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The connectome provides a structural substrate facilitating communication between brain re-
gions. We aimed to establish whether accounting for polysynaptic communication paths in structural
connectomes would improve prediction of interindividual variation in behavior as well as increase
structure-function coupling strength. Structural connectomes were mapped for 889 healthy adults
participating in the Human Connectome Project. To account for polysynaptic signaling, connec-
tomes were transformed into communication matrices for each of 15 different network communication
models. Communication matrices were (i) used to perform predictions of five data-driven behavioral
dimensions and (ii) correlated to interregional resting-state functional connectivity (FC). While FC
was the most accurate predictor of behavior, network communication models, in particular com-
municability and navigation, improved the performance of structural connectomes. Accounting for
polysynaptic communication also significantly strengthened structure-function coupling, with the
navigation and shortest paths models leading to 35-65% increases in association strength with FC.
Combining behavioral and functional results into a single ranking of communication models posi-
tioned navigation as the top model, suggesting that it may more faithfully recapitulate underlying
neural signaling patterns. We conclude that network communication models augment the functional
and behavioral predictive utility of the human structural connectome and contribute to narrowing
the gap between brain structure and function.

INTRODUCTION

Communication between gray matter regions is cru-
cial for brain functioning. The complex topology of the
structural connectome [1, 2] provides the scaffold on top
of which neural signaling unfolds. While region pairs
that share a connection in the structural connectome
may communicate directly, polysynaptic paths compris-
ing two or more connections are required to establish
communication between anatomically unconnected re-
gions. Network communication models describe strate-
gies to delineate putative signaling paths between re-
gions, based on aspects of connectome topology and ge-
ometry [3].

Several network communication models have been pro-
posed to describe large-scale neural signaling, ranging
from naive random walk processes to optimal routing via
shortest paths [4]. By considering polysynaptic paths,
these models quantify the putative efficiency of commu-
nication between both connected and unconnected nodes,
thus enabling a high-order structural description of inter-
actions among every pair of regions in the connectome [5].
Recent studies report that network communication mod-
els can improve the strength of coupling between struc-
tural and functional connectivity in the human connec-
tome [6], explain established patterns of cortical lateral-
ization [7], and infer the directionality of effective con-
nectivity from structural connectomes [8].
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Building on this previous work, we aimed to investigate
the utility of a range of candidate models of network com-
munication in structural brain networks. First, we sought
to determine whether accounting for polysynaptic (multi-
hop) paths in structural brain networks using models of
network communication would: i) improve the predic-
tion of interindividual variation in behavior, compared to
predictions based on direct structural connections alone;
and, ii) improve the strength of structure-function cou-
pling. Second, we aimed to establish a ranking of com-
munication models with respect to their predictive util-
ity, with the goal of determining which models may more
faithfully capture biological signaling patterns related to
behavior and FC.

We considered five previously proposed communica-
tion measures: (i) shortest paths [9, 10], (ii) naviga-
tion [11, 12], (iii) diffusion [13], (iv) search information
[6, 14], and (v) communicability [15–17]. Collectively,
these models cover a wide-range of neural signaling con-
ceptualizations. Shortest paths and navigation determin-
istically route information using centralized and decen-
tralized strategies, respectively. In contrast, diffusion
and search information model communication from the
stochastic perspective of random walk processes. Finally,
communicability implements a broadcasting model of sig-
naling, in which signals are simultaneously propagated
along multiple network fronts. While all these candidate
models have been investigated in the human connectome,
which particular models provide the most parsimonious
representation of large-scale neural signaling remains un-
clear.

Using diffusion-weighted MRI and tractography, we
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mapped structural connectivity (SC) matrices for n =
889 healthy adults participating in the Human Connec-
tome Project (HCP) [18]. Each individuals SC ma-
trix was then transformed into a communication matrix,
which represented the efficiency of communication be-
tween each pair of regions under a particular candidate
model of network communication. For each model, com-
munication matrices were fed to statistical techniques to
perform out-of-sample prediction of individual variation
in five behavioral dimensions [19], and also correlated
with FC matrices mapped using resting-state functional
MRI. This enabled a systematic ranking of network com-
munication models in terms of behavior prediction and
structure-function coupling. While these criteria do not
constitute direct biological validation of signaling strate-
gies, we hypothesize that the higher the predictive utility
of a communication model, the more likely it is to parsi-
moniously recapitulate the signaling mechanisms of the
human brain.

RESULTS

Brain network communication matrices

Structural connectomes were mapped using white mat-
ter tractography applied to diffusion MRI data acquired
for 889 healthy adults participating in the Human Con-
nectome Project [18] (Materials and Methods). We focus
on reporting results for connectomes comprising N = 360
cortical regions [20] that were thresholded to eliminate
potentially spurious connections [21]. Results for alterna-
tive cortical parcellations and connection density thresh-
olds are reported in the Supplementary Information.

