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Abstract8

Social insect colonies use negative as well as positive feedback signals to regulate foraging9

behaviour. In ants and bees individual foragers have been observed to use negative pheromones10

or mechano-auditory signals to indicate that forage sources are not ideal, for example being11

unrewarded, crowded, or dangerous. Here we propose an additional function for negative feedback12

signals during foraging, variance reduction. We show that while on average populations will13

converge to desired distributions over forage patches both with and without negative feedback14

signals, in small populations negative feedback reduces variation around the target distribution15

compared to the use of positive feedback alone. Our results are independent of the nature of the16

target distribution, providing it can be achieved by foragers collecting only local information. Since17

robustness is a key aim for biological systems, and deviation from target foraging distributions18

may be costly, we argue that this could be a further important and hitherto overlooked reason19

that negative feedback signals are used by foraging social insects.20

1 Introduction21

Collectively-foraging social insects use feedback mechanisms in order to robustly and efficiently22

satisfy the nutritional requirements of the colony. Positive feedback signal usage by such foraging23

social insects is well known, such as mass-recruitment via pheromone in various ant species [1], and24

recruitment of small numbers of individuals such as via the honeybees’ waggle-dance [2], or rock ants’25

tandem-running [3]. The use of negative feedback signals in these systems has, however received com-26

paratively little attention. Negative feedback was predicted to be important for collectively foraging27

species [4, 5], and subsequently discovered in diverse systems such as Pharaoh’s ants [6, 7] and honey-28

bees [8, 9]. Several studies have interpreted negative feedback as a mechanism to reduce recruitment29
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to a resource based on some aspect of its quality, for example allowing unrewarded trails to be shut30

down [6, 7], allowing recruitment to a crowded source of forage to be reduced [10], or transferring31

information that a forage patch may have an increased predation risk [8, 11]. Subsequent studies have32

similarly focussed on the role of negative feedback in dealing with time-varying forage patches [12, 13],33

or with the amount of available comb storage space [14].34

Here we propose an alternative function for negative feedback mechanisms in collective foraging,35

suppression of costly variation in the colony’s foraging performance. In the following, we present simple36

models of collective foraging with positive and negative feedback, and with positive feedback only.37

We show how both models are able to approach a desired target distribution over forage patches on38

average, when forager populations are assumed to be infinite. However, when finite forager populations39

are modelled, the two foraging systems differ in the robustness with which they achieve the target40

distribution; with positive feedback only, stochastic fluctuations can lead to the forager population41

being far from its target distribution at any point in time, however by adding negative feedback42

the forager distribution becomes more robust. We argue that this will increase colony-level foraging43

success [15, 16], and thus may represent a new functional explanation for the observation of negative44

feedback in foraging by social insect colonies.45

Foraging theory is an active and complex research area, and our results do not rely on assumptions46

about the nature of the colony’s target distribution, other than it can be achieved by agents with access47

only to local information at both the forage source, and the colony. Thus, the target distribution may48

be akin to an Ideal Free Distribution, in which agents are distributed such that none can improve49

overall foraging efficiency by switching to a different forage patch [16, 17]. Alternatively, the target50

distribution may be based on the requirement of the colony for different micro- and macro-nutrients51

[18, 19, 20, 21]. Or, the target distribution may be based on some other objective entirely, or on52

combinations of objectives such as those just discussed. In ignoring the nature of the distribution,53

therefore, our focus is purely on the dynamics of foraging, and how negative feedback can improve54

this.55

For our analysis we adapt our model from a simple model of negative feedback for foraging in56

honeybee colonies [12], in itself inspired by models of negative feedback in house-hunting honeybee57

swarms [22, 23, 24]; however since other social insect species such as Pharaoh’s Ants also make use of58

negative feedback during foraging [6], we argue that the model is generally applicable.59

2 Methods60

We assume a target distribution of the individuals to the n patches in quantities proportional to61

the relative patch quality arbitrarily defined:62

x∗i ≈
qi∑
j∈n qj

, i ∈ {1, . . . , n} , (1)
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where qi is the quality of patch i. In our models an individual’s state can be either uncommitted63

