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ABSTRACT 

When trying to identify new potential therapeutic targets, access to data and knowledge is 

increasingly important. In a field where new resources and data sources become available every day, 

it is crucial to be able to take a step back and look at the wider picture in order to identify potential 

drug targets. While this task is routinely performed by bespoke researchers, it is often time-consuming 

and lacks uniformity when one wants to compare multiple targets at the same time. Therefore we 

developed TargetDB, a tool that aggregates public information available on given target(s) (Links to 

disease, safety, 3D structures, ligandability, novelty,…) and assembles it in an easy to read output 

ready for the researcher to analyze. In this manuscript, we will present the methodology used to 

develop TargetDB as well as test cases.

INTRODUCTION

With the rising availability of genome-wide association data (GWAS)[1], proteomics[2,3], CRISPR[4–

6], RNAi[7], … the list of potential targets for a certain disease grows rapidly. In this context, 

researchers are spoilt for choices when it comes to picking a target for further investigations, yet the 

failure rate in Phase 2a trials suggests that researchers are having a hard time at selecting suitable 

targets against which to pitch drug discovery efforts. To help them in this task, a plethora of excellent 

publicly available resources exist, such as UniProt [8], DrugBank [9], ChEMBL [10], Open-Targets 

[11], Therapeutic Target Database (TTD) [12], The Drug Gene Interaction database (DGIdb) [13], 

Target Central Resource Database (TCRD) [14] and many others [15]. While they all provide valuable 

information, combining all this information in a single place for further analysis or prioritization of a list 

of targets can become a daunting task. With each data source specializing in different areas such as 

protein expression, disease association or pharmacology, it requires the researchers to collate and 

navigate through endless cross-references in order to paint an accurate portrait of a target. Although 
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resources such as UniProt, Pharos/TCRD and Open-Targets already propose some aggregation of 

data, we propose with TargetDB to complement them with additional information such as structurally 

enabled druggability assessment, area-specific scoring for agile prioritization and a tractability 

prediction model.

MATERIAL AND METHODS

TargetDB

TargetDB is distributed as a python package and a pre-built SQLite database. The user can also build 

the database from scratch using a command-line interface in Linux based systems. Details on the 

database and on how to install the package are available in the supplementary information and on the 

GitHub page (https://github.com/sdecesco/targetDB)

Data sources

Data used in TargetDB comes from a variety of data sources. Some data comes from pre-

aggregated/processed data from other databases such as UniProt or TCRD. While others come 

directly from the source API’s such as Human Protein Atlas for protein expression levels and Open-

Targets for disease association. The full list of data sources is available in the Supplementary 

Information (SI).

Structural assessment of druggability

Fpocket[16] (version 3) was used in order to probe the potential ligandability of queried targets 

(https://github.com/Discngine/fpocket). For each target in the database, PDB files were downloaded 

locally and only the smallest biological assembly with a chain representing the target of interest was 

kept for further analysis. Fpocket was then used with the default parameters and output files read and 

incorporated in the targetDB database.

Tractability model

Data collated in TargetDB is then retrieved and used to generate a series of descriptors that are used 

for: 1) calculate the area-specific overall score, 2) as input for machine learning algorithm in order to 

predict the target tractability. The final model uses the random forest algorithm from the python 
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package sci-kit-learn[17]. The building of the model is discussed in the results and detailed procedure 

and code in the form of a jupyter notebook and training/testing data are available in the GitHub 

repository.

RESULTS

Once the program and database are downloaded, TargetDB can be run as a Tkinter graphical 

interface where different modes can be selected (Figure 1): Single Mode, List Mode and Spider plot 

mode. For each mode, the target(s) of interest need to be specified. In Single Mode, one file will be 

generated per gene entered and while nothing prevents the user to use this mode for a large number 

of targets it is best suited for a handful of genes. For a large number of targets, the List Mode is more 

appropriate as it will produce a single file with several columns that will allow the user to prioritize 

targets according to many attributes. In Plot Mode, a graphical spider plot representation of a target 

landscape will be depicted, representing the amount of knowledge on a target in different areas. This 

plot is also included in the Single Mode output. An example of each output is available in the 

supporting information. 