Connectome mapping yielded a structural connectivity
(SC) matrix for each individual. These matrices repre-
sented connectivity between directly connected regions
and were generally sparse due to an absence of white
matter tracts between a majority of region pairs. To
model the impact of polysynaptic neural signaling, each
individual’s connectivity matrix was transformed into a
communication matrix (Fig. 1a). Communication matri-
ces were of the same dimension as the SC matrices, but
fully connected in most cases, and they quantified the effi-
ciency of communication between indirectly (polysynap-
tic) as well as directly connected pairs of regions under
a given network communication model. In contrast, the
SC matrices only characterized directly connected pairs
of regions.

We considered three connectivity weight definitions:
(i) Weighted: connection weights defined as the num-
ber of tractography streamline counts between regions;
(ii) Binary: non-zero connection weights set to one; and
(iii) Distance: non-zero connection weights set to the Eu-
clidean distance between regions. Network communica-
tion models computed on these connectomes operational-
ize metabolic factors conjectured to shape large-scale sig-
naling: (i) adoption of high-caliber, high-integrity white

matter projections to enable fast and reliable signal prop-
agation (weighted); (ii) reduction of the number of synap-
tic crossings (binary); and (iii) reduction of the physical
length traversed by signals (distance).

Predicting behavior with models of connectome
communication

Statistical models were trained to independently pre-
dict five dimensions of behavior (cognition, illicit sub-
stance use, tobacco use, personality-emotional traits,
mental health) based on features comprising an individ-
ual’s communication matrix (Fig. 1b,c). Training and
prediction were performed separately for a total of 15
communication matrices representing different connec-
tion weight definitions (binary, weighted, distance) and
network communication models (shortest paths, navi-
gation, diffusion, search information, communicability).
Additionally, predictions based on an individual’s SC and
FC were computed to provide a benchmark. The five
behavioral components represent orthogonal dimensions
that were parsed from a comprehensive set of behavioral
measures using independent component analysis (Mate-
rials and Methods).

Out-of-sample prediction accuracy was evaluated for
10 repetitions of a 10-fold cross-validation scheme. The
Pearson correlation coefficient between the actual and
out-of-sample predicted behavior was used to quantify
prediction accuracy for each behavioral dimension. To
ensure that our results were not contingent on the
adoption of a particular statistical model, predictions
were independently performed using lasso regression [22]
and a regression model based on features identified by
the network-based statistic (NBS) [23] (Materials and
Methods). Prediction accuracies were averaged across
cross-validation folds and repetitions, and visualized in
the form of a matrix comprising behavioral dimensions
(rows) and communication models (columns) (Fig. 2a,c).

We found that individual variation in some behav-
ioral dimensions could be predicted with greater accu-
racy than others (lasso: F(4,80) = 10.67, p = 5 × 10−7;

NBS: F(4,80) = 47.18, p = 2 × 10−20). Dimensions char-
acterizing cognition (respective lasso and NBS accuracies
averaged across all predictors: 0.068, 0.101) and tobacco
use (0.061, 0.089) could be predicted more accurately
on average, whereas comparably weaker predictions of il-
licit substance use (-0.003, -0.002), personality-emotion
(-0.008, -0.003) and mental health (-0.014, -0.0003) were
evident (Fig. 2b,d).

Prediction accuracies were consistent between the two
statistical models (NBS, lasso), both when pooling the
five behavioral dimensions (Spearman rank correlation
coefficient r(83) = 0.60, p = 2 × 10−9; Fig. 2e), as well
as separately for cognition (r(16) = 0.56, p = 0.022; Fig.
2f) and tobacco use (r(16) = 0.67, p = 0.004; Fig. 2h).
However, lasso and NBS diverged for the dimensions that
were less accurately predicted (e.g., p = 0.313; Fig. 2g).
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FIG. 1. Methodology overview. (a) For each participant in our sample, structural connectomes comprising N cortical regions
were mapped using white matter tractography applied to diffusion MRI. Structural connectivity matrices were transformed into
communication matrices C ∈ RN×N , where C(i, j) denotes the communication efficiency from region i to region j. For each
participant, a total of 15 communication matrices were derived representing different combinations of network communication
models (shortest paths, navigation, diffusion, search information, communicability) and connection weight definitions (binary,
weighted, distance). To assess structure-function coupling, communication matrices were correlated with FC matrices com-
puted from resting-state functional MRI data. (b) Communication, FC and SC matrices were vectorized and aggregated across
n = 889 participants, resulting in 17 n × N(N − 1)/2 matrices of explanatory variables. A set of five behavioral dimensions
was computed by applying independent component analysis (ICA) to the HCP dataset of behavioral phenotypes. (c) Commu-
nication, SC and FC matrices were used to predict behavior. An entry in the resulting 17× 5 prediction matrix corresponds to
the mean cross-validated association between a communication or connectivity matrix and a behavioral dimension.

Focusing on lasso regression, we sought to determine
whether behavioral predictions were robust to variations
in our methodological settings. First, we found that
adopting the mean square error to quantify predictive
utility led to accuracies significantly associated to the
ones computed based on Pearson correlation (Fig. S1).
Second, we tested whether prediction accuracies were
sensitive to changes in our connectome mapping pipeline.
To this end, we recomputed behavioral predictions for
three additional sets of connectomes: (i) N = 360 regions

without connection thresholding, (ii) N = 68 regions
with connection thresholding, and (iii) N = 68 regions
without connection thresholding (Materials and Meth-
ods). Prediction accuracies were typically significantly
correlated across low- and high-resolution, as well as
thresholded and unthresholded, connectomes (Fig. S2).
This was the case both when considering all behaviors
and when restricting the analyses to the cognition and
tobacco use dimensions.