(XU ) or committed to patch i (Xi) with i ∈ {1, . . . , n}. Therefore, based on the number of patches64

n, the commitment of the population will be split among n + 1 subpopulations; we represent the65

subpopulation proportions as xU and xi, in the closed interval [0, 1]. Note that, in a finite population66

of S individuals, it will be impossible for the colony to achieve exactly the desired target distribution67

if xi S is not an integer number.68

We analyse the population dynamics of the two systems parametrised to reach the same target69

distribution (with and without negative social feedback) using mean-field models of infinite and finite70

populations, using ordinary differential equations (ODEs) and stochastic simulation of the master71

equation respectively. Both types of analyses can be performed for models derived from chemical72

reaction equations, which specify how individuals in the system interact and change state (see Table 1).73

The ODE model assumes an infinitely-large population size S and provides deterministic system74

dynamics in the absence of any noise from finite population effects. On the other hand, stochastic75

simulation of the master equation (Gillespie’s SSA [25]) gives a probabilistically correct simulation of76

dynamics of finite populations of size S.77

While previous research has documented that collective foraging is regulated by the actions and78

interactions that we included in our models, the relationship between their frequency (transition rates)79

and the estimated nest-site quality are still debated. Table 1 reports the best functions we obtained80

through numerical optimisation to approximate the target distribution. Including negative inevitably81

feedback inevitably requires a change also in the recruitment function, from constant to linearly pro-82

portional to the quality. In the Supplementary Text ST1 we show the numerical optimisation analysis83

and results for a variety of assumptions. Here, we assume that social recruitment (positive feedback)84

is much more efficient than independent discovery, so ri � qi, as has been documented in a large85

variety of social insect species [26, 27, 28, 29]. For fair comparison, the average recruitment strength86

r is equalised between the two models so that quality-sensitive recruitment transitions—model with87

negative feedback—happens on average at the same rate of quality-insensitive recruitment—model88

without negative feedback (see Supplementary Text ST2). The model with only positive feedback89

is easy to solve for the desired equilibrium distribution of foragers, with a simple parameterisation90

of individuals’ rates (see Supplementary Text ST3). The model with negative feedback, however,91

requires a heuristic individual parameterisation based on site qualities, which we perform numerically.92

However, this heuristic has a simple functional form (see Supplementary Figure SF2) so could easily93

be approximated by real foragers.94

3 Results95

The two top panels of Figure 1 show the time dynamics of the two models for representative values96

and n = 3 patches. Both models asymptotically approximate the target distribution of Eq. (1).97

Through numerical integration of the master equations, we investigate the effect of stochastic98
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WITHOUT
NEGATIVE SOCIAL
FEEDBACK

WITH
NEGATIVE SOCIAL
FEEDBACK

Independent discovery XU
qi−→ Xi Quality-sensitive Quality-sensitive

Independent abandonment (leak) Xi
a−→ XU Constant Constant

Recruitment (positive social feedback) XU +Xi
ri−→ 2Xi Constant Quality-sensitive

Stop signalling (negative social feedback) Xi+Xi
z−→ XU +Xi Constant

Table 1: The two analysed models can be described in terms of transitions between commitment states
by individuals. The commitment states are ‘committed to foraging patch i’ (Xi) or ‘uncommitted’
(XU ). Both models have the same positive and negative feedback for independent transitions: quality-
dependent discovery and constant abandonment (leak a). The difference lies in the social feedback;
one model (blue) has quality-insensitive recruitment (ri = ρ) but no negative social feedback (z = 0).
The other model (red) has both quality-sensitive recruitment (ri = ρ qi)) and quality-insensitive self-
inhibition (z > 0), as reported by field observations [30]. In these representative models, we set rates
as constant and (linear) quality-sensitive functions of the quality according to the best function we
obtain with numerical optimisation (see Supplementary Text ST1).

