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 2 

Abstract 15 

Bacterial communities in the environment and in infections are typically diverse, yet we 16 

know little about the factors that determine interspecies interactions. Here, we apply 17 

concepts from ecological theory to understand how biotic and abiotic factors affect 18 

interaction patterns between the two opportunistic human pathogens 19 

Pseudomonas aeruginosa and Staphyloccocus aureus, which often co-occur in 20 

polymicrobial infections. Specifically, we conducted a series of short- and long-term 21 

competition experiments between P. aeruginosa PAO1 (as our reference strain) and 22 

three different S. aureus strains (Cowan I, 6850, JE2) at three different starting 23 

frequencies and under three different environmental (culturing) conditions. We found 24 

that the competitive ability of P. aeruginosa strongly depended on the strain background 25 

of S. aureus, whereby P. aeruginosa dominated against Cowan I and 6850, but not 26 

against JE2. In the latter case, both species could end up as winners depending on 27 

conditions. Specifically, we observed strong frequency-dependent fitness patterns, 28 

including positive frequency dependence, where P. aeruginosa could dominate JE2 only 29 

when common, but not when rare. Finally, changes in environmental (culturing) 30 

conditions fundamentally altered the competitive balance between the two species, in a 31 

way that P. aeruginosa dominance increased when moving from shaken to static 32 

environments. Altogether, our results highlight that ecological details can have profound 33 

effects on the competitive dynamics between co-infecting pathogens, and determine 34 

whether two species can co-exist or invade each others’ populations from rare. 35 

Moreover, our findings might parallel certain dynamics observed in chronic 36 

polymicrobial infections. 37 
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Importance 38 

Bacterial infections are frequently caused by more than one species and such 39 

polymicrobial infections are often considered more virulent and more difficult to treat 40 

than the respective monospecies infections. Pseudomonas aeruginosa and 41 

Staphyloccocus aureus are among the most important pathogens in polymicrobial 42 

infections and their co-occurrence is linked to worse disease outcome. There is great 43 

interest in understanding how these two species interact with each other and what the 44 

consequences for the host are. While previous studies have mainly looked at molecular 45 

mechanisms implicated in interactions between P. aeruginosa and S. aureus, here we 46 

show that ecological factors such as strain background, strain frequency and 47 

environmental conditions are important elements determining population dynamics and 48 

species co-existence patterns. We propose that the uncovered principles may also play 49 

major roles in infections, and therefore proclaim that an integrative approach combining 50 

molecular and ecological aspects is required to fully understand polymicrobial 51 

infections.  52 

 53 
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Introduction 54 

Bacteria typically live in complex multi-species communities in the environment and 55 

associated with host organisms (1–3). The same holds true in the case of disease, as it 56 

is increasingly recognized that a majority of bacterial infections are polymicrobial, 57 

meaning that they are caused by more than one bacterial species (4, 5). There is great 58 

interest in understanding how bacteria interact and how interactions affect a community 59 

and the associated hosts (6–8). At the mechanistic level, a multitude of ways have been 60 

unraveled through which bacterial species can interact, with mechanisms including 61 

cross-feeding, quorum sensing-based signaling, toxin-mediated interference and 62 

physical interactions via contact-dependent systems (e.g. type VI secretion system) (9–63 

11). In the context of disease, a key question is how interactions affect species 64 

successions in chronic infections and whether multispecies infections are more virulent 65 

and more difficult to treat than the respective monospecies infections, as it is commonly 66 

assumed (5, 12–14). 67 

 68 

Studying interactions between the two opportunistic human pathogens 69 

Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) has emerged as a 70 

popular and relevant model system (15–17). The reason for this is that the two species 71 

often co-occur in infections, including cystic fibrosis (CF) lung and wound infections 72 

(18–20). Results from laboratory experiments suggest that PA is the superior species, 73 

suppressing growth of SA (21–23) and indeed, PA seems to be a well-equipped 74 

competitor. For example, it has been shown that 4-hydroxy-2-heptylquinoline N-oxide 75 