Together, these findings suggest that network commu-
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FIG. 2. Predicting individual variation in human behavioral dimensions using models of connectome communication, as well
as structural and functional connectivity (N = 360 thresholded connectomes). (a) Matrix of Pearson correlation coefficients
between actual and out-of-sample predicted behavior using lasso regression for five orthogonal behavioral dimensions (rows) and
15 connectome communication models as well as SC and FC (columns, predictors). (b) Lasso regression prediction accuracies
(correlation coefficients) stratified by behavioral dimensions. Each boxplot summarizes a row of the prediction accuracy matrix
and the superimposed data points are colored accordingly. Top and bottom edges boxplots indicate, respectively, the 25th
and 75th percentiles, while the central mark shows the distribution median. Mean prediction accuracies significantly differed
between the five behavioral dimensions (F(4,80) = 10.67, p = 5 × 10−7). (c-d) Same as (a-b), but for predictions carried out
using a regression model based on featured identified by the NBS. Again, mean prediction accuracies were significantly different
between behavioral dimensions (F(4,80) = 47.18, p = 2 × 10−20). Scatter plots showing the correspondence (Spearman rank
correlation coefficient and p-value) between lasso and NBS prediction accuracies for (e) all behavioral dimensions, (f) cognition,
(g) illicit substance use, (h) tobacco use, and (i) the average between cognition and tobacco use prediction accuracies. SPE:
shortest path efficiency, NE: navigation efficiency, DE: diffusion efficiency, SI: search information, CMY: communicability, bin:
binary, wei: weighted, dis: distance.

nication models (as well as SC and FC) can explain out-
of-sample inter-individual variance in behavior. More
specifically, cognition and tobacco use were the most ac-
curately and robustly predicted behavioral dimensions.

For this reason, we henceforth focus subsequent analy-
ses on the averaged prediction accuracy obtained for the
cognition and tobacco use dimensions. This provides us
with a single measure of how connectome communication
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relates to behavior by considering only the behavioral
traits that can be predicted with relevant accuracy. The
obtained prediction accuracy average was also consistent
across the lasso and NBS (r(16) = 0.50, p = 0.041; Fig.
2i).

Communication models improve the behavioral
predictive utility of the human connectome

We sought to compare communication models, as well
as SC and FC, in terms of their behavioral prediction
accuracy. Figure 3a shows the distributions of out-of-
sample accuracies (10 repetitions of 10-fold cross valida-
tion, averaged for the cognition and tobacco use dimen-
sions) obtained for the each predictor using lasso regres-
sion. Accuracy distributions were ranked based on their
medians. FC (median accuracy: 0.24) provided markedly
greater prediction accuracy than all communication mod-
els and SC. Binary navigation (median accuracy: 0.12)
and weighted communicability (median accuracy: 0.10)
followed as the second and third most predictive com-
munication models. Crucially, we observed that major-
ity of communication models yielded greater prediction
accuracy than SC (median accuracy: 0.03). This indi-
cates that modeling polysynaptic signaling through the
transformation of SC into communication matrices im-
proved the behavioral predictive utility of structural con-
nectomes.

We performed repeated measures t-tests to assess pair-
wise statistical differences in the predictive utility of com-
munication models and connectivity measures (Materials
and Methods). Figure 3b shows the effect size matrix (Co-
hen’s d; Bonferroni-corrected for 136 multiple compar-
isons with significance threshold α = 3.67× 10−4) of dif-
ferences between mean prediction accuracies, with warm-
and cool-colored cells indicating model pairs for which
a significant difference was observed. As expected, FC
outperformed all other predictors (e.g., p = 1×10−26 be-
tween FC and binary navigation), while there was no evi-
dence for a difference in predictive utility between binary
navigation (2nd best predictor) and weighted communi-
cability (3rd best predictor) following correction for mul-
tiple comparisons (p = 0.002). The lack of colored cells
along the main diagonal of the effective size matrix in-
dicates that predictors of similar ranking seldom yielded
significantly different accuracy. Importantly, seven com-
munication models (out of 15) significantly outperformed
SC, including binary navigation; binary, weighted and
distance communicability; binary and distance shortest
paths; and weighted search information (all p < 10−4).
This underscores the improvement in behavioral predic-
tive utility gained from accounting for polysynaptic com-
munication in structural connectomes, compared to pre-
dictions that only account for direct structural connec-
tions.