Figure 1: Workflow and usage of TargetDB

Aggregated information about a specific target

The excel document (see Supporting Information for an example) generated from the database 

contains several worksheets with different information regarding the target. The main page will 

contain general information as well as the spider plot. Detailed sheets provided are listed below with a 

short description.

Pubmed search. A pubmed search using the gene name as search term is conducted and the 500 

more recent publications are listed in the worksheet.
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Diseases. This worksheet contains the disease expression (upregulated or downregulated) and 

GWAS association of the target. This data comes from the Humanmine datasource.

OpenTarget Association. Disease associations coming from the Open Targets platform. The 

individual disease, disease areas and association types scores are displayed.

Expression. Protein expression levels coming from the Human Protein Atlas portal. Numerical values 

can be interpreted as the following: 3=High level of expression; 2=Medium level of expression; 1=Low 

level of expression; 0=Not observed

Genotypes. List of different mouse genotypes for the target of interest with their associated observed 

phenotypes. Green color identifies genotypes with no abnormal phenotypes observed, while red 

indicates a genotype with a lethal phenotype observed.

Isoforms. List of different isoforms with their associated sequence differences.

Variants/Mutants. List of observed variants and mutants along with the sequence change and the 

effect observed if available.

Structure. This worksheet contains a list of all available structures available on the PDB, the code 

along with the technique, resolution, chain and sequence coverage is listed along with information 

coming from PDBBind. On top of that, details on domains and their tractability/druggability coming 

from DrugEbillity is also displayed.

Pockets. After analysis of potential binding pocket with fpocket3, the results are imported in TargetDB 

and are displayed in this sheet. The druggability score comes directly from the fpocket3 algorithm and 

we refer the reader to the original paper for more details about the method used to generate this 

score [18]. As a general guideline, a druggable binding pocket would have a score of over 0.5, up to a 

maximum of 1. If multiple pockets are found for a single structure, a complete list of them will be 

output. If no druggable pocket is found in the target PDB or no PDB is available for the target, a 

BLAST search is performed on sequences that have a crystal structure deposited in the PDB. A 

similar pocket analysis is then performed, and the result displayed in the output document with the 

identified target as well as the similarity between them. 
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Binding. Bioactivities extracted from ChEMBL contain many different types and while they all provide 

valuable information it was decided to segregate the data into different sheets: Binding, Dose-

response, Percent Inhibition, ADME and Other bioactivities. The Binding sheet only contains Ki/Kd 

datapoints. Bioactivities of a given ligand against other targets were collected and used to calculate a 

selectivity score (Selectivity Entropy – Shannon Entropy[19]), the name of the target for which the 

ligand has the best bioactivity is also displayed. To provide more information about the ligands, 

physicochemical properties, as well as the CNS MPO [20] score, are also provided. 

Dose-response/Percent-Inhibition/ADME/Other bioactivities. Similar to the above mentioned but with 

different data types.

BindingDB/Commercial compounds. Similar to the above mentioned with bindingDB as the 

datasource. The commercial compounds worksheet contains a link to the chemical suppliers of 

potential ligand of the target.

Prioritize a list of candidate targets

The target List Mode report provides the user with more than hundreds of different metrics to define a 

potential target (a full description, as well as source of these metrics, is available in the SI). To list 

only a few of these metrics: number of crystal structures in the PDB, ChEMBL bioactive compounds, 

Open Targets disease associations, number of antibodies, human protein expression levels in 

tissues,…. Such an abundance of available fields makes it hard to quickly identify a target’s profile or 

else to pick the relevant parameters for the prioritization process. Therefore, we use a set of rules to 

define area-specific scores that will help target assessment and prioritization.
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Figure 2: Different features that were selected for the generation of the area-specific scores

Area-specific scores for rapid target assessment. When evaluating potential targets, building an 

overall picture of a target profile is not an easy task with the information often fragmented in 

numerous resources. With TargetDB we separated information into eight main categories: 