(HQNO) released by PA inhibits the electron transport chain of SA and induces the 76 
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formation of small colony variants (22, 24). Furthermore, the PA endopeptidase LasA is 77 

capable of lysing SA cells, a process that releases iron into the environment, potentially 78 

providing a direct benefit to PA (21, 25). Finally, we also know that PA can rapidly adapt 79 

to the presence of SA and improve its competitive abilities (26).  80 

 81 

In this study, we follow a complementary approach to examine how biotic and abiotic 82 

ecological factors influence interactions between PA and SA. Previous work has 83 

primarily focused on the molecular mechanisms driving interactions between specific 84 

strain pairs under defined laboratory conditions. Here we hypothesize that not only 85 

molecular mechanisms, but also ecological factors will have a major impact on species 86 

interactions, particularly on community composition and temporal dynamics between 87 

species. To test our predictions, we used PA strain PAO1 as our focal strain and asked 88 

how (competitive) interactions with SA vary when manipulating: (1) the genetic 89 

background of SA; (2) the frequency of SA in competition with PA; and 90 

(3) environmental (culturing) conditions.  91 

 92 

To vary the genetic background of SA, we competed PA against the three different SA 93 

strains Cowan I, 6850 and JE2. These strains fundamentally differ in several 94 

characteristics (Table 1). Cowan I is a methicillin-sensitive SA strain (MSSA), which is 95 

highly invasive towards host cells, non-cytotoxic and defective in the accessory gene 96 

regulator (agr) quorum-sensing system (27). 6850 is another MSSA strain, which is 97 

highly invasive, cytotoxic and haemolytic (28–30). Finally, JE2 is a methicillin-resistant 98 

(MRSA) USA300 strain, which is highly virulent, cytotoxic and hemolytic (31, 32). Given 99 
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 6 

the tremendous differences between these SA strains, we expect PA performance in 100 

competition with SA to vary substantially. 101 

 102 

To manipulate strain frequency, we competed PA against SA at three different starting 103 

frequencies (1:9 ; 1:1 ; 9:1). Frequency-dependent fitness effects occur in many 104 

microbiological systems (33–36). A common pattern is that species enjoy relative fitness 105 

advantages when rare, but not when common (so-called negative frequency 106 

dependence), a phenomenon that can lead to stable co-existence of competitors. A 107 

rarer pattern is that species enjoy relative fitness advantages only when common in the 108 

population (so-called positive frequency dependence), meaning that initially rare 109 

species will not be able to invade an established population.  110 

 111 

To manipulate environmental conditions, we changed simple parameters of our 112 

culturing conditions. First, we compared the performance of PA against SA strains in 113 

shaken liquid vs. viscous medium. Increased environmental viscosity has been shown 114 

to increase spatial structure, thereby decreasing strain interaction rates (37–39). 115 

Second, we compared the performance of PA against SA in shaken vs. static 116 

environments. While static conditions also reduce strain mixing, it further leads to a 117 

more heterogeneous environment characterized by gradients from the aerated air-liquid 118 

interface down to the microoxic bottom of a culture (40, 41). 119 

 120 

In a first experiment, we assessed the growth performance of all strains in monoculture. 121 

Basic growth differences between strains could induce frequency shifts in co-cultures 122 
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 7 

even in the absence of direct interactions. We then performed high-throughput 24 hours 123 

batch culture competition experiments between PA and SA using a full-factorial design. 124 

All three species combinations were competed at all three starting frequencies under all 125 

three environmental conditions (see Figure 1 for an illustration of the workflow). Finally, 126 

we followed the temporal dynamics between PA and SA over five days to assess 127 

whether results from 24 hours competitions are predictive for more long-term dynamics 128 

between species and whether species coexistence is possible. 129 
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Results 130 

PA grows better than SA in monoculture 131 

We used tryptic soy broth (TSB) as the standard medium for all our assays. In this 132 

medium, we found that the number of doublings varied significantly among strains 133 

during a 24 hours growth cycle (ANOVA: F3,20 = 10.91, P = 0.0002, Figure 2 and see 134 

Table S1 for the full statistical analysis). PA had the highest number of doublings (20.6 135 

± 0.65, mean ± SD), followed by SA strains 6850 (18.9 ± 1.14), Cowan I (18.1 ± 0.42) 136 

and JE2 (18.0 ± 1.17). While PA grew significantly better than all SA strains, the number 137 

of doublings did not differ between the three SA strains (TukeyHSD pairwise 138 

comparisons: Cowan I vs. 6850 Padj = 0.3717, 6850 vs. JE2 Padj = 0.3247, Cowan I vs. 139 

