRPS21 and MRPL37) (Fig. 

5B). Furthermore, we noted that the overall set of mitoribosome subunits was significantly 

depleted from the nascent proteome fraction compared to either the general pool of cellular 

proteins or the specific set of other mitochondrial proteins (Fig. 5D). We also we noted 

decreases, albeit less prominent, in mature mitoribosome subunits (Fig. 5E) and mitoribosome 

mRNA (Fig. 5F), suggesting possible effects on the mitoribosome at both the transcriptional and 

translational levels. Furthermore, SOD2 was among the most enriched mature proteins under 

JG342, indicative of a mitochondrial stress response44,45 (Fig 5C, Supplementary Fig. 6B). 
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While the underlying mechanisms remain to be elucidated, these results are consistent with the 

notion that JG compounds at least partially exert their effects on MM cells through perturbing 

mitochondrial proteostasis.  

 

JG compounds induce the UPR and perturb proteostasis without compensatory heat shock 

response or chaperone upregulation   

We previously observed that targeting MM proteostasis with the PI, bortezomib, led to a marked 

increase in cytosolic chaperone expression, potentially serving as a compensatory response12. 

Here, we asked whether allosteric HSP70 inhibitors might produce similar effects. Prior work in 

another cancer model showed that allosteric HSP70 inhibition can activate the UPR46. In MM 

cells, we confirmed by Western blotting of canonical markers (spliced XBP1, phosphorylated 

PERK, CHOP)47 that both JG98 and JG342 led to activation of the UPR (Fig. 6A-B, 

Supplementary Fig. 8A-C, Supplementary Table 1). Importantly, we did not observe 

upregulation of ER, mitochondrial, or cytosolic HSP70 isoforms, nor an increase in master 

transcriptional regulators of the heat shock response (HSF1/2/4) during treatment with JG98 or 

JG342 (Fig. 6B-C; Supplementary Fig. 8A,D). These proteome- and transcriptome-level 

findings are in line with prior studies in other systems with Western blotting for selected 

chaperones15,16. 

This result with JGs stands in direct contrast to effects of Bortezomib, 17-DMAG, and 

CB-5083. Despite similar effects on global translation (Supplementary Fig. 8D), these other 

three agents all drove increases in chaperone levels (Fig. 6C). Bortezomib and 17-DMAG had 

partially overlapping response profiles, with increases in small heat shock protein HSPB1, co-

chaperones DNAJB1, BAG3, and HSPH1, HSP40 homolog DNAJB4, cytosolic HSP70 

chaperone HSPA6, and HSP90 isoform HSP90AA1. In contrast, p97 inhibition with CB-5083 

led to a marked increase in the ER-resident HSP70 isoform BiP (HSPA5). Taken together, these 

results suggest that allosterically inhibiting HSP70 may be an advantageous strategy to target 

proteostasis, as it does not lead to other compensatory mechanisms to buffer unfolded protein 

stress.  

 

Increased proteostasis capacity broadly drives poorer outcomes in myeloma and HSPA9 

expression is among the strongest predictors of outcome 
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Thus far, our collective results suggest that JG compounds are particularly effective versus PI-

resistant MM by preferentially targeting the mitochondria-resident HSP70 isoform HSPA9. This 

finding raises the hypothesis that increased mitochondrial proteostasis capacity, and particularly 

expression of HSPA9, may also be a feature of PI resistance in MM patients. To investigate this 

hypothesis, we examined CD138+ tumor cell transcriptomic data from 773 newly-diagnosed 

patients in the Multiple Myeloma Research Foundation CoMMpass database (IA14 Release) 

(compass.themmrf.org). The large majority (94.5%) of these patients received a PI as part of 

their upfront induction therapy.  

We first evaluated the possible correlation between overall survival (OS) of patients and 

the levels of HSP70 isoforms, specifically comparing patients in the top and bottom expression 

quintiles at diagnosis. Indeed, we found that HSPA9 expression was by far the strongest predictor 

of outcome among these genes, where patients in the upper quintile of HSPA9 expression had a 

median OS of 58 months, while those in the lowest quintile did not reach median OS (p = 2.51e-

5) (Fig. 7A). In contrast, expression of cytosolic HSP70 isoforms as well as the ER-resident 

HSP70 HSPA5 (BiP), led to considerably less pronounced differences in OS (Fig. 7B-C and 

Supplementary Fig. 9A-B). Given that our results suggest a link between HSPA9 inhibition and 

mitoribosome depletion, we further built an aggregate expression score across all 60 genes 

comprising the mitoribosome expressed in CoMMpass patients. We found that patients in the 

upper quintile of mitoribosome expression showed markedly poorer outcomes (p = 3.32e-5) (Fig. 

7D), with a Kaplan-Meier plot closely mimicking that of HSPA9. 

While HSPA9 had the strongest correlation with outcomes, expression of other HSP70 

isoforms all showed a similar trend: increased chaperone expression led to shorter survival. This 

finding raised a general hypothesis for MM plasma cell biology. We speculated that broad 

increases in tumor proteostasis capacity, potentially through multiple different mechanisms, 

could decrease sensitivity to PIs, ultimately driving poorer outcomes for patients. To test this 

hypothesis, we evaluated the difference in median CoMMpass patient Progression-Free Survival 

(PFS) for the upper and lower expression quintiles across our curated proteostasis gene list in 

Fig. 1A (we note that in this analysis we used PFS instead of OS since this led to more genes 

with a calculable median survival difference in both the upper and lower quartile of expression). 

Of these 441 genes, 241 had detectable expression across patients (TPM >1) and were included 

in our analysis. We found that for the large majority of these genes (160 of 241), increased 
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expression (top quintile) of the proteostasis-related gene led to significantly (p < 0.05) poorer 

survival when compared to low expression (bottom quintile) (Fig. 7E). Remarkably, we found 

no cases where the opposite was true, with bottom quintile gene expression leading to 

significantly worse outcomes than top quintile.  

In this analysis we also note that differential HSPA9 expression was one of the strongest 

indicators of patient PFS (Fig. 7E). In fact, HSPA9 was more highly ranked than almost all the 

20S core subunits of the proteasome. Taken together, these data underscore the broad ability of 

MM plasma cells to resist PI treatment if they have greater global capacity to decrease unfolded 

protein load, potentially mitigating the apoptotic response to unfolded protein stress. 

Furthermore, these findings also suggest a possible leading role of HSPA9 and the mitoribosome 

in maintaining proteostasis in the PI-resistant state, thereby establishing a selective therapeutic 

vulnerability in these tumors that can be exploited by JG compounds. 