Next, we aimed to separate the effects of commu-
nication model choice and connection weight definition

on prediction accuracy. To this end, prediction accu-
racies were averaged over the three weight definitions
for each communication model (Fig. 3c,d), or aver-
aged over the 15 models for each weight definition (Fig.
3e,f). Prediction accuracies for FC and SC remained
the same. With respect to the effect of communica-
tion model, we found that communicability significantly
outperformed other communication models and SC (e.g.,
p = 3 × 10−5, 2 × 10−11 for comparisons of communica-
bility to navigation and SC, respectively), although FC
remained the leading predictor. Navigation and shortest
paths featured in second and third positions, both per-
forming better than SC (p = 3× 10−7, 3× 10−5, respec-
tively) and with no statistical difference between them
(p = 0.26).With respect to connection weight definition
binary connectomes yielded significantly higher predic-
tion accuracies, on average, compared to weighted and
distance connectomes (p = 0.009, 2×10−5, respectively),
albeit with a weaker effect size than differences between
communication models. This suggests that the choice of
communication model may be more important to behav-
ior predictions than the definition of connection weights.

In order to assess the robustness of these results, we
executed additional analyses in which we (i) substituted
the lasso prediction model with a regression model ap-
plied to features identified by the NBS (Fig. S3) and
(ii) considered predictions for the cognition and tobacco
use dimensions separately (Supplementary Note 1 ; Figs.
S4, S5, S6, S7). The NBS prediction method largely
reticulated lasso results (as was indicated by Fig. 2e-
i). FC remained the strongest predictor of behavior, al-
though with a smaller margin of difference to navigation
and communicability communication models. Examining
cognition and tobacco use independently reiterated the
overall good performance of navigation and communica-
bility. Importantly, however, it also revealed the pres-
ence of certain dimension-specific relationships between
communication and behavior. For instance, search infor-
mation yielded top- and bottom-ranking predictions for
cognition and tobacco use, respectively.

Taken together, the behavioral prediction analyses
led to three key findings. First, behavioral predictions
were more accurate when performed based on functional
rather than structural attributes. Second, while navi-
gation and communicability typically showed high pre-
dictive utility, our results did not point towards a sin-
gle communication model as the best predictor of hu-
man behavior. This indicates that different communi-
cation models may be better suited to predict different
behavioral dimensions, possibly suggesting the presence
of behavior-specific signaling mechanisms in the human
brain. Third, and most importantly, the transformation
of SC (only direct connections) into communication ma-
trices (models of polysynaptic interactions) led to an im-
provement of structural-based predictions, bringing them
closer to the predictive utility of FC. Collectively, these
findings indicate that connectome communication mod-
els capture higher-order structural relations among brain

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.053702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053702
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

FC
N

E bi
n

C
M

Y
w

ei
C

M
Y

bi
n

SP
E di

s
C

M
Y

di
s

SP
E bi

n
SI

w
ei

SI
bi

n
D

E w
ei

SP
E w

ei
N

E di
s

N
E w

ei
SI

di
s

SC
D

E di
s

D
E bi

n

-0.1

0

0.1

0.2

0.3

0.4

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy

Overall Pairwise comparisons

FC
N

E bi
n

C
M

Y
w

ei
C

M
Y

bi
n

SP
E di

s
C

M
Y

di
s

SP
E bi

n
SI

w
ei

SI
bi

n
D

E w
ei

SP
E w

ei
N

E di
s

N
E w

ei
SI

di
s

SC
D

E di
s

D
E bi

n

FC
NEbin

CMYwei
CMYbin
SPEdis

CMYdis
SPEbin

SIwei
SIbin

DEwei
SPEwei

NEdis
NEwei

SIdis
SC

DEdis
DEbin

-3

-2

-1

0

1

2

3
C

ohens's d
FC

C
M

Y N
E

SP
E SI SC D
E

0

0.2

0.4

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy Communication
Pairwise

comparisons

FC
C

M
Y N
E

SP
E SI SC D
E

FC
CMY

NE
SPE

SI
SC
DE

-2

0

2 C
ohens's d

Bin Wei Dis

-0.05

0

0.05

0.1

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy Weights
Pairwise

comparisons

Bin Wei Dis

Bin

Wei

Dis
-0.4

-0.2

0

0.2

0.4

C
ohens's d

a b

c d e f

FIG. 3. Comparison of the behavioral predictive utility of connectome communication models (Lasso regression, N = 360
thresholded connectomes, average cognition and tobacco use prediction accuracies). Across panels, top and bottom edges
boxplots indicate, respectively, the 25th and 75th percentiles, while the central mark shows the distribution median. (a)
Prediction accuracy distributions for 10 repetitions of 10-fold cross-validation. Communication models, SC and FC were sorted
based on their median prediction accuracy. (b) Effect size matrix of pairwise statistical comparisons between predictors.
Warm- and cool-colored cells indicate predictor pairs with significantly different means, as assessed by a repeated-measures
t-test (Bonferroni-corrected for 136 multiple comparisons with significance threshold α = 3.67 × 10−4). A warm-colored i, j
matrix entry indicates that predictor i yields significantly more accurate predictions than predictor j. (c) Prediction accuracy
distributions of communication models averaged across connection weight definitions. SC and FC were not subjected to any
averaging and accuracies remain the same as in panel (a). (d) Effect size matrix of pairwise repeated-measures t-tests between
distributions in panel (c), with colored cells indicating significant differences in mean prediction accuracies (Bonferroni-corrected
with significance threshold α = 0.0024). (e) Prediction accuracy distributions of connectomes with different connection weight
definitions averaged across communication models. (f) Same as panel (d), but Bonferroni-corrected with significance threshold
α = 0.0167.

regions that can better account for interindividual varia-
tion in behavior than SC alone.