JE2 Padj = 0.9996). Due to its moderate growth advantage, PA is expected to slightly 140 

increase in frequency in competition with SA strains, even in the absence of any direct 141 

species interactions.  142 

 143 

Genetic background, strain frequency and environmental factors all influence 144 

competition outcomes 145 

The full-factorial design allowed us to simultaneously analyze the impact of SA strain 146 

genetic background, starting frequency, and culturing condition on the competitive 147 

outcomes between PA and SA strains. Our linear statistical model yielded a significant 148 

triple interaction between the three manipulated factors (strain genetic background, 149 

starting frequency and culturing condition; ANCOVA: F4,509 = 3.41, P = 0.0091). While 150 

this shows that all three manipulated factors influence the competitive outcomes 151 

between PA and SA in complex ways, the triple interaction makes it difficult to tease 152 
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apart the various effects. The statistical procedure for such cases is to split the model 153 

into sub-models. We followed this approach by first analyzing separate models for each 154 

of the three environmental conditions (shaken, viscous, static), and then split models 155 

according to SA strain background to test for differences between environmental 156 

conditions. 157 

 158 

The competitive ability of PA depends on the SA strain genetic background 159 

Under all three environmental conditions, we found that the relative fitness of PA 160 

significantly depended on the SA strain background (ANCOVA, shaken: F2,170 = 90.87, 161 

P < 0.0001; viscous: F2,168 = 116.76, P < 0.0001; static: F2,170 = 56.52, P < 0.0001; 162 

Figure 3). Against Cowan I (Figure 3, column 1), we noted that PA consistently won the 163 

competitions across all starting frequencies and culturing conditions. SA strain 6850 164 

(Figure 3, column 2) turned out to be more competitive than Cowan I under shaken 165 

conditions (t176 = -6.74, P < 0.0001), while it lost similarly against PA under viscous and 166 

static conditions (viscous: t174 = 0.78, P = 0.4350; static: t176 = -1.99, P = 0.0482). In 167 

contrast, JE2 was the most competitive SA strain in our panel (Figure 3, column 3), 168 

performing significantly better than the other two SA strains under all conditions (see 169 

Table S2 for the full statistical analysis), and outcompeted PA under shaken and 170 

viscous conditions. 171 

 172 

The competitive ability of PA depends on its starting frequency in the population 173 

We found that the starting frequency of the two competitors had varying but always 174 

significant effects on the competitive ability of PA (ANCOVA, shaken: F1,170 = 52.81, 175 
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P < 0.0001; viscous, interaction with strain background: F2,168 = 10.05, P < 0.0001; 176 

static: F1,170 = 162.32, P < 0.0001). Under shaken conditions (Figure 3, row 1), we 177 

observed that the relative fitness of PA increased when initially more common, thus 178 

following a positive frequency-dependent pattern. Under viscous conditions (Figure 3, 179 

row 2), the same positive frequency-dependent effect was only observed when PA 180 

competed with JE2. In competition with Cowan I or 6850, we noted that the relative 181 

fitness of PA peaked at intermediate starting frequencies. Under static conditions 182 

(Figure 3, row 3), we observed a pattern opposite to the one seen under shaken 183 

conditions for all strain pair combinations. The relative fitness of PA decreased when 184 

initially more common, thus following a negative frequency-dependent pattern (see 185 

Table S2 for the full statistical analysis).  186 

 187 

The competitive ability of PA is highest under static conditions  188 

Next, we compared the competitive outcomes among the different culturing conditions 189 

(shaken, viscous and static) for each strain combination separately. For all 190 

combinations, the culturing condition significantly affected competition outcomes 191 

(ANCOVA, Cowan I: F2,168 = 461.73, P < 0.0001; 6850: F2,167 = 428.16, P < 0.0001; JE2: 192 

F2,168 = 199.95, P < 0.0001). In competition with all three SA strains, we found that the 193 

relative fitness of PA was significantly higher under static compared to shaken 194 

conditions (Cowan I: t174 = 19.99, P < 0.0001; 6850: t174 = 17.99, P < 0.0001; JE2: t174 = 195 

15.39, P < 0.0001). In contrast, there were no significant differences in the relative 196 

fitness of PA between shaken and viscous conditions for Cowan I (t174 = 0.91, P = 197 

0.3644) and JE2 (t174 = 0.82, P = 0.4117), while against 6850, PA was more competitive 198 
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under viscous than shaken conditions (t174 = 3.53, P = 0.0005) (see Table S2 for the full 199 

statistical analysis).  200 

 201 

Temporal dynamics between PA and SA 202 

In a next experiment, we competed PA and SA strains over five days under shaken 203 

conditions using the same three starting frequencies and by transferring cultures to 204 

fresh medium every 24 hours. The aim of this experiment was to follow the more long-205 

term species dynamics and to assess whether stable coexistence between PA and SA 206 

can arise. 207 

  208 

In competition with Cowan I, we found PA to be the dominant species (Figure 4a). It 209 

strongly increased in frequency already at day 1 under all starting frequencies and 210 

almost completely outcompeted Cowan I by day 3 (i.e., Cowan I remained below 211 

detection limit). Thus, we could not observe coexistence between PA and Cowan I. In 212 

competition with 6850, we observed similar population dynamics (Figure 4b). PA 213 

strongly increased in frequency from day 1 onwards at all starting frequencies and after 214 

three days, the bacterial populations almost entirely consisted of PA. Only in 10 out of 215 