 

Low 19S cap expression and HSP70 network adaptation do not play a clear role in MM patient 

PI resistance 

Prior analyses using unbiased genetic knockdowns in cell line models10, 11 have suggested 

that low expression of subunits of the 19S proteasome cap may lead to PI resistance. Studies 

based on this hypothesis have specifically focused on PSMC2 and PSMD2, supported by gene 

expression data in an older monotherapy clinical trial of bortezomib in myeloma48. In our 

analysis of CoMMpass data, we therefore expected to see decreased expression of 19S cap 

subunits leading to poorer PFS. However, we found the opposite: increased expression of 19S 

cap subunits led to poorer outcomes, running in parallel with findings from the 20S proteasomal 

core (Fig. 7E-F; Supplementary Fig. 9C). The reason for this discrepancy is unclear, though it 

may relate to effects of therapies administered to CoMMpass patients in combination with PI. 

Regardless, in this real-world data it is apparent that increased proteostasis capacity, including 

the 19S cap, globally impacts myeloma outcomes under current PI-containing therapeutic 

regimens.  

 Furthermore, PI resistance has been linked in cell line models to increased expression of 

HSP70 family chaperones7,27, suggesting potential rewiring of proteostasis to adapt to PI therapy 

in patients. We therefore obtained data for 50 CoMMpass patients (release IA14) with paired 

tumor RNA-seq at first relapse and initial diagnoses, all of whom received a PI as part of first-
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line therapy. Surprisingly, we did not observe any shift toward increased gene expression of any 

HSP70 isoform, including HSPA9, in the relapsed setting (Supplementary Fig. 9D). Notably, no 

increase in expression of proteasomal subunits was observed either (Supplementary Fig. 9E). 

Combined with our survival analysis above, these findings indicate that baseline chaperone 

expression levels between patients may be more relevant to governing intrinsic resistance to 

upfront PI therapy, rather than acquired resistance within the same patient after initial response 

to PI. 

 

Discussion: 

Here we aimed to characterize a new approach to address PI resistance, a long-standing 

issue in MM clinical care. We found that the JG series of allosteric HSP70 inhibitors 

preferentially eliminated both intrinsic and acquired models of PI resistance. Quantitative 

proteomics and cellular validation in this setting demonstrated that these compounds function 

primarily by engaging the mitochondrial-localized HSPA9, rather than through primary effects 

on the cytosolic HSP70s as expected. While our in vivo studies revealed hurdles to progression 

of these compounds as true clinical candidates, these molecules serve as important chemical 

probes, elucidating the potential of targeting HSPA9 as means to selectively eliminate PI-

resistant disease. This conclusion is supported by analysis of MM patient tumor data, which also 

revealed the critical role of global proteostasis capacity in MM outcomes. 

 Overall, our findings fall in line with two recent studies suggesting that mitochondrial 

homeostasis is a selective vulnerability in PI-resistant disease. In one study, this conclusion was 

drawn based on bioinformatic analysis of patient tumors and functional analysis of cell lines 

expressing a low level of the 19S proteasomal cap gene PSMD2, demonstrating a strong 

dependency of PI sensitivity on mitochondrial metabolism37. In parallel, a second study involved 

characterizing in vitro-evolved PI-resistant AMO-1 MM cell lines (including the same one we 

employed here for our initial drug screens (Fig. 2A-C)). This recent work demonstrated specific 

alterations in mitochondrial homeostasis in the PI-resistant state36. Targeting PI-resistant AMO1 

cells with mitochondrial perturbagens, such as Bcl-2 and AMPK inhibitors, led to increased cell 

death versus their sensitive counterparts36.  

Therefore, our results demonstrate that targeting HSPA9 could be a new approach to 

achieve this same mitochondrial-directed outcome in PI-resistant MM. We do note, though, that 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.052456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052456


 15 

multiple lines of prior evidence, as well as our genetic co-dependency analysis here, suggested 

that cytosolic HSP70s, or perhaps the ER-resident HSP70 HSPA5/BiP, would be good targets in 

PI-resistant MM12,49,50. In other disease models, JG analogs and the precursor MK-077 have been 

shown to act through cytoplasmic HSP70s46,51,52 or to bind both cytoplasmic and mitochondrial 

HSP70s32. Therefore, although these chemical probes inhibit multiple HSP isoforms, the specific 

biology of the system may dictate that one isoform is more important than the other. For 

example, despite similar localization data by microscopy, it certainly remains possible that 

JG342 exhibits overall increased potency versus both PI-resistant and -sensitive MM cell lines 

compared to JG98 (Fig. 2C) by inhibiting additional HSP70s beyond HSPA9. CRISPR 

interference (CRISPRi) screening of different JG compounds suggest common inhibition of 

HSPA9 but increased inhibition of HSPA5 in “200” and “300” series compounds (Z. Young and 

J.E.G., manuscript in preparation). We cannot rule out that molecules strongly targeting only 

cytosolic HSP70s, or regulators of the heat shock response, such as HSF1, would also have 

beneficial effects in the same context50. Additionally, based on our genetic co-dependency 

analysis, molecules more prominently targeting cytosolic HSP70 may lead to synergy when co-

treated with bortezomib, as opposed to the additivity we observed for JG98 (Fig. 3).  Overall, the 

most relevant model may be one where the apoptotic branch of the UPR, triggered via cytosolic 

HSP70 blockade, ultimately leads to JG-induced death, but additionally targeting HSPA9, with 

reduced fitness caused by loss of mitoribosomes, specifically leads to the increased sensitivity of 

PI-resistant cells. Furthermore, broadly targeting HSP70s may confer advantages over other 

known proteostasis inhibitors, given the lack of compensatory chaperone upregulation after 

treatment (Fig. 6C). 

There are limitations to our study. In particular, our experimental results derive from 

analysis of multiple MM cell line models. We were unable to evaluate differential drug 

sensitivity in primary myeloma samples due to the fluorescence properties of the JG compounds. 

Furthermore, the JG scaffold may have significant PK liabilities that complicate further 

development as a clinical therapeutic. In addition, while our experiments show that JGs robustly 

localize to mitochondria, lead to mitoribosome depletion, and their effects are pheno-copied by 

HSPA9 genetic depletion, we cannot definitively demonstrate that HSPA9 engagement confers 

this phenotype of increased potency vs. PI-resistant cells. However, the independent observations 

that PI-resistant cells are highly dependent on mitochondrial metabolism36,37, as well as a very 
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recent study confirming that JG treatment pheno-copied mechanistic effects of HSPA9 

knockdown in another cancer model34, both directly support this notion. Overall, our findings 

strongly suggest that compounds preferentially targeting HSPA9 will be an exciting approach to 

overcome PI resistance. These conclusions are supported by our survival analysis of CoMMpass 

patients.  

We can also put these results into context of our initial CRISPR screen data and 

combination therapeutic analysis. Ultimately, our co-dependency analysis suggests that genes 

strongly anti-correlated for genetic dependence with proteasome subunits, including HSPA9 

(Fig. 1A), may prove to be the best targets in the PI-resistant state. In this scenario, cells 

sensitive to genetic depletion of proteasome subunits at baseline may evolve, upon PI-resistance, 

to become dependent on proteostasis nodes they previously did not rely upon for survival. This 

evolved dependence may occur even in the absence of changes in gene or protein expression. 