fluctuations on the system dynamics [25]. The fluctuation size is inversely proportional to the system99

size S, i.e. there are no fluctuations in very large groups (i.e. S →∞) and large fluctuation in small100

groups. The effect of the system-size noise can be appreciated in the two bottom panels of Figure 1.101

They show 30 representative trajectories for a system of size S = 200. The higher variance can also102

be appreciated in the boxplots on the right of each bottom panel of Figure 1, in which the average of103

1,000 simulations hits the target value in both models; however, the variance is reduced considerably104

with the introduction of negative social feedback. These results are not specific to the representative105

example of Figure 1, but are consistent throughout the wide parameter space (see analysis in the106

Supplementary Text ST4). Additionally, increasing abandonment, which is a form of independent,107

asocial negative feedback, is not sufficient to reduce variance (see Supplementary Text ST5).108

Large deviations from the target distribution could compromise the ability of the colony to in-109

take the necessary nutrients for survival and reproduction, thus decreasing colony fitness. Figure 2110

shows how the error in achieving the target distribution is significantly higher without negative social111

feedback. Similarly, the speed of adaptation to environmental changes is an important factor in the112

survival of the colony [31, 32]. The system without negative feedback can be incapable of adapting to113

changes in a timely manner because its temporal dynamics vary significantly depending on the initial114

commitment (see top-left inset of Figure 1). The system with negative feedback, instead, displays115

a constant convergence time regardless of the initial state of the system (see Supplementary Text116

ST6). Figure 3 shows how the convergence speed and the deviation from the target distribution are117

influenced by the strength of the negative feedback; the strength of negative feedback can tune a118

speed-robustness trade-off, similarly to the tuning of speed-value and speed-coherence trade-offs in119

consensus decisions [23, 24, 33]. In agreement with field observations of honeybees, which increase120

stop signalling when a quick response is necessary [10], our analysis also predicts a speed-up of the121

group dynamics for higher levels of negative feedback.122
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4 Discussion123

Negative feedback has been considered in collective decisions, particularly as a means of symmetry124

breaking [22, 23, 24, 34], and in foraging, as a means of adapting to dynamically changing environments125

[10, 7, 12, 13]. Other than in entomology, negative feedback has been observed as a tool for noise126

reduction in gene networks [35, 36, 37] and in electronic systems [38, 39]. Here we have shown that127

negative feedback may play an important role in reducing variance in colony foraging performance. For128

example, considering the honeybee system that inspired our model, field observations have reported129

that levels of stop signalling increase in response to changes such as dangerous, overcrowded, or130

depleted food patches [13, 40, 11, 10]; however, it has not yet been fully understood why, even in131

static conditions, honeybees always deliver a small number of stop signals to foragers visiting the132

same forage patch [13, 10]. This pattern is consistent with our model, and the analysis presented is133

an interpretation for such observed behaviour.134

Our results suggest a further progression in the evolution of collective foraging behaviour; solitary135

foraging by members of social insect colonies evolved first, but was comparatively inefficient due to136

the need for foragers to repeatedly and independently discover forage sites [41, 42] (see Supplementary137

Text ST8). Subsequently, positive social feedback evolved to improve foraging efficiency [43, 44, 45],138

but this came at the expense of robustness of the foraging outcome, through increased variance in139

foraging performance (see Supplementary Text ST9). Finally, negative feedback evolved not only to140

respond better to changing environments, but also to reduce variance in foraging performance. The141

re-use of negative feedback signals, such as in the case of honeybee stop-signals which are used in142

both foraging [10] and house-hunting [22] life history stages, would facilitate performance-enhancing143

innovations in signalling behaviours; however, it is not clear whether stop-signalling first arose in144

foraging or in house-hunting contexts (intuitively, we suggest the former, a more common life history145

event).146

Some species have not evolved negative signalling mechanisms but rely on natural decay of feed-147

back, such as pheromone evaporation. For instance, Lasius niger ants rely on the downregulation148

of positive feedback (i.e. pheromone deposition) in order to let pheromone decay take over [46, 47].149