30 populations, 6850 managed to persist at very low frequencies by day 5 (< 3% in nine 216 

cases, and 13% in one case). In competition with JE2, we found community trajectories 217 

that were strikingly different from the other two strain combinations (Figure 4c). First, we 218 

observed that JE2 was a strong competitor, keeping PA at bay in many populations 219 

during the first 24 hours of the experiment. Following day 1, community dynamics 220 

followed positive frequency-dependent patterns. In all populations with intermediate or 221 
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high PA starting frequencies, PA became the dominant species, and SA was recovered 222 

at low frequency in only a minority of populations by day 5 (3 out of 20 at < 10% of the 223 

population). In stark contrast, in populations where PA was initially rare, it did not 224 

increase in frequency, could not invade the SA populations and remained at a low 225 

frequency (< 10%) throughout the 5 days.226 
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Discussion 227 

Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) frequently occur 228 

together in polymicrobial infections, where they cause severe host damage and lead to 229 

increased morbidity and mortality in patients (14, 42, 43). Consequently, there is high 230 

interest in understanding how PA and SA interact and how their interactions may 231 

influence disease outcome (12, 15). While most previous studies have focused on 232 

molecular aspects (44, 45), we here examined how a set of ecological factors affect 233 

competitive interactions between the two species. Our study, carried out in an in vitro 234 

batch culture system, revealed that: (i) the competitive ability of PA varied extensively 235 

as a function of the genetic background of SA; (ii) there were strong frequency-236 

dependent fitness patterns, including positive-frequency dependent relationships where 237 

PA could only dominate a particular SA strain when common, but not when rare; and 238 

(iii) changes in environmental (culturing) conditions fundamentally affected the 239 

competitive balance between the two species. The key conclusion from our results is 240 

that ecology matters, and that variation in biotic and abiotic factors affect interactions 241 

between pathogenic bacterial species. This is most likely not only the case in in vitro 242 

systems, but also in the context of polymicrobial infections. 243 

 244 

PA has often been described as the dominant pathogen possibly displacing SA in 245 

infections (21, 46–48). Our results support this view, as PA dominated over SA under 246 

many conditions in 24 hours and 5-day competition experiments (Figures 3 and 4). 247 

However, PA did not always emerge as the winner and its success significantly varied in 248 

response to the genetic background of SA. Specifically, JE2 was the strongest 249 
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competitor, followed by 6850 and Cowan I. Our observation that all the three SA strains 250 

grow similarly in TSB (Figure 1) rules out the possibility that simple growth rate 251 

differences explain the variation in competitive abilities of SA strains (at least under 252 

shaken conditions). Instead, we found that the competitive ability of SA against PA 253 

correlated with their reported virulence level in infections (27, 29, 32). This could 254 

indicate that factors important for SA virulence (e.g. toxins or secreted enzymes) might 255 

also be involved in interactions with competitor bacteria. For JE2 and related USA300 256 

isolates, there are many genetic determinants known to be important for their success 257 

as opportunistic human pathogens (49). Among them are the cytotoxin Panton-258 

Valentine leukocidin (PVL), the arginine catabolic mobile element (ACME) and the 259 

phenol soluble modulins (PSMs) (50). Interestingly, derivatives of PSMs have previously 260 

been shown to exhibit inhibitory activity against Streptococcus pyogenes (51). The 261 

authors of this work suggested that high production of PSMs might not only benefit SA 262 

in host colonization, but also in competition against coinfecting pathogens. Thus, it 263 

seems plausible that the USA300 derivative JE2 deploys a similar mechanism against 264 

PA in our competition experiments. Strain 6850 showed intermediate competitiveness 265 

against PA. As Cowan I, 6850 is a MSSA strain, but it is known to be more virulent than 266 