Future work will investigate this proposal.  

 In conclusion, our results support allosterically targeting mitochondrial-localized HSP70 

as a promising therapeutic strategy in MM. Our study also reveals global roles of proteostasis 

networks in the cancer most characterized as highly dependent on this biological process.  
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METHODS 
 
DepMap Correlation Analysis 
Genetic sensitivity data from genome-wide CRISPR knockout screens for 17,634 genes in 558 
cell lines were downloaded from the Cancer Dependency Map (19Q1 Release). Of the 441 
manually curated proteostasis genes (see Supplementary Table 2 for gene names and 
references), 406 were identified in the CRISPR dataset. Pearson correlation of the sensitivity 
scores across all cancer cell lines was computed for every pairwise combination of proteostasis 
genes. The results were displayed as a 406-by-406 heatmap clustered using the complete-linkage 
method with Euclidean distances. Interactive heatmaps and additional analyses of gene 
expression and hybrid CRISPR-vs-expression correlations are accessible through a web-based 
application built using the Shiny package (version 1.4.0.2) in R (https://tony-
lin.shinyapps.io/proteostasis-map/). 
 
Expression-Based Survival Analysis 
Survival and gene expression data on CD138+ tumors from myeloma patients were downloaded 
from the CoMMpass database (Build IA14). The expression dataset in transcripts per million 
(TPM) for 57,996 genes on 908 patient tumors was filtered to retain only newly-diagnosed 
patient samples (783 total from 773 unique patients identifiers) and genes with TPM > 1 across 
all samples. Sample duplicates (10 total) were averaged. Next, the overall and progression-free 
survival data were stratified by expressions in genes of interest, separating the samples by the top 
and bottom 20% of TPM levels. Kaplan-Meier curves and log-rank P-values indicating statistical 
difference in survival between the quintiles were generated using the survival and survminer 
(version 0.4.6) packages in R. For multiple genes (i.e. mitoribosome analysis), a rank order is 
first assigned on a per-gene basis followed by averaging the ranks across all genes to obtain an 
aggregate expression score for sample stratification. To summarize the survival differences based 
on expression levels for many genes, a volcano plot displaying p-value versus median difference 
in survival was generated. 
 
Differential Expression Analysis 
Expression data for 57,996 genes on 908 CD138+-enriched myeloma patient samples were 
downloaded from the CoMMpass database (Build IA14). Using the DESeq2 (ref.53) package in 
R, differential expression analysis was performed on 50 paired tumors with sample collection at 
initial diagnosis and upon first relapse. The expression data in counts were submitted as input, 
and sample pairing was indicated in the design formula. The statistical significance of the 
difference in gene expression between the newly-diagnosed and relapse samples was plotted 
against expression fold changes in a volcano plot.  
 
CCLE RNA-sequencing data analysis 
Cancer Cell Line Encyclopedia RNA-sequencing data54 was downloaded from Cancer 
Dependency Map (file used was CCLE_depMap_19Q1_TPM.csv). Data from cell lines of 
interest was extracted for analysis in R. 
 
Cell culture conditions 
Cell lines were maintained in RPMI-1640 medium with 10% FBS (Gemini Benchmark). IL-6 
dependent cell lines were cultured in the presence of 50 ng/mL recombinant human IL-6 
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(ProSpec). Proteasome inhibitor resistant cell lines were cultured in 90nM Bortezomib or 
Carfilzomib as previously described9, 27, 55. Cell lines were authenticated by DNA short tandem 
repeat profiling at ATCC.  
 
Monotherapy and combination dose-response viability assays  
For monotherapy dose response assays, cells were seeded in 384 well plates using the Multidrop 
Combi (Thermo Scientific), with 1000 cells seeded in 45 uL media. Drugs were added 24 hours 
after seeding and viability was measured using Cell-Titer Glo (Promega) 48 hours after the 
addition of drugs. Combination assays were conducted similarly to monotherapy, with both 
drugs added 24 hours after seeding and Cell-Titer Glo assay performed 72 hours after addition of 
drug. Monotherapy dose response assay measurements were performed in quadruplicate and 
combination assay measurements were performed in triplicate. ZIP synergy scores were 
processed using SynergyFinder software 30. 
 
Mitochondria isolation  
Mitochondria were isolated with the Mitochondria Isolation Kit for Cultured Cells (Thermo, 
89874). Briefly, 20e6 MM1.S or AMO1 myeloma cells were treated with 1 uM JG compound or 
vehicle for 45 minutes prior to addition of MitoTracker Deep Red (Thermo, M22426). After 
another 45 minutes, cells were harvested, washed with PBS, and 18e6 cells were collected for 
mitochondria isolation following kit instructions, while 2e6 cells were plated in PBS + 5% FBS 
for flow cytometry. Flow cytometry was performed on BD Cytoflex (Beckman Coulter). Data 
was analyzed in FlowJo 8.8.6.  
 
Mitochondrial membrane potential  
Mitochondrial membrane potential was measured by carbocyanine dye DiIC1(5) ((1,1′,3,3,3′,3′-
hexamethylindodicarbo- cyanine iodide) staining and flow cytometry as similarly described (56, 
which employs the use of an analogous molecule, the cyanine dye JC-1). Briefly, cells were 
treated with inhibitors for 24 hours in 96-well plates prior to addition of 50 nM DiIC1(5) 
(Invitrogen M34151) and 100 uM CCCP (carbonyl cyanide 3-chlorophenylhydrazone, which 
disrupts mitochondrial membrane potential) to control wells for 30 minutes. Media was removed 
and cells were resuspended in 5% FBS in D-PBS prior to flow cytometry analysis on BD 
Cytoflex. Data was analyzed in FlowJo 8.8.6, with a gating strategy including debris and doublet 
exclusion.  
 
MitoTracker staining  
Mitotracker deep red FM (Invitrogen, M22426) was solubilized in DMSO to yield 100 µM 
frozen aliquots which were diluted into media to yield a 10 µM stock which was added directly 
to cell culture media already in the culture yielding a final concentration of 100 nM (to prevent 
media change derived fluid flow shear stress) 30 min before 4% PFA (MitoTracker red FM was 
used for PFA fixed samples). Samples were imaged with a Nikon Eclipse Ti spinning disc 
microscope, Yokogawa CSU-X, Andor Zyla sCMOS, Andor Multi-Port Laser unit, and analyzed 
with Molecular Devices MetaMorph imaging suite, ImageJ, and ilastik (Gaussian filter). 
 