Communication models improve structure-function
coupling

We next investigated whether accounting for network
communication in the structural connectome can improve
the strength of the relation between SC and FC, known
as structure-function coupling. Classically, associations
have been directly tested between structural and func-
tional connections [24]. A growing body of work in-

dicates that accounting for higher-order regional inter-
actions through models of polysynaptic signaling (i.e.,
transforming structural connectomes into communica-
tion matrices) can improve structure-function coupling
[5, 6, 8, 25, 26]. For two regions that are not directly
connected with an anatomical fiber, strong FC is con-
jectured to indicate the presence of an efficient signaling
path that facilitates communication through the under-
lying anatomical connections [3].

To test this hypothesis, we computed the association
between FC and communication matrices for each indi-
vidual in our sample. Additionally, as a benchmark, we
also considered the association of FC to SC and to in-
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terregional Euclidean distance. Associations were com-
puted as the Spearman correlation between upper trian-
gular matrix entries. In addition to individual-level as-
sociations, we also analyzed structure-function coupling
derived from group-level SC and FC. Finally, associa-
tions were derived for coarse- (N = 68 regions) and
fine-grained (N = 360 regions) connectomes, which were
thresholded prior to the computation of communication
models. FC matrices were not thresholded. Further de-
tails on the computation of structure-function coupling
are provided in the Materials and Methods.

As previously reported [6], communication matrices
were correlated with FC, irrespective of the particular
communication model (Fig. 4). In other words, FC was
generally stronger between regional pairs interconnected
by more efficient communication pathways. Group-level
correlations (rG; black crosses) were universally stronger
than those obtained for the median individual (rI ; box-
plots), supporting the notion that predicting population-
level FC traits is less challenging than modeling idiosyn-
cratic relationships between brain structure and function.

We found that parcellation resolution had a strong in-
fluence on the strength of structure-function coupling.
The link between structure and function weakened for
high resolution connectomes, irrespective of the commu-
nication model (Fig. 4a). Moreover, the ranking of com-
munication models in terms of structure-function cou-
pling differed between connectome resolutions (Spear-
man rank correlation between low- and high-resolution
FC predictions p = 0.65). For N = 68 regions, weighted
and distance diffusion yielded the strongest structure-
function couplings (rI = 0.46 and rG = 0.53 for weighted
diffusion; Fig. 4b,c). This recapitulates previous work in-
dicating the functional predictive utility of random walk
models applied to connectomes comprising less than one
hundred regions [25]. However, in sharp contrast, dif-
fusion performed poorly for N = 360 regions, going
from yielding the most accurate estimates of FC in low-
resolution but ranking as the worst overall predictor in
high-resolution. Conversely, the coupling between Eu-
clidean distance and FC showed the opposite relationship
to connectome resolution, with interregional distances
leading to weak and strong associations for coarse- and
fine-grained parcellations, respectively.

Navigation and shortest paths resulted in consistently
high-ranked FC predictions regardless of connectome res-
olution. For N = 68 regions, weighted navigation and
shortest paths showed comparable associations to the
top-ranking diffusion models (e.g., rI = 0.42 for weighted
shortest paths). For N = 360 regions, distance naviga-
tion was the top-ranking model (rI = 0.18 and rG = 0.22;
Fig. 4d,e), followed by distance shortest paths in second
place, both outperforming the Euclidean distance bench-
mark in the third position.

Crucially, despite the effects of connectome resolution,
modeling polysynaptic communication on top of struc-
tural connectomes tightened structure-function coupling.
This was the case for 8 and 9 out of the 15 communi-

cation models considered, for low- and high-resolution
connectomes, respectively. For instance, for the me-
dian individual, weighted diffusion in 68-region connec-
tomes strengthened coupling by 46% compared to SC,
while computing distance navigation in 360-region con-
nectomes boosted FC predictions by 66% compared to
SC.

Grouping couplings by communication models reit-
erated functional predictive utility differences between
low- and high-resolution connectomes (Fig. 4f). Group-
ing couplings by connection weight definitions showed
that, on average, communication models computed on
weighted and distance connectomes led to stronger cou-
plings for coarse- and fine-grained parcellations, respec-
tively (Fig. 4g), suggesting that the established influence
of interregional distance in SC and FC [27, 28] may be
stronger for connectomes derived at finer levels of areal
granularity.

In summary, we observed that structure-function
coupling is affected by connectome resolution and by
whether associations are computed on individual or pop-
ulation levels. Regardless of parcellation granularity,
most connectome communication models contributed to
strengthening structure-function coupling. Moreover,
navigation and shortest paths yielded the most accurate
and reliable predictions of FC. While here we focused on
thresholded connectomes, similar results were observed
for unthresholded networks (Fig. S8). Rankings of func-
tional predictive utility also remained consistent when
stratifying analyses between structurally connected and
unconnected region pairs, as well as for intrahemispheric
structure-function associations (Supplementary Note 2 ;
Fig. S9). Together, these observations build on the be-
havioral prediction findings, further supporting the no-
tion that connectome communication models contribute
to bridging the gap between brain structure and function.