Cowan I and therefore likely produces certain substances that could also be important 267 

in competition with PA (27, 29). Conversely, Cowan I is known to have a nonfunctional 268 

accessory gene regulator (agr) quorum sensing system (27). The agr controls most 269 

virulence determinants in SA (52). If virulence determinants also play a role in 270 

interspecies competition, then this could explain why Cowan I turned out to be the least 271 

competitive SA strain against PA. One aim of our future work is to follow up this 272 
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mechanistic lead to explain differences in the competitive abilities of the different SA 273 

strains.  274 

 275 

Another insight from our experiments is that the competitive ability of PA often 276 

depended on its starting frequency in the population, and that the type of frequency-277 

dependent interactions (positive or negative) varied across environmental conditions 278 

(Figure 3). Under static conditions, we observed that the relative fitness of PA declined 279 

when more common in the population, but PA still won at all frequencies. This pattern is 280 

common for a highly dominant species that drives a competitor to extinction (53). Its 281 

decline in relative fitness simply reflects the fact that the room for further absolute 282 

frequency gains is reduced when a high frequency is already reached. In stark contrast, 283 

under shaken conditions, we found that the relative fitness of PA increased when it was 284 

more common in the population. Against Cowan I and 6850, this positive frequency-285 

dependent fitness pattern did not affect the long-term community dynamics and PA won 286 

at all frequencies (Figure 4a+b). Against JE2, however, the 24 hours competition data 287 

suggest that, in most cases, PA cannot invade populations when initially rare and this is 288 

exactly what we observed in the long-term experiments: when its initial frequency was 289 

below 10%, PA did not increase in frequency, while it always fixed in the population or 290 

reached very high frequencies when initially occurring above 10%. There were two 291 

additional interesting observations with regards to PA-JE2 long-term dynamics. First, 292 

there were no major changes in PA frequency relative to JE2 during the first 24 hours 293 

(compatible with the competition assay data in Figure 3), and clear positive-frequency 294 

dependent patterns only emerged from 48 hours onwards. One possible explanation for 295 
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this pattern is that PA is initially naïve, but then senses and mounts a more competitive 296 

response over time (54). Second, one replicate (starting frequency 1:1) did not follow 297 

the above rules: PA continuously dropped in frequency until day 4 (11%) and then 298 

sharply increased to 93% on day 5. This frequency “zigzag” pattern is an indicator of 299 

antagonistic co-evolution (55), where the spread of a beneficial mutation in one species 300 

(SA) is followed by a counter-adaptation in the competing species (PA). It therefore 301 

seems that such evolutionary dynamics can already occur within relatively short periods 302 

of time.  303 

 304 

Our results further show that the competitive ability of PA is profoundly influenced by 305 

environmental (culturing) conditions (Figure 3). The largest differences arose between 306 

shaken and static culturing conditions with PA being most competitive in the latter 307 

environment. PA is known to be metabolically versatile, it is motile and grows well under 308 

microoxic conditions (56, 57). Static conditions introduce strong oxygen and nutrient 309 

gradients, and our results suggest that PA grows better under these conditions than SA. 310 

Furthermore, oxygen availability has previously been shown to influence interactions 311 

between PA and SA clinical isolates (58). With regard to medium viscosity, we initially 312 

hypothesized that increased spatial structure could temper competitive interactions and 313 

favor species co-existence, as competitors are spatially more segregated from each 314 

other (37, 59, 60). However, we found no support for this hypothesis as the competitive 315 

ability of PA did not differ between shaken and viscous environments. While the spatial 316 

structure, introduced through the addition of agar to the liquid growth medium, had 317 

significant effects on within-species social interactions in other study systems (53, 61), it 318 
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did not affect the between-species interactions in our setup. One reason might be that 319 

the degree of spatial structure introduced (0.2% agar in TSB) was simply not high 320 

enough to see an effect. This could especially be true if toxins were involved in 321 

mediating interactions – small molecules that can freely diffuse and target competitors 322 

that are not physically close-by. 323 

 324 

We argue that our results, even though they stem from an in vitro system, have at least 325 

three important implications for our understanding of polymicrobial infections. First, we 326 

show that the biological details of the strain background matter and determine who is 327 

dominant in a co-infection and whether co-existence between species is possible. Thus, 328 

we need to be careful not to overinterpret interaction data from a single PA-SA strain 329 

pair and conclude that the specific details found apply to PA-SA interactions in general. 330 