Cellular Respirometry  
Mitochondrial stress tests were performed with a Seahorse XF24e cellular respirometer on non-
permeablized cells at ~80% confluence (50k cells/well) in V7 microplates, with XF assay 
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medium supplemented with 1 mM pyruvate (Gibco), 2 mM glutamine (Gibco), and 5 or 25 mM 
glucose (Sigma) at pH 7.4 and sequential additions via injection ports of Oligomycin (1 µM 
final), FCCP (1 µM final), and Antimycin A/Rotenone (1 µM final) during respirometry 
(concentrated stock solutions solubilized in 100% ethanol (2.5 mM) for mitochondrial stress test 
compounds). OCR values presented with non-mitochondrial oxygen consumption deducted 
normalized to DMSO control for clarity. 
 
Microscopy  
Live cell imaging was performed with Nikon Ti-E Microscope equipped with Yokagawa CSU22 
spinning disk using the 100X oil objective. Briefly, HS-5 immortalized bone marrow stromal 
cells were grown overnight in Ibidi 8-well dishes (80826) or MatTek 35 mm dishes (P35G-1.5-7-
C). Cells were treated with 500 or 1000 nM JG98 or JG342 and 500 nM Mitotracker Deep Red 
(Thermo, M22426) for 30 minutes prior to compound washout and imaging. Image processing 
was performed in ImageJ and Coloc2 was used for co-localization analysis. 
 
Xenograft Mouse Model  
In-house NSG mice were obtained from the UCSF preclinical core facility. 1e6 RPMI-8826-
mC/Luc myeloma cells stably expressing luciferase were implanted into each mouse via tail vein 
injection. Mice were randomized into groups and dosed with 3 mg/kg JG342 three times per 
week starting on day 18.  Tumor burden was assessed by bioluminescence imaging. JG342 was 
delivered by IV injection at a final concentration of 0.5 mg/mL in 5% DMSO, 10% Cremophor 
RH40 and Saline. All mouse studies were performed according to UCSF Institutional Animal 
Care and Use Committee-approved protocols. 
 
Animal Pharmacokinetics 
The animal experiments were carried out in accordance with guidelines of the UCSF Animal 
Care and Use Committee. Two groups of NSG mice (three each group) were dosed with JG-342 
(formulation: 5% DMSO, 10% Cremophor RH 40 and Saline, 0.5 mg/ml) intravenously at 3 
mg/kg. Blood samples were collected through tail vein at 5mins, 15 mins, 30 mins, 60 mins, 2h, 
6h, 24h, and 48 h time points (4 time points each group). Compound concentrations in plasma 
were determined by LC/MS/MS, using a previously published protocol57.  
 
HSPA9 knockdown by CRISPRi 
Using previously published approaches58 we first generated two independent sgRNA’s upstream 
of the HSPA9 transcriptional start site, designed to repress transcription by the CRISPR 
intereference dCas9-KRAB fusion protein:  

g261l (2162 HSPA9_i1 HSPA9_-_137911022.23-P1P2): GTATCATGGCGGATAAATGG 

g314l (2163 HSPA9_i2 HSPA9_-_137911079.23-P1P2): GGAGCTGCGCGATGCGGTGG 

To generate lentivirus for stable transduction of these sgRNAs, 2.35 mL of incubated DMEM 
were aliquoted into four separate wells of a 6-well plate. 9e5 LentiX cells were added to each of 
these wells. The plate was allowed to incubate overnight at 37oC and 5% CO2. 
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After 24 hours, the following were added to 4 separate 1.5 mL Eppendorf tubes: 1.35 mg of 
pCMV plasmid, 0.165 mg of pMD plasmid, and 12 mL of Transfection 5 Reagent. 1.5 mg 
aliquots of g261l plasmid were added to two Eppendorf tubes, and 1.5 mg aliquots of g314l were 
added to the remaining two Eppendorf tubes. All four Eppendorf tubes were incubated at room 
temperature for 15 minutes. The contents of each Eppendorf tube were added to a LentiX cell-
containing well of the 6 well plate prepared the prior day. The plate was wrapped in parafilm and 
was incubated at 37oC and 5% CO2 for approximately 72 hours. 

After 72 hours of incubation, a 0.45mM filter was attached to a 3 mL syringe. The supernatant of 
one well from the six well plate was drawn up through the filter into the 3 mL syringe. The 
contents of the syringe was carefully ejected into a 15 mL Falcon tube. The tube was parafilmed 
and frozen at -80oC until future use. The same process was repeated for each well of LentiX 
cells in the 6-well plate. 

For knockdown we utilized an RPMI-8226 multiple myeloma cell line (RPMI-8226 JTC) 
engineered to stably express the dCas9-KRAB CRISPRi construct at the AAVS safe harbor 
locus35. This “insulator” approach avoids CRISPRi construct silencing during cell culture and 
passage. 1.5e6 RPMI8226 JTC cells were counted and aliquoted into two wells of a 6-well plate. 
6 uL of polybrene was added to each well. 1 mL of Lenti virus generated from g261l plasmid 
was added to one well and 1 mL of Lenti virus generated from g314l plasmid was added to other 
well. The plate was covered in parafilm and was spinfected for 2 hours at 1000 rcf. The cells 
were then incubated overnight at 37oC and 5% CO2. 

After 24 hours of incubation, the cells from each well were separately washed twice with PBS 
and resuspended in 10 mL of RPMI media (20% FBS/1% P/S). 2 ug of puromycin were added to 
each well. After two days, the cells media was changed and an additional 2 ug of puromycin 
were added to each well. Percentage of BFP positive cells were monitored after each round of 
selection using the PB450-A channel. After two cycles of puromycin selection, 1e6 cells were 
spun down and prepared for Western blotting as described above, with comparison to RPMI-
8226 JTC cells transduced with scrambled sgRNA 35. 

RNA-sequencing and data analysis  
RNA extraction, library preparation, and sequencing were performed at BGI (Shenzhen, China). 
Samples were sequenced using the BGISEQ-500 platform, with an average of 25.75 million 
reads per sample. For genome mapping, clean reads were mapped to reference genome using 
HISAT59 with an average of 94.2% mapping across samples. For gene expression analysis, clean 
reads were mapped to reference transcripts using Bowtie2 (ref.60) and expression levels 
calculated using RSEM61. Transcripts per million (TPM) were used for data analysis performed 
in R. Raw sequencing data has been deposited at the Gene Expression Omnibus (GEO) 
(accession number GSE148659). 
 