Ranking communication models

Finally, we aimed to derive a single ranking of pre-
dictive utility, as the average of behavioral and func-
tional prediction accuracy rankings, for the 15 connec-
tome communication models explored and SC (Materi-
als and Methods). First, we focused on results obtained
for thresholded connectomes comprising N = 360 re-
gions. To this end, we averaged the rankings from three
analyses: lasso behavioral predictions (Fig. 3), NBS be-
havioral predictions (Fig. S3) and FC predictions (Fig.
4a). We found that distance navigation showed the high-
est combined behavioral and functional predictive util-
ity (average ranking τ = 3.7; 5a), followed by a tie
between distance shortest paths and weighted commu-
nicability (τ = 4.7). SC featured in the 11th position
and was outranked by most navigation, communicabil-
ity, shortest paths and search information models. We
also found that navigation was the top ranking model
regardless of connection weight definitions (τ = 5.9; 5b),
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FIG. 4. Structure-function coupling across connectome communication models (N = 68, 360 thresholded connectomes). (a)
Data points show individual-level correlation of FC to communication, SC and Euclidean distance matrices. Black crosses
indicate correlations obtained for group-averaged matrices. Top and bottom edges boxplots indicate, respectively, the 25th and
75th percentiles, while the central mark shows the distribution median. Communication models, SC and Euclidean distance
were ranked according to the median structure-function coupling strength across individuals. (b) Scatter plot depicting the
relationship between FC and the top-ranked communication model for connectomes comprising N = 68 regions, for the median
individual. For ease of visualization, communication matrix entries were resampled to normal distributions. Warm and cool
colors indicate high and low data point density, respectively. (c) Same as (b), but for group-average matrices. (d-e) Same
as (b-c), but for connectomes comprising N = 360 regions. (f) Structure-function coupling for communication models, SC
and Euclidean distance, averaged across connection weight definitions. (g) Structure-function coupling obtained for binary,
weighted and distance connectomes, averaged across communication models.

followed by communicability (τ = 6.3), shortest paths
(τ = 7.7), SC (τ = 8.7), search information (τ = 9.1),
and diffusion in the last position (τ = 13.6). More-
over, connection weights defined in terms of streamline
counts and Euclidean distance resulted in similar pre-
dictive utility rankings (τ = 7.4, 7.5, respectively) while
binary connectomes typically led to less accurate predic-
tions (τ = 10.5).

Next, we computed rankings for the three alternative
sets of connectomes considered in this study, namely
N = 360 unthresholded, N = 68 thresholded and N = 68
unthresholded connectomes (Fig. S10). Contrasting

results across these scenarios revealed that sparse and
fine-grained connectomes benefited more from models
of polysynaptic communication than dense and coarse-
grained connectomes. Intuitively, a densely connected
network requires few polysynaptic paths to propagate in-
formation, since most regions can communicate via direct
connections. Consequently, while navigation, communi-
cability and shortest paths typically improved the pre-
dictive utility of SC for N = 360, a markedly reduced
number of signaling strategies was beneficial to the per-
formance of connectomes comprising N = 68 regions.
Importantly, across all sets of SC reconstructions, nav-
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FIG. 5. Overall ranking of communication models (N = 360 thresholded connectomes). Communication models and SC
were ranked according to averaged behavioral and functional predictions. (a) Overall predictive utility ranking for N = 360
thresholded connectomes. Ranking shown in (a) grouped by (b) communication models and (c) connection weight definitions.

.

igation was the only model that constantly featured as
advantageous to the predictive utility of the human con-
nectome.

DISCUSSION

Human cognition and behavior arise from the or-
chestrated activity of multiple brain regions [29, 30].
Resisting-state FC is currently one of the most widely
used neuroimaging measures to quantify this concerted
activity [31–33]. It is thus unsurprising that statistical
methods trained on functional brain networks led to the
most accurate predictions of human behavior. Impor-
tantly, the signaling processes that facilitate synchronous
interregional activity must unfold along structural con-
nections forming direct or indirect (polysynaptic) com-
munication paths. Therefore, brain structure, brain func-
tion, neural communication, and human behavior are
tightly intertwined. This is corroborated by the key con-
clusion of the present study: accounting for polysynaptic
communication in SC matrices can substantially improve
structure-function coupling and the predictive utility of
SC. Transforming a SC matrix into a communication ma-
trix can be achieved efficiently for most communication
models without the need for any sophisticated computa-
tional processing. We recommend performing the trans-
formation when evaluating structure-function coupling or
using SC to predict interindividual variation in behavior.
While accounting for communication did not lead to SC
outperforming FC with respect to behavior prediction, it
narrowed that gap between the predictive utility of SC
and FC.