Second, there might be strong order effects, such that the species that infects a host 331 

first cannot be invaded by a later arriving species. This scenario applied to the 332 

interactions between PA and SA strain JE2, which were both unable to invade 333 

populations of the other species from rare. Finally, local physiological conditions at the 334 

infection site, like the degree of spatial structure or oxygen supply, can shift the 335 

competitive balance between species. This suggests that infections at certain sites 336 

might be more prone than others to polymicrobial infections, or to experience ecological 337 

shifts from one pathogen to another. To sum up, we wish to reiterate our take home 338 

message that the ecology of interactions between pathogens should receive more 339 

attention and may explain so far unresolved aspects of polymicrobial infections. 340 
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Materials and Methods 341 

Bacterial strains, media and growth conditions 342 

We used the Pseudomonas aeruginosa (PA) strain PAO1 (62) as our PA reference 343 

strain and the Staphylococcus aureus (SA) strains Cowan I, 6850 and JE2 for all 344 

experiments (Table 1). To distinguish PA from SA strains, we used a variant of our PA 345 

strain PAO1, which constitutively expresses the green fluorescent protein, from a single-346 

copy gene (attTn7::ptac-gfp), stably integrated in the chromosome (63, 64). We chose 347 

the rich laboratory medium tryptic soy broth (TSB, Becton Dickinson) for all our 348 

experiments, because it supports growth of all the strains used. For all experiments, 349 

bacterial overnight cultures were grown in 10 ml TSB in 50 ml falcon tubes for 350 

± 16 hours at 37 °C and 220 rpm with aeration. After centrifugation and removal of the 351 

supernatant, we washed bacterial cells using 10 ml 0.8% NaCl solution and adjusted 352 

the OD600 (optical density at 600 nm) to obtain similar cell numbers per ml for each 353 

strain.  354 

 355 

Calculating number of doublings for each strain in monoculture 356 

To assess the number of doublings of each strain in monoculture, we grew our strains in 357 

TSB under shaken conditions (170 rpm) for 24 hours at 37 °C by using the same 358 

starting OD600 as for the competition experiments (see below). We serially diluted cells 359 

at the start (t0) and after 24 hours (t24), and plated aliquots on TSB + 1.2% agar. The 360 

plates were incubated overnight at 37 °C and colony- forming units (CFUs) counted for 361 

both timepoints on the following day. We estimated the number of doublings (D) for 362 

each strain as D = (ln(x24/x0))/ln(2), where x0 and x24 are the initial and the final CFU/ml, 363 
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respectively (23). We performed this experiment three times with two replicates per 364 

strain per experiment. 365 

 366 

Competition experiments 367 

To initiate competitions, we mixed PA and SA strain pairs at three different starting 368 

frequencies (1:9, 1:1, 9:1) from washed and OD600-adjusted overnight cultures (see 369 

above). Competitions occurred in 24-well plates filled with 1.5 ml TSB per well. The 370 

starting OD600 of both mixed and monocultures was 10-5. Monocultures of each strain 371 

served as controls in each experiment. We incubated plates for 24 hours at 37 °C under 372 

three different culturing conditions: shaken (170 rpm), viscous (170 rpm with 0.2% agar 373 

in TSB) and static. Prior and after the 24 hours competition period, we estimated the 374 

actual strain frequencies for each replicate using flow cytometry. We performed four 375 

independent experiments each featuring five replicates for each strain/starting 376 

frequency/condition combination. A graphical representation of the competition workflow 377 

is provided in Figure 1.  378 

 379 

To follow community dynamics over time, we set up competitions in the same way as 380 

described above. After the first 24 hours of competition, we diluted cultures 1:10,000 381 

into fresh TSB medium. This process was repeated for five consecutive days. Strain 382 

frequencies were assessed using flow cytometry prior and after each 24 hours 383 

competition cycle. We carried out two independent experiments for each strain pair and 384 

starting frequency combination with 5 replicates per strain pair and frequency. 385 

 386 
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Flow cytometry to estimate relative species frequency 387 

We assessed the relative strain frequencies at the beginning and at the end of each 388 

competition using a BD LSR II Fortessa flow cytometer (flow cytometry facility, 389 

University of Zürich) and the FlowJo software (BD, Bioscience) for data analysis. As our 390 

PA strain expresses a constitutive gfp tag, PA cells could unambiguously be 391 

distinguished from the gfp-negative SA cells with a blue laser line (excitation at 488 nm) 392 

and the FITC channel (emission: mirror 505 longpass, filter 530/30) (see supplementary 393 

Figure 1). Cytometer Setup and Tracking settings of the instrument were used for each 394 

experiment and the threshold of particle detection was set to 200 V (lowest possible 395 

value). We diluted cultures appropriately in 1x phosphate buffered saline (PBS, Gibco, 396 