It is worth noting that this is not technically negative feedback; given the time taken from the first150

observations of the positive-feedback signals in colonies of honeybees and ants [3, 48, 49] to that of151

the corresponding negative feedback signals [6, 50], it may be worth further exploring social insects152

in which explicit negative feedback has not been observed, to search for expected negative feedback153

mechanisms, or explain why their life history means they would not be beneficial. As a motivating ex-154

ample, decaying waggle dance durations in honeybee swarms were taken to be due to decay processes155

internal to scout bees [51], but the negative stop-signal was subsequently discovered to be significant156

in these swarms [22].157

We conclude by noting that our study highlights the importance of using multiscale modelling to158

understand collective behaviour [52, 53, 54]. In fact, through mean-field analysis we could not observe159
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the dynamics that justify the use of the negative feedback. Instead, complementing the analysis with160

probabilistic models, we have been able to identify the system dynamics that favour the appearance of161

stop signalling as a mechanism for variance reduction. Multiscale modelling is a valuable framework162

which combines the use of a set of modelling techniques to analyse the system at various levels of163

complexity and noise. In this study, we only employed noise-free mean-field analysis and master164

equations with system-size dependent noise. However, further analysis could include the impact of165

spatial noise, and time-correlated information and/or interactions [52].166
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Figure 1: Temporal evolution of the models without (left) and with (right) negative social feedback
in an environment with n = 3 food patches with qualities q1 = 0.75, q2 = 0.5, q3 = 0.25. The top
panels show the dynamics of the ODEs for systems of infinite size S → ∞. The bottom panels
show the trajectories of 30 representative runs of the stochastic simulation algorithm (SSA, [25]) for
a system comprised of S = 200 individuals. The boxplots on the right of each bottom panel show the
statistical aggregate at time 400 for 1000 runs of the SSA. (Other simulation parameters are: constant
abandonment a = 10−3, average recruitment strength r = 100, and stop signal strength z ' 3.1.)
While the infinite size dynamics predict convergence to the target distribution of Eq. (1) (dashed
lines) for both models, the stochastic trajectories show different results for the two models. The
system without negative social feedback has smaller fluctuations over time but frequently stabilises at
values far from the target distribution (bottom-left panel). The system with negative social feedback
fluctuates more but always remains relatively close to the target distribution (bottom-right panel).
The apparently quicker dynamics of the ODE model for the system without negative social feedback
are due to the symmetric initial conditions. In the left inset, we show that a small perturbation of
the initial population (i.e. x1, x2 = 0 and x3 = 0.05) delays the convergence by more than 5 orders of
magnitude. Such a susceptibility to random fluctuations is made evident by the stochastic trajectories.
The right inset shows a zoom of the larger plot.
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Figure 2: Sum of squared errors (SSE) computed as the sum for n = 2 food patches of the square of
the difference between the subpopulation size at time 1000 (convergence) and the target distribution
to that patch (see Supplementary Text ST7). The boxplots show the distribution of the SSE for 103

numerical simulations for swarm size S = 200, average recruitment strength r = 100, and qualities
q1 = 0.75 and q2 = 0.5.
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Figure 3: The stop signalling strength can be the control parameter in a speed-robustness trade-off.
Stronger stop signalling speeds up the convergence of the system (magenta curve) but also increases
the predicted error from the target distribution (blue curve). These results are in agreement with field
observations that documented an increase in stop signalling when a quick response to environmental
changes was necessary [10]. Both error and convergence time are computed from the infinite population
model (ODE). The error is computed as the sum for every foraging population of the squared distance
R2 from the target at large time (convergence, computed analytically as the ODE’s stable fixed point
in the unit-simplex). The convergence time (magenta curve) is computed as the time necessary to
reach the (numerically computed) fixed point. As the system has an asymptotic convergence, the
reported time corresponds to the R2 error becoming smaller than 10−4.

12

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2020.04.21.053074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053074
http://creativecommons.org/licenses/by-nd/4.0/