Western blot sample preparation and analysis 
For unfolded protein response and chaperone regulation blots, MM1.S cells were seeded at a 
density of 1e6/mL and treated with 2 or 3 µM JG342 or 3 µM JG98 for 2, 4, 8, 16, or 24 hours as 
indicated in figure legends. Puromycin treatment at 1 µM was performed at 37 C for 1 hour prior 
to collection. Cells were collected and washed with PBS, flash frozen, and stored at -80C prior to 
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lysis and western blot analysis. For Puromycin incorporation western blot, 5e6 KMS34 cells 
were plated in 5mLs of media in 6-well plates and treated for 22 hours with 2µM JG98, 7.5nM 
Bortezomib, 1µM CB-5083, 500nM DMAG, or DMSO. At 21 hours, cells were treated with 
1µM Puromycin (Thermo A1113803) for 1 hour prior to harvest, PBS wash, and storage at -80C. 
Cells pellets were lysed in 1X RIPA lysis buffer (Millipore) with HALT protease and 
phosphatase inhibitors (Thermo 78430), incubated on ice for 15 minutes, sonicated for 15 
seconds at 1 Hz cycles on ice, and cleared by centrifugation at 17000xg for 10 minutes at 4C. 
Western blots were performed as previously described62. Primary antibodies for immunoblotting 
were obtained from Cell Signaling (a-PERK 5683S, a-CHOP 2895S, a-Cleaved Caspase 3 
9644T, a-B-actin 3700S, a-HSPA5 3183S, a-HSPA9 3593S, a-HSPA8 8444S, a-MRPL11 
2066S, a-SOD2 13141T, a-RPS6 5G10), Kerafast (a-Puromycin EQ001), and Biolegend (a-
XBP1-S 143F) and used at manufacturer recommended dilutions. Ponceau-S (Thermo BP10310) 
and total protein stain or anti-b-actin were used as loading controls for immunoblots as indicated 
in figure legends.   
 
Drug treatments for mass spectrometry samples  
For experiments outlined in Figure 4A, 5e6 cells were seeded in 5 mL media in 6-well plates and 
treated with compounds for 22 hours at the following concentrations: MM1.S cells were treated 
with 1.75 µM JG98, 2.5 nM bortezomib, 1 µM CB-5083, 150 nM DMAG, or DMSO. RPMI-
8226 cells were treated with 1.5 µM JG98, 7.5 nM bortezomib, 1 µM CB-5083, 200 nM DMAG, 
or DMSO. KMS34 cells were treated with 2 µM JG98, 7.5 nM Bortezomib, 1 µM CB-5083, 500 
nM DMAG, or DMSO. Cells were harvested and washed with PBS, snap frozen in liquid 
nitrogen, and stored at -80C. For pulsed-SILAC experiments, MM1.S cells were grown in Light 
SILAC media for at least six passages to allow complete labeling and adaptation to dialyzed 
FBS. At time = 0, cells were exchanged to Heavy SILAC media with 350nM JG342 or DMSO. 
Cells were collected at 16, 21, and 26 time points, washed with PBS, snap frozen, and stored at -
80C. Light and Heavy SILAC media were composed as follows: Thermo RPMI media for 
SILAC (88365) supplemented with 10% dialyzed FBS, 70 mg/L Lysine (Sigma) or L-Lysine-
13C6,15N2 (Cambridge Isotope), 40mg/L Arginine (Sigma) or L-Arginine-13C6,15N4 (Cambridge 
Isotope), 200mg/L Proline (Sigma), and 1% PenStrep. 
 
Mass Spectrometry sample preparation 
Cell pellets were lysed in 6M GdnHCL, 0.1M Tris pH 8.5, with 5mM TCEP and 10mM 2-chloro 
acetamide. Lysates were sonicated for 45 seconds at 1 Hz cycles on ice and cleared by 
centrifugation at 16000g for 10 minutes at 4C. Protein concentration was measured with 660 
assay (Pierce 22660) and 100 µg protein was digested with 2 µg Trypsin (Pierce 90057) for 18-
22 hours with digestion halted by addition of TFA to 1% vol/vol. Acidified samples were 
centrifuged at 17,200g for 5 minutes at RT to remove precipitate. Cleared samples were desalted 
on SOLA columns (Thermo 60109001) according to manufacturer instructions and eluted in 
50% Acetonitrile with 0.1% FA and vacuum dried prior to storage at -80C. Miniaturized TMT 
labeling was performed based on modified protocol63. Briefly, peptide concentrations were 
measured using the Pierce Peptide Colormetric Assay (Pierce 23275). 20 ug peptides were 
resuspended in 17.5 uL 50 mM HEPES pH 8.5 and labeled with 50 µg TMT reagent dissolved in 
2.5 µL Acetonitrile for 1 hour at 25C and 500 rpm. Reactions were quenched by adding 
hydroxylamine to final concentration of 0.4% and incubation for 15 min at 500 rpm. TMT 
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labeled samples were combined, acidified by addition of 0.1% TFA, vacuum dried, and stored at 
-80C. 
 
High pH fractionations  
For 7-plex pSILAC-TMT, peptides were subjected to high pH fractionation using an XBridge 
C18 column (1.0x100mm, 3.5um, Waters) on a Waters 2796 Bioseparations Module HPLC 
machine with non-linear gradient designed as follows: start at 90% Buffer A (5% Acetonitrile, 
10mM TEAB) and 10% Buffer B (90% Acetonitrile, 10mM TEAB), ramp to 15% B over 8 
minutes, ramp to 27.7% B over 22 minutes, ramp to 46.6%B over 14 minutes, ramp to 55% B 
over 4 minutes, ramp 90% B over 6 minutes for column wash prior to re-equilibration. Fractions 
were collected every 30 seconds and every 10th fraction was combined for a final 10 fractions for 
mass spectrometry analysis. For 10-plex TMT shotgun experiments, peptides were fractionated 
using a High pH Reversed-Phase Fractionation kit (Pierce, 84868). Briefly, columns were 
prepared with two acetonitrile washes, followed by two 0.1% TFA washes. Samples were loaded 
onto the column and washed with HPLC grade water. Peptides were eluted in 8 fractions – 10%, 
12.5%, 17.5%, 20%, 22.5%, 25%, and 50% acetonitrile, 0.1% triethylamine. Samples were then 
vacuum dried and resuspended in 2% Acetonitrile, 0.1% formic acid for mass spec analysis.  
 
LC-MS/MS operation 
For 7-plex pulsed SILAC-TMT LC-MS/MS, 500 ng of peptides were injected into Easy-Spray 
reversed phase column (Thermo ES800) on a nanoACQUITY UPLC (Waters) coupled to a 
Fusion Lumos Mass Spectrometer (Thermo) with the following non-linear gradient in which A is 
0.1% Formic Acid and B is Acetonitrile plus 0.1% Formic Acid: 8% B to 30% B for 110 
minutes, 30% B to 50% B for 20 minutes, 50% B to 70% B for 5 minutes, 70% B to 80% B for 1 
minute, and 8% B for 7 minutes to re-equilibrate. For MS1 data acquisition, scan range was set 
to 375-1500 m/z, AGC target was set to 4e5, and maximum injection time (IT) was set to 50ms. 
For MS2 data acquisition, isolation window was set to 0.7 m/z, with HCD energy set to 38 
percent, orbitrap resolution was set to 50000, and AGC target was set to 1.0e5.  
For 10-plex TMT shotgun experiments, 1 µg of peptides were injected into a Dionex Ultimate 
3000 NanoRSLC instrument with 15-cm Acclaim PEPMAP C18 (Thermo, 164534) reverse 
phase column coupled to a Thermo Q Exactive Plus mass spectrometer. HPLC non-linear 
gradient was as follows with buffer A 0.1% FA and buffer B 0.1% FA in 80% Acetonitrile: 3-8% 
B for 11 minutes, 8-34% B for 80 minutes, 34-50% B for 15 minutes, 50-70% B for 5 minutes 
with hold at 70% for 3 minutes, and 99% B column wash for 4 minutes prior to re-equilibration 
for 13 minutes. For MS1 acquisition, spectra were collected in data dependent top 15 method 
with full MS scan resolution of 70,000, AGC target was set to 3e6, and maximum IT set to 50ms. 
For MS2 acquisition, resolution was set to 35,000, AGC set to 1e5, and maximum IT to 100ms 
with Normalized Collison energy of 32.  
 