Thermo Fisher) and recorded 100,000 events with a low flow rate. The following 397 

controls were used for data acquisition in every experiment: 1) PBS blank samples (to 398 

estimate number of background counts of the flow cytometer), 2) untagged 399 

monocultures (negative fluorescence control, used to set a fluorescence threshold in 400 

FlowJo) and 3) constitutive gfp-expressing monocultures (positive fluorescence control, 401 

set to 100% gfp-positive cells). Using our fluorescence threshold, we extracted the 402 

percentage of gfp-positive cells for each sample and scaled these values to the positive 403 

fluorescence control. The resulting percentage corresponds to the frequency of PA 404 

present in the respective replicate. Initial and final strain frequencies were used to 405 

calculate the relative fitness (v) of the focal strain PA as v = [at × (1−a0)]/ [a0 × (1−at)], 406 

where a0 and at are the initial and final frequencies of PA, respectively (36). We ln-407 

transformed all relative fitness values to obtain normally distributed residuals. Values of 408 

ln(v) > 0 or ln(v) < 0 indicate whether the frequency of the focal strain PA increased (i.e. 409 
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PA won the competition) or decreased (i.e. PA lost competition) relative to its SA 410 

competitor.  411 

 412 

We know from previous experiments in our laboratory that due to the gfp tag, our PA 413 

strain does have a slight fitness defect in competition with its untagged parental strain 414 

(ln(v) = −0.358 ± 0.13, mean ± 95% CI, see (53)). As we consistently used the same 415 

gfp-tagged PA strain for all experiments in this study, results are fully comparable 416 

among treatments.  417 

 418 

To verify that flow cytometry counts correlate with CFUs, we serially diluted and plated 419 

initial and final strain frequencies from competitions performed under shaken conditions 420 

for all three strain combinations on TSB + 1.2% agar and compared the obtained CFUs 421 

with the flow cytometry counts obtained for the same samples. We found strong positive 422 

correlations for the strain frequency estimates between the two methods (see 423 

supplementary figure 2).  424 

 425 

Statistical analysis 426 

All statistical analyses were performed with R Studio version 3.6.1. We used analysis of 427 

variance (ANOVA) and Tukey’s HSD to compare number of doublings in monocultures 428 

of PA and SA. To test whether the relative fitness of PA varies in response to the SA 429 

strain genetic background, starting frequency and culturing conditions, we first built a 430 

factorial analysis of co-variance (ANCOVA), with SA strain genetic background and 431 

culturing conditions as factors and the starting frequency as covariate. We further 432 
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included ‘experimental block’ as an additional factor to account for variation between 433 

experiments. This full model yielded a significant triple interaction between SA strain 434 

genetic background, starting frequency and culturing condition. We therefore split the 435 

full model into a set of ANCOVA sub-models, separated either by culturing condition 436 

(shaken, viscous, static) or by SA strain genetic background (Cowan I, 6850, JE2). For 437 

post-hoc pairwise comparisons between culturing conditions or SA strains in the sub-438 

models, we removed ‘experimental block’ as additional factor from the model. To test 439 

whether PA relative fitness is significantly different from zero under a given 440 

strain/starting frequency/condition combination, we performed one sample t-tests and 441 

used the false discovery rate method to correct p-values for multiple comparisons (65). 442 

To compare strain frequencies obtained by flow cytometry with those obtained by 443 

plating (CFUs), we used Pearson correlation analysis. For all data sets, we consulted 444 

Q-Q plots and results from the Shapiro-Wilk test to ensure that our residuals were 445 

normally distributed. Summary tables for linear models and t-tests used to analyze 446 

Figures 2 and 3 can be found in the supplemental material (Tables 1-3).447 
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Figures 657 

Table 1. PA and SA strains used for this study. 658 

Strain name Origin Description Reference 

Pseudomonas aeruginosa 

(PA) 
   

PAO1::gfp Wound 

Constitutive GFP 

expression from the 

chromosome 

(attTn7::Ptac-GFP). 

Our 

laboratory 

Staphylococcus aureus 

(SA) 
   

Cowan I 

 

Septic 

arthritis 

 

MSSA isolate. Highly 

invasive, but not 

cytotoxic. Agr-defective. 

ATCC 

12598 

6850 Osteomyelitis 

 

MSSA isolate. Highly 

invasive, cytotoxic and 

hemolytic. 

ATCC 

53657 

JE2 

Skin and soft 

tissue 

infection 

USA300 CA-MRSA 

isolate. Highly virulent, 

cytotoxic and hemolytic. 