Druggability, Structure, Biology, Chemistry, Diseases, Genetics, Information and Safety. Each 

category is scored from zero to one according to a set of rules (see Supporting Information). Once 

calculated these scores can be used to generate a spider plot of the target profile to rapidly identify 

the strengths and weaknesses of a given target. From the few examples in figure 3, it is easy to 

identify all these targets are well studied and associated with diseases (neurodegeneration), although 

only some of these have genetic evidence to support the observation and while acetylcholine 

esterase and beta-secretase 1 are highly druggable and drugged, it is interesting to note that APOE, 

one of the main risk factors for Alzheimer’s disease [21], does not score well in the druggability and 

chemistry area, which is consistent with the poor druggability of an apolipoprotein. These well-

characterized examples illustrate how this representation allows for a quick interpretation of a target 

landscape.
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Figure 3: Spider Plot for various targets. The Height of each section represents the amount of information available in that 
area for this target. The color in the safety, genetic association, chemistry and structural biology are indications of the 
safety risk, the significance of associations, the quality of the chemical matter and the druggability of potential binding 
pockets respectively (Green = better quality/safety/… Red = Safety risk/bad quality/…).

Multi-Parameter Optimization (MPO) score for target ranking. While ranking targets based on their 

area score could be used on its own, we also incorporated a customizable MPO score to allow 

multiple interpretations of the same data. For example, depending on the user interest for a 

structurally enabled target, it may be advantageous to prioritize targets for which 3D structures are 

available and with a high druggability score. By simply adjusting the weightings of each category, one 

can generate a tailored MPO score to facilitate prioritization according to key criteria (Figure 4). 

Likewise, negative weights can be set to deprioritize high ranking targets and prioritize low ranking 

targets, this can be useful if, for example, one wants to deprioritize targets with a lot of chemical 

matter available. The decision on how to set the different weights rely on the user judgment and the 

specific criteria that are of interest to them. The detailed methodology on how this MPO score is 

calculated is available in the SI. 
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Figure 4: Visual representation of the construction of the MPO Score

Target tractability model. To further assist the decision-making process on target tractability, it was 

decided to evaluate if a model of tractability could be built. With the vast amount of information 

collected, maybe trends that would allow classification of targets as tractable or not could be 

uncovered. To do so, several machine learning algorithms were tried, and their performance 

evaluated to predict target tractability. To train and evaluate the models we had to provide the 

algorithm with an annotated set of targets, while finding a list of tractable targets is relatively easy, 

identify a list of untractable targets has proven to be more challenging. We used the DGIdb [13] 

“clinically actionable” annotated genes as our tractable list of targets(n= 399), while for the negative 

control we simply selected random targets (n=400) from the list of targets present in TargetDB from 

which were removed the clinically actionable (n=399) and druggable genome (n=6106) list from 

DGIdb. This set was then split into a training set (n=560) and testing set (n=240), each containing the 

same ratio of tractable/untractable targets.

After evaluation of multiple algorithms (detailed procedure as well as the Jupyter notebook available 

in the SI), the Random Forest algorithm was selected for further optimization (Figure 5). This method 

provides multiple advantages, such as reducing overfitting, the ability to extract information on 

features contributing to the decision, and providing an estimate of the confidence of the prediction. 

The underlying concept of this method is simple: the algorithm creates multiple decision trees, for 

each decision tree it selects a subset of features from the entire set available, all the decisions from 
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all the trees are then compiled and a classification based on consensus is made for each target. After 

feature and parameter optimization the model was evaluated against the test set and was able to 

accurately predict target tractability 85% of the time. A detailed description of the model performance 

is available in the SI. The output of this model will then provide two (related) readouts: Percentage of 

threes predicting the target to be tractable and the tractability class of a target (Tractable [>60%] – 

Challenging [60%-40%] – Intractable [<40%]). 