Proteomic data analysis and quantification 
Mass spectrometry data was processed in Maxquant64 version 1.6.2.1 with the following settings: 
PSM/Protein FDR were set to 0.01, Carbidomethylation was set as fixed modification and 
methionine oxidation and N-terminal acetylation were set as variable modifications,  minimum 
peptide length = 7, matching time window set to 0.7 min, alignment time window set to 20 min, 
and match between runs was used, along with other default settings.  Data was searched against 
the Uniprot Swiss-Prot human proteome (ID:9606, downloaded from Uniprot in 2018). For 
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TMT-pSILAC multiplexing analysis, separate parameter groups were used for heavy and light 
labeled protein analysis run in the same MS2 experiment using the isobaric labels function in 
Maxquant. For the heavy parameter group, heavy arginine was set as fixed modification and 
heavy lysine modifications were added into TMT-tag masses without altering the diagnostic 
peaks, which denote the TMT cleaved label masses. Proteingroups files were exported from 
Maxquant, filtered to remove contaminants, and filtered for proteins with at least two unique 
peptides for analysis. For TMT-pSILAC data analysis the razor peptide was included for unique 
peptide count threshold. Data analysis was performed in Perseus65 and R. Subcellular 
compartment gene lists were downloaded from Uniprot and restricted to reviewed entries. The 
mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 
via the PRIDE66 partner repository with dataset identifiers PXD018617 and PXD018387.  
 
Gene Ontology (GO) Analysis  
Panther Overrepresentation Tests (Release 20190711) were performed on RNA-sequencing and 
proteomic datasets. Gene Ontology database used was released (2019-10-09), and FISHER test 
with FDR correction were used. For RNA-sequencing data, only genes with at least one 
measured TPM greater than 5 and no zero TPM values were used for background (10212 genes 
in background list). From this subset, genes with log2 fold changes greater than or equal to 1 in 
both replicates were considered as significantly upregulated and included in the analysis list. For 
downregulated nascent proteins from TMT-pSILAC experiment, nascent proteins with Z-score 
less than or equal to -2 and p-value less than or equal to 0.05 (n = 883) were used with 
background list all identified nascent proteins with minimum 2 unique peptides (n = 3104).  
 
Gene Set Enrichment Analysis (GSEA) 
GSEA software67 was downloaded from https://www.gsea-msigdb.org/. Median normalized 
TMT mass spec data across three cell lines (experiment outline in 4a) was used for input (4033 
genes). Gene set used was h.all.v6.2.symbols.gmt.  
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FIGURES and FIGURE LEGENDS 
 

 
Figure 1. Cytosolic HSP70 shows strongest genetic co-dependency with proteasome subunits in 
genome-wide CRISPR screen data. A. 406 genes involved in protein homeostasis were used in a 
Pearson Correlation clustering analysis of genome-wide pan-cancer CRISPR knockout dependency screen 
dataset downloaded from the DepMap portal (19Q1 release). B. The most prominent co-dependency 
cluster includes cytosolic HSP70s (red) and proteasome subunits. Additional clusters highlighted in white 
squares in A. analyzed in Supplementary Fig. 1. 
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Figure 2. PI-resistant MM models show increased sensitivity to allosteric HSP70 inhibitors. A-B. 
AMO-1 bortezomib resistant (BtzR) cells are more sensitive than WT cells to an example JG compound, 
JG194. C. A larger panel of JG compounds (n =16) also show increased potency against AMO-1 BtzR 
MM model than WT. D. JG342 exhibits LC50’s in the nM range against a panel of MM cell lines and 
exhibits a therapeutic index against both immortalized (HS5, HS27A) and patient-derived bone marrow 
stromal lines. E-G. JG342 exhibits increased potency against MM cell lines with intrinsic resistance to 
Bortezomib. HSP90 inhibitor 17-DMAG does not show the same phenotype. All results in A-G. 
performed in quadruplicate in 384 well plates, with viability measured using CellTiterGlo at 48 hours. H-
I. NSG mice (n = 3 per arm) were implanted with luciferase labeled RPMI-8226 MM cell line and dosed 
for two weeks with 3 mg/kg JG342 three times per week starting at day 14. JG342 exhibits modest in-
vivo anti-MM activity, quantified in (I.). All error bars indicate +/- S.D. 
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Figure 3. JG98 combination with proteostasis inhibitors leads to differential synergy and 
antagonism in MM cells. A. Bortezomib and JG98 combination shows mild synergy in RPMI-8226 
myeloma cells as assessed by ZIP score. B. Bortezomib and 17-DMAG (HSP90 inhibitor) show 
antagonism in KMS34 cells. C. Network maps showing synergy and antagonism scores for pairwise drug 
screens as in (A-B) across three myeloma lines (MM.1S, KMS-34, and RPMI-8226) and one AML cell 
line (CMK). Thickness of the line denotes strength (as absolute value) of synergy or antagonism, and 
scores between -2 and 2 were considered additive.  
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Figure 4. JG98 destabilizes the mitochondrial ribosome. A. Experimental schematic. KMS34, MM1.S, 
and RPMI-8226 MM lines were treated for 22 hr with Bortezomib (Proteasome), 17-DMAG (HSP90), 
CB-5083 (p97/VCP), JG98 (HSP70), or DMSO. Treatment doses were chosen based on LD30 in drug 
screens to ensure a cellular phenotype but avoid excessive cell death. (MM1.S cells were treated with 
1.75uM JG98, 2.5nM bortezomib, 1uM CB-5083, 150nM DMAG, or DMSO. RPMI-8226 cells were 
treated with 1.5uM JG98, 7.5nM bortezomib, 1uM CB-5083, 200nM DMAG, or DMSO. KMS34 cells 
were treated with 2uM JG98, 7.5nM Bortezomib, 1uM CB-5083, 500nM DMAG, or DMSO). 
Independent biological replicates for each cell line were combined in 10-plex TMT experiments and 
analyzed by mass spec. B. JG98 leads to selective depletion of 55S mitochondrial ribosome subunits; data 
aggregated across three cell lines (individual cell line data in Supplementary Fig. 5A-C). C. Log2-fold 
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changes for mitochondrial ribosome subunits vs. all other mitochondrial proteins; data aggregated across 
three cell lines. D. JG98 colocalizes with mitochondria in HS5 immortalized bone marrow stromal cells. 
E. JG342 and JG98, but not bortezomib, decrease the oxidative consumption rate (OCR) in HS5 cells. (n 
= 4 wells per treatment, performed 3 times.) *** = two-sided t-test p-value <0.001; **** = <0.0001. 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.052456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052456