As investigators tackle the longstanding challenge of
elucidating the relationship between brain structure and
function [34–36], it has become increasingly clear that
FC arises from high-order regional interactions that can-
not be explained by direct anatomical connections [5]. In
line with this notion, we found that taking polysynaptic
signaling into account through network communication

models strengthened structure-function coupling. This
observation recapitulates earlier reports on the functional
predictive utility of connectome communication models
[6] and provides support to the notion that FC is fa-
cilitated by communication pathways in the underlying
structural connectome. Taken together, the behavioral
and functional prediction analyses contribute empirical
evidence that connectome communication models act as
a bridge between structural and functional conceptual-
izations of brain networks [3, 37].

Importantly, brain structure-function relationships en-
compass a rich and diverse field of research, with sev-
eral alternative classes of higher-order models showing
promise in modeling function from structure. Examples
include biophysical models of neural activity [38–40], sta-
tistical methods [41, 42], and other approaches centered
around network communication that we did not explore
in the present work [26, 43–45]. Likewise, relating neu-
roimaging data to behavior is a central goal of neuro-
science [46, 47]. Recent studies have explored neural
correlates of behavior and cognition by leveraging graph
measures of brain organization [48, 49], dynamic patterns
of FC fluctuations [50, 51], multivariate correlation meth-
ods [52, 53] and machine learning techniques [54, 55]. Our
analyses sought to complement these efforts from the per-
spective of connectome communication. The goal of this
paper was not to show that network communication mod-
els lead to more accurate predictions than alternative ap-
proaches, nor that our prediction scheme and statistical
methods are superior to previously adopted techniques.
Rather, we were interested in comparing the predictive
utility of candidate models of connectome communica-
tion, as well as connectivity and distance benchmarks, in
a controlled and internally consistent manner.
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Comparisons between connectome communication
models

Communication matrices computed with the naviga-
tion and communicability models typically led to the
highest-ranking behavioral predictions amongst the can-
didate signaling strategies explored. It is important to
notice, however, that search information and shortest
paths also performed well in certain scenarios. There-
fore, while our behavioral results strongly suggested the
benefits of modeling polysynaptic signaling, they did not
provide a clear answer to the question of which commu-
nication models are most associated to human behavioral
dimensions. Alternatively, our findings may indicate the
interesting possibility that large-scale information inte-
gration in the brain is not facilitated by a unique signal-
ing mechanism, and that different communication models
may find more utility in describing varied behavioral and
cognitive processes.

Navigation and shortest paths led to the most reliable
FC predictions, featuring as the best models for high-
resolution connectomes and closely following behind by
diffusion for low-resolution connectomes. Navigation and
shortest paths computed on distance connectomes led to
FC predictions that surpassed those obtained from Eu-
clidean distance, which exerts a well-documented influ-
ence on both SC and FC [27, 28, 56]. This indicates that
combining the contributions of brain network topology
and geometry might be helpful in modeling structure-
function relationships. Furthermore, given the high effi-
ciency of communication along navigation and shortest
paths, these findings suggest that FC is facilitated pri-
marily by highly efficient signaling pathways. This ob-
servation stands in contrast with previous work on the
functional relevance of models that incorporate devia-
tions from optimal routes, such as search information
[6, 57]. We note, however, that navigation implements a
decentralized identification of near-optimal paths [58, 59]
that contributes to the understanding of how efficient sig-
naling can be achieved in the absence of global knowledge
of network architecture [12, 60].

Combining communication model rankings from be-
havioral and functional predictions revealed that naviga-
tion was the model with the highest overall predictive
utility ranking. This finding provides initial evidence
that, out of the putative communication strategies ex-
plored, navigation may most faithfully describe underly-
ing neural signaling patterns supporting human behavior
and brain function. Our results contribute to the grow-
ing body of work supporting the neuroscientific utility of
network navigation [8, 12, 61–63].

In addition to investigating putative neural signaling
strategies, we also considered different connection weight
definitions. Polysynaptic transmission of neural signals
entails metabolic expenditures related to the propaga-
tion of action potential along axonal projections and the
crossing of synaptic junctions. Communication in the
brain is thought to be metabolically frugal [30, 66], but

what aspects of structural connectivity are relevant to en-
ergy consumption in large-scale signaling remain unclear.
We found that weighted and distance connectomes typi-
cally led to communication matrices with higher predic-
tive utility. This is initial evidence that neural signaling
may favor communication paths prioritizing the adoption
of physically short and high caliber connections, instead
of paths that reduce the number of synaptic crossings be-
tween regions. Additionally, these observations warrant
further investigation of the relatively unexplored distance
connectome [67].

In accordance to previous reports [68, 69], we observed
that FC predictions were more accurate for low- rather
than high-resolution connectomes, as well as for group-
rather than individual-level analyses. This is not sur-
prising since the number of functional connections grows
quadratically with the number of regions and capturing
idiosyncrasies in FC is more challenging than modeling
general principles of connectivity. Despite their simplic-
ity, these observations are important to the validation
of FC prediction methods, suggesting that models con-
structed and evaluated on coarse and population-level
networks may not generalize to more challenging settings.