NARSA 

 659 

CA-MRSA: Community-acquired methicillin-resistant S. aureus 660 

MSSA: Methicillin-sensitive S. aureus 661 

Agr: Accessory gene regulator 662 
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Figure 1. Workflow for the competition experiments. Bacterial overnight cultures were 663 

grown in 10 ml TSB in 50 ml falcon tubes for ~ 16 hours at 37 °C and 220 rpm with 664 

aeration. After washing and adjustment of OD600 to obtain similar cell numbers for all 665 

strains, strain pairs (PA-Cowan I ; PA-6850 ; PA-JE2) were mixed at three different 666 

volumetric starting frequencies (1:9 ; 1:1 ; 9:1). Flow cytometry was used to measure 667 

the actual starting frequencies. Competitions were started with diluted cultures (OD600 = 668 

10-5) in 24-well plates filled with 1.5 ml TSB per well. Plates were incubated for 24 hours 669 

at 37 °C under three different culturing conditions: shaken (170 rpm), viscous (170 rpm 670 

+ 0.2% agar in TSB) and static. After the 24 hours competition period, final strain 671 

frequencies were measured for each replicate by flow cytometry. Using the initial and 672 

final strain frequencies, the relative fitness (v) of the focal strain PA was calculated as 673 

v = [at × (1−a0)]/ [a0 × (1−at)], where a0 and at are the initial and final frequencies of PA, 674 

respectively.675 

Mix PA with SA at different  
initial frequencies (1:9 ; 1:1 ; 9:1)  

Tryptic soy broth (TSB) in 24-well plates 

37 °C for 24 h 
Three culturing conditions: 

Determine species frequencies 

at start and end of competition 

by flow cytometry • Shaken (170 rpm) 
• Viscous (170 rpm + 0.2 % agar in TSB) 
• Static 

PA and SA strains with different 

genetic backgrounds 

Calculate relative 

fitness of PA  

v = [a
t
 ⨯ (1 – a

0
)]/[a

0
 ⨯ (1 – a

 t
)]   
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 676 

Figure 2. The number of doublings in monoculture is higher for P. aeruginosa PAO1 677 

(PA) than for the three S. aureus strains (Cowan I, 6850, JE2). Strains were grown as 678 

monocultures in TSB for 24 hours at 37 °C under shaken conditions using the same 679 

starting OD600 as for the competition experiments. The box plots show the median (bold 680 

line) with the first and the third quartiles. The whiskers cover the 1.5* inter-quartile range 681 

(IQR) or extend from the lowest to the highest value if they fall within the 1.5* IQR. Data 682 

is from three independent experiments with six replicates in total. n.s. = not significant, * 683 

p < 0.05, *** p < 0.001.684 
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 685 

Figure 3. Relative fitness ln(v) of P. aeruginosa PAO1 (PA) after 24-hours competitions 686 

against three different S. aureus (SA) strains (Cowan I, 6850, JE2) at three different 687 

starting frequencies (1:9 ; 1:1 ; 9:1) and across three different environmental conditions 688 

(shaken, viscous, static). Values of ln(v) < 0, ln(v) > 0, or ln(v) = 0 (dotted line), indicate 689 

whether PA lost, won, or performed equally well in competition against the respective 690 

SA strain. The box plots show the median (bold line) with the first and third quartiles. 691 

The whiskers cover the 1.5* inter-quartile range (IQR) or extend from the lowest to the 692 

highest value if they fall within the 1.5* IQR. Each strain pair/culturing condition/starting 693 

frequency combination was repeated 20 times (four experiments featuring five 694 

replicates each). Asterisks indicate whether the relative fitness of PA is significantly 695 

different from zero in a specific treatment (one-sample t-tests with p-values corrected for 696 
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multiple comparisons using the false discovery rate method:  n.s. = not significant, * p < 697 

0.05, ** p < 0.01, *** p < 0.001).  Detailed information on all statistical comparisons are 698 

provided in Table S3.699 
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Figure 4. Multi-day competitive dynamics between P. aeruginosa PAO1 (PA) and the 700 

three S. aureus strains (a) Cowan I, (b) 6850 and (c) JE2 under shaken conditions. 701 

Competitions started at three volumetric starting frequencies of PA:SA (red 1:9, blue 702 

1:1, green 9:1). Community composition was followed over five days with daily transfer 703 

of diluted cultures to fresh TSB medium. Strain frequencies were assessed using flow 704 

cytometry. The experiment was carried out two times with five replicates per treatment 705 

combination and experiment. 706 
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