 35 

 
 
 

 
Figure 5. JG342 destabilizes nascent and mature mitochondrial ribosome subunits in the context 
global translational slowdown. A. Pulsed-SILAC experimental schematic. Briefly, MM1.S cells grown 
in Light SILAC media are switched to Heavy SILAC media containing 350 nM JG342 or DMSO at t = 0 
hr. Cells are collected at 16, 21, 26 hours, lysed, and proteins digested with trypsin, followed by TMT 
labeling. Samples are combined in 7-plex experiments, fractionated by HPLC and analyzed by MS/MS on 
Orbitrap Fusion Lumos. B-C. Log2-fold changes under 350nM JG342 vs. DMSO across timepoints 
separating heavy-labeled nascent (B) and light-labeled mature (C) protein indicate MRPS21 and MRPL37 
are among most prominently depleted nascent proteins after JG342. D-E. Log2-fold changes across 
timepoints for JG342 treated vs. DMSO for nascent (D) and mature (E) proteins in endoplasmic reticulum 
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(ER), mitochondria (Total mito), mitochondrial ribosome (Mito-ribo), and rest of the proteome (Total 
cell, excludes proteins included in previous three categories) demonstrates depletion of mitochondrial 
ribosome subunits. F. RNA-seq TPM log2-fold changes between JG342 and DMSO treated samples from 
26 hr timepoint. ** = two-sided t-test p-value < 0.01, *** < 0.001. 
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Figure 6. JG compounds activate the UPR without compensatory chaperone upregulation in 
myeloma cells. A. JG342 (3 µM) activates the unfolded protein response in MM1.S cells. B. JG342 (2 
µM) leads to translational slowdown without upregulation of major HSP70 isoforms HSPA5 (BiP, 
endoplasmic reticulum), HSPA9 (mitochondria), or HSPA8 (cytosolic). Puromycin incorporation 
performed by 1 hr incubation of 1µM puromycin at each designated time point. C. TMT-proteomics (data 
from experiment outlined in Fig 4A) identifies relative lack of compensatory chaperone upregulation in 
JG98-treated cells. Analysis here shows 244 proteins out of 441 curated proteostasis genes quantified in 
TMT mass spectrometry experiments across three cell lines.  
 
  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.052456doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052456


 38 

 
Figure 7. High baseline expression of proteostasis genes, especially HSPA9 and mitoribosome 
subunits, lead to poorer outcomes in MM patients treated with PIs. A-D. Kaplan-Meier curves for 
overall survival stratified by top and bottom 20 percent of patients for RNA-expression of HSPA9 
(mitochondrial HSP70), HSPA8 (cytosolic HSP70), HSPA5 (ER HSP70), and an aggregate 60 gene score 
of mitoribosome subunits. All RNA-seq (in TPM, from CD138+ enriched tumor cells at MM diagnosis) 
and overall survival data from 773 patients in the Multiple Myeloma Research Foundation CoMMpass 
study release IA14. E. Volcano plot of proteostasis genes using p-values for predictions of relative 
progression-free survival (PFS) for top and bottom 20% of patients by gene expression (in TPM). 241 
genes from 441 from curated proteostasis gene list are included. Genes were included if expressed at 
TPM >1 across all MM samples and had reached median PFS value in both the top- and bottom-quintiles 
of expression. Difference in median PFS in days shown along x-axis. HSPA9 is one of the strongest 
predictors of poor PFS when highly expressed.  F. Kaplan-Meier curves for RNA-expression of PSMD2 
shows decreased overall survival in patients with high PSMD2 at baseline. All p-values by log-rank test. 
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SUPPLEMENTARY FIGURES and TABLE 
 

 
Supplementary Figure 1. Additional genetic co-dependency clusters. A. Crispr-knockout co-
dependency validations of gene pairs included in prominent cluster shown in Fig. 1B. B.-C. Additional 
co-dependency clusters as noted in white highlight in Fig. 1B. Data from DepMap CRISPR Avana 19Q1 
release.  
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Supplementary Figure 2. Structure of JG compounds tested in AMO-1 and AMO1-BtzR cell lines. 
The synthesis and characterization of JG compounds was previously described in ref.16. 
  