Figure 5: Principle behind the Random Forest Machine learning algorithm

DISCUSSION

To showcase the application of such a tool, we present here a workflow that was used to prioritize 

potential targets from a list of genes involved in Alzheimer’s diseases provided by the AMP-AD 

(https://agora.ampadportal.org). This list consists of 95 targets coming from 6 different teams using 

computational analysis of genomic, proteomic and/or metabolomic data from human samples. Manual 

aggregation and collation of information for 95 targets is a time-consuming task, the same results can 

be achieved in only a few minutes using TargetDB. Once the program started the user has to input 
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the list of targets in the window and select the run mode (single, list, plot), in our case the “List Mode” 

was selected. Once started, the process will take a few minutes to retrieve all the information in the 

database and another window will open to allow the user to input each area weight necessary to 

calculate a custom MPO score. In our case, the following weights were used: Structural information (= 

100), Structural Druggability (= 150), Chemistry (= -100), Biology (= 100), Diseases Links (= 100), 

Genetic Links (= 150), Literature information (= -100), Safety (= 0). The rationale is that we want to 

select structurally druggable targets, with no or little chemistry available and with strong genetic 

associations. Biological information and link to diseases are parameters to consider but not essential 

and we wanted to deprioritize targets with large amounts of literature available. Safety is not 

considered in the MPO scoring at this time. Once the weights were entered, the program generates 

an excel spreadsheet with the list of targets and the calculated area-specific, tractability prediction 

and MPO scores (File available in the supporting information). This spreadsheet can then be used to 

further refine the selection according to the user's preferences. 

The same list was independently examined by scientists for target selection. 4 targets were selected 

for further target validation work and early Hit identification. When compared to TargetDB output 

ranking, 3 of these 4 targets were ranked in the top 10. Assessing these 95 targets took in total a few 

months and several meetings, it is a good example of how TargetDB could be used to speed up 

and/or focus the attention on the most promising targets, while not completely discarding the lesser 

ranked targets for further exploration. 

Interestingly, other MPO criteria can be selected depending on the kind of work that is envisioned. For 

example, a team mainly interested in solving crystal structure might deprioritize targets with a crystal 

structure solved (Structural information < 0) but still possess druggability potential from close analogs 

(Structural Druggability ≥ 100) and with some therapeutic rationale (Genetic Links, Disease Links 

≥100). These criteria can lead to a ranking massively different than the first one (Table 1). 

Table 1: Comparison of the top10 ranked target for two different MPO Score scenario.

SBDD MPO Crystallography MPO

Gene Name

M
PO

 
Sc

or
e

Gene name

M
PO

 
Sc

or
e

GRIN2A 0.8 SGPL1 0.73
PLEC 0.79 ALK 0.69
TGFBR2 0.78 SYNGAP1 0.68
PLCG2 0.78 S1PR1 0.67
CFH 0.78 NEFL 0.67
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TGFB1 0.76 CSF1R 0.65
AP2B1 0.76 PLCG2 0.63
MSN 0.74 NR1H4 0.62
ERBB3 0.74 GFAP 0.62
TREM2 0.73 PPARA 0.62

Another application is the prioritization of an entire family of protein. We showcase here how 

TargetDB was used to rapidly provide an overview of the solute carrier transporters (SLC) family 

(Figure 6). In less than an hour, we can shortlist potential targets based on their predicted tractability 

class their MPO score, but also on the potential association with a disease of interest (Alzheimer’s 

(AD) and Parkinson's disease (PD) in our case). After further investigations of the top targets, several 

of them are now under consideration in our institute. This case illustrates how TargetDB can insert 

itself in the target discovery workflow and expedite as well as standardize the target prioritization 

process. 

Figure 6: Summary of the analysis of the Solute Carrier Transporters (SLCs) family performed using TargetDB in list mode

CONCLUSION

In conclusion, we present a tool that allows researcher to extract/combine and standardize outputs 

from many different publically accessible databases. It allows one to rapidly assess the potential of 

drug targets. TargetDB is freely available as a python package and detailed installation instructions 

are available on the project’s GitHub page as well as in the supporting information. While further 

improvements and additions are already being considered we encourage other users to participate to 
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the project and adding their datasources.
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