Compd R1 R2 Compd R1 R2 

JG-98 5-Cl 
 

JG-193 4-CH3 
 

JG-194 5-CH3 
 

JG-220 5-isopropyl 
 

JG-231 5-Cl 
 

JG-240 5-F 
 

JG-274 5-Cl 
 

JG-285 5-CH3 
 

JG-300 5-CH2CH3 
 

JG-332 5-F 
 

JG-342 5-CH2CH3 
 

JG-345 5-CH2CH3 
 

JG-351 5-OCH3 
 

JG-361 4-CH3 
 

JG-366 4-CH3 
 

JG-375 5-CH3 
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Supplementary Figure 3. Additional data on JG differential sensitivity and murine studies. A-C. 
Intrinsically and evolved proteasome-inhibitor resistant cell lines are more sensitive to JG98, JG351, and 
JG361 than intrinsically sensitive lines (same lines used as in Fig. 2E-G). D. Total HSP70 and BAG3 
levels in multiple myeloma cell lines compared with average µM LD50s over 10 JG analogs (LD50 data 
from Fig. 2C). Note that bortezomib-resistant (BtzR) AMO-1 line demonstrates higher expression of total 
HSP70 than parental AMO-1, consistent with proteomic results of ref.9. However, across lines there is no 
correlation with HSP70 or BAG3 expression and sensitivity to JG compounds. E. Two groups of NSG 
mice (n=3 per group) were dosed with JG342 (formulation: 5% DMSO, 10% Cremophor RH 40 and 
Saline, 0.5 mg/ml) intravenously at 3 mg/kg. Blood samples were collected through tail vein at 5 mins, 15 
mins, 30 mins, 60 mins, 2h, 6h, 24h and 48 h time points, and compound concentrations in plasma were 
determined by LC/MS/MS. F. Body weights of mice relative to start of trial for mice treated with vehicle 
or 3mg/kg JG342 demonstrate limited tolerability of ongoing JG342 treatment (n = 5 per arm; data shown 
+/- S.D.), mouse study as in Fig. 2H-I. 
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Supplementary Figure 4. Differential drug combination effects are not influenced by baseline target 
gene expression. A. ZIP synergy scores for 72-hour combination assays in 3 myeloma (KMS34, MM.1S, 
RPMI-8226) and one AML cell line (CMK), as shown graphically in Fig. 3C. B. Gene expression from 
RNA-sequencing (in log2(TPM+1)) for canonical drug targets of 17-DMAG, JG98, CB-5083, and 
Bortezomib (HSP90 isoforms, major HSP70 isoforms, VCP, and PSMB5, respectively), shows similar 
baseline proteostasis gene expression across lines. CCLE gene expression data downloaded from DepMap 
portal (release 19q1). 
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Supplementary Figure 5. Further proteomic analysis of mitoribosome depletion after JG98 
treatment. A.-C. Shotgun proteomic data across the three individual MM cell lines included in the 
aggregate data of Fig. 4B demonstrate consistent depletion of mitoribosome subunits (in blue) after JG98 
treatment. Labeled mitoribosome subunits have log2-fold change less than -0.5 and p-value less than 0.05. 
D.-E. Log2-fold changes for whole proteome and mitochondrial proteins after treatment with Bortezomib, 
CB-5083, DMAG, and JG98, as in Fig. 4; data consolidated across three cell lines. F. Log2- fold changes 
for drug treatment vs. DMSO for 55S mitoribosome and 80S ribosome subunits, as in Fig. 4; data 
consolidated across three cell lines. Analysis shows that only JG98 has selective depletion of 
mitoribosome subunits. Box and whiskers plot shows median, 25th and 75th percentile (box) and tails of 
distribution (whiskers). 
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Supplementary Figure 6. Mitochondrial morphology and mitoribosome depletion validation 
experiments. A. MM.1S cells were treated for 24 hours with 1.75µM JG98, 2.5 nM Bortezomib, 1µM 
CB-5083, 150 nM DMAG (LD30 doses from drug screens in MM.1S, as used in shotgun proteomics 
experiment) or DMSO. MRPL11 levels detected by western blot. Ponceau stain shown as loading control.  
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B. MM1.S cells were treated with JG342 at 2µM for 8 and 24 hours and SOD2 expression was measured 
by western blot, confirming findings by proteomics. C. AMO-1 cells were treated with 1µM JG342 or 
JG98 prior to mitochondrial isolation and flow cytometry of isolated mitochondria and intact cells. JG 
compounds were visualized by FITC fluorescence. D. Representative confocal microscopy images of HS5 
bone marrow stromal cells treated with 1 µM JG98, 1 µM JG342, or DMSO for 15 hr with 30 min 
incubation with 100 nM Mitotracker Deep Red prior to fixation (4% PFA, 15 min at 22 ºC) and imaging. 
E. Mitochondrial membrane potential measured by DiIC1(5) fluorescence in MM1.S cells treated with 1 
µM JG compounds, 5 nM bortezomib, or 2 µM tigecycline (mitochondrial protein synthesis inhibitor) for 
24 hours and analyzed by flow cytometry. 100 µM Carbonyl cyanide chlorophenyl hydrazone (CCCP) is 
used as a positive control compound known to decrease mitochondrial membrane potential. F. RPMI-
8226 MM cells with stable integration of the CRISPR interference dCas9-KRAB construct35 were 
transduced with a non-targeting guide RNA or two independent guide RNAs targeting HSPA9. Western 
blotting was performed for HSPA9, MRPL11, and RPS6. Quantification versus beta-actin loading control 
and with relative fold-change of two HSPA9 sgRNAs vs. scramble sgRNA, in two independent replicates, 
demonstrates significant depletion of MRPL11 but not RPS6. p-val from two tailed t-test. 
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Supplementary Figure 7. Dynamic transcriptome-proteome alterations after JG analogs. A. RNA-
sequencing data from 26 hr time points across biological replicates. Genes with log2-fold changes >|1| in 
both replicates (in blue) were considered upregulated or downregulated. Upregulated genes were used for 
Gene Ontology analysis in Supplementary Table 1. B. Log2-fold changes for 26 hr time point for RNA 
and nascent protein across timepoints. 80S ribosome subunits are enriched in post-transcriptionally 
regulated proteins, consistent with known translational response to drug-induced stress. Mitoribosome 
subunit MRPS21 is the most-depleted nascent protein among all quantified. 
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Supplementary Figure 8. Further investigation of the UPR and translational slowdown. A. RNA-
seq data for log2-fold changes for JG342 vs. DMSO treated MM.1S cells from 26-hour timepoint (as in 
Fig 5E). B. Unfolded Protein Response (UPR) induction in MM.1S cells treated with 3 µM JG98. C. 
“Unfolded Protein Response” has the highest net enrichment in GSEA analysis for JG98 treatment 
combined proteomic data from three cell lines (Normalized enrichment score (NES) = 2.4, FDR q-value = 
0.043, data from experiment outlined in Fig. 4A). D. Translational slowdown via puromycin 
incorporation and total HSP70 levels in KMS34 cells treated with 2µM JG98, 7.5nM Bortezomib, 1µM 
CB-5083, 500nM 17-DMAG, or DMSO for 22 hours and 1 µM Puromycin for 1 hour. Consistent with 
proteomic data, only Btz and 17-DMAG show an increase in total HSP70, while all drugs lead to 
translational slowdown due to the Integrated Stress Response.  
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Supplementary Figure 9. Further survival correlations in MM patients of proteostasis genes and 
disease evolution at first relapse. A-C. Kaplan-Meier curves showing overall survival from CoMMpass 
trial for patients stratified by HSPA4, HSPA13, and PSMC2 RNA levels (patients in top 20% of gene 
expression in blue, bottom 20% in gold, as in Fig. 7). D-E. Volcano plot illustrating RNA-seq expression 
fold changes (in counts) for 50 CoMMpass patients with tumor sample at 1st-relapse vs. diagnosis. HSP70 
isoforms labeled in red and mitoribosome subunits labeled in green (D) and 20S core proteasome subunits 
labeled in red and 19S cap subunits in blue (E).  
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GO biological processes (upregulated in RNA-seq) 

Fold 
Enrichment  
(JG342/DMSO) FDR 

L-serine metabolic process (GO:0006563) 31.54 1.93E-04 
serine family amino acid metabolic process 
(GO:0009069) 16.52 5.09E-05 
intrinsic apoptotic signaling pathway in response to 
endoplasmic reticulum stress (GO:0070059) 15.25 5.44E-04 

cellular amino acid biosynthetic process (GO:0008652) 9.91 6.42E-04 

alpha-amino acid metabolic process (GO:1901605) 5.76 5.15E-04 
 
Supplementary Table 1. Upregulated Gene Ontology biological processes after JG342 treatment in 
MM.1S cells from RNA-seq data (FDR <1e-3) 
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Supplementary Dataset 1 (attached as Excel file): Curated list of genes included in proteostasis 
mapping. 
 
Supplementary Dataset 2 (attached as Excel file): Proteomic data results from TMT shotgun 
proteomics experiments. 
 
Supplementary Dataset 3 (attached as Excel file): Proteomic data results from TMT-pSILAC 
proteomics experiments. 
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