Limitations and future directions

Several methodological limitations of the present work
should be discussed. First, we reiterate that the main
focus of our investigation was to perform an evaluation
of candidate models of connectome communication. Al-
though we explored multiple brain network reconstruc-
tion pipelines, we were not primarily concerned with
which mapping techniques produced connectomes with
the highest predictive utility. The choice of parcellation
schemes [70] and whether or not to threshold structural
connectomes [71, 72] are both complex open questions
that fall outside the scope of this work. We also note
that white matter tractography algorithms are suscepti-
ble to a number of known biases that could potentially
impact our results [73].

Further research is necessary to untangle the contri-
butions of specific brain regions to the predictive util-
ity of different communication models. This could be
achieved by examining lasso regression weights and NBS
connected components. Alternatively, behavior and func-
tional predictions could be performed based on region-
wise communication efficiencies, rather than complete
communication matrices [74]. Efforts in these directions
could help elucidate how different communication mod-
els utilize features of connectome topology to facilitate
information transfer.

While we sought to evaluate a wide-range of commu-
nication models, alternative network propagation strate-
gies could provide valuable insight into mechanisms of
neural signaling and warrant further research. These
include linear transmission models [26], biased random
walks [4], cooperative learning [75], dynamic communi-
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cation models [76], and information-theoretic approaches
[77].

In conclusion, we demonstrated that taking into ac-
count polysynaptic signaling via models of network com-
munication improves the behavioral and functional pre-
dictive utility of the human structural connectome. Over-
all, navigation ranked as the communication model with
highest predictive utility, indicating that it may faith-
fully approximate underlying signaling pathways related
to human behavior and brain function. These findings
contribute novel insights to researchers interested in char-
acterizing information processing in nervous systems.
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MATERIALS AND METHODS

Structural connectivity data

Minimally preprocessed high-resolution diffusion
weighted magnetic resonance imaging (MRI) data was
obtained from the Human Connectome Project (HCP)
[18]. Details about the acquisition and preprocessing
of diffusion MRI data are found in [78, 79]. Analyses
were restricted to participants with complete HCP
3T imaging protocol, yielding a total sample of 889
healthy adults (age 22–35, 52.8% females). Whole-brain
structural connectomes were mapped using diffusion
tensor imaging and deterministic white matter tractog-
raphy pipeline implemented using MRtrix3 [80] (FACT
tracking algorithm, 5× 106 streamlines, 0.5 mm tracking
step-size, 400 mm maximum streamline length and 0.1
fractional anisotropy cutoff for termination of tracks).
The connection weight between a pair of regions was
defined as the total number of streamlines connecting
them, resulting in a N ×N weighted connectivity matrix
for each participant. Group-level structural connectomes
were computed by averaging the connectivity matrices
of all subjects.

We used cortical parcellations containing N = 68, 360
regions. The 68-region parcellation consists of the
anatomically delineated cortical areas of the Desikan-
Killiany atlas [81]. The 360-region parcellation is a mul-
timodal atlas constructed from high-resolution structural
and functional data from HCP [20]. We also considered
thresholded and unthresholded connectomes. Following
connection density thresholding, only the top 15% and

20% strongest connection (in terms of streamline counts)
were kept in connectomes comprising 360 and 68 regions,
respectively. A more lenient threshold was applied to
connectomes with 68 regions in order to avoid network
fragmentation. Unthresholded connectomes maintained
all connections identified in the structural connectivity
reconstruction process.

Connection weight and length definitions

Structural connectomes can be defined in terms of
N × N adjacency matrices of connectivity weights (W )
or lengths (L). Connection weights provide a measure
of the strength and reliability of anatomical connections
between regions pairs, while connection lengths quantify
the distance or travel cost between regions pairs. Dif-
ferent network communication measures are computed
based on W (e.g., diffusion efficiency and communica-
bility), L (e.g., shortest path efficiency and navigation
efficiency) or a combination of both (e.g., search infor-
mation).

We considered three definitions of W : weighted, bi-
nary and distance. In the weighted case, Wwei(i, j) was
defined as the total number of streamlines with one end-
point in region i and the other in region j. The bi-
nary adjacency matrix was defined as Wbin(i, j) = 1 if
Wwei(i, j) > 0 and Wbin(i, j) = 0 otherwise. Distance-
based connectivity was defined as Wdis(i, j) = 1/D(i, j)
if Wwei(i, j) > 0 and Wdis(i, j) = 0 otherwise, where D is
the Euclidean distance matrix between region centroids.

Similarly, L was also defined in terms of binary,
weighted and distance connection traversal costs. In
all three cases, L(i, j) = ∞ for ij region pairs that
do not share a direct anatomical connection, ensuring
that communication is restrict to unfold through the con-
nectome. Binary (Lbin) and distance-based (Ldis) con-
nection lengths are straightforwardly defined from their
weight counterparts as Lbin(i, j) = 1 if Wbin(i, j) = 1
and Lbin(i, j) = ∞ otherwise, and Ldis(i, j) = D(i, j) if
Wdis(i, j) > 0 and Ldis(i, j) = ∞ otherwise. Lengths
based on the streamline count between regions pairs are
defined by monotonic weight-to-length transformations
that remap large connection weights into short connec-
tion lengths. This way, white matter tracts conjec-
tured to have high caliber and integrity are considered
faster channels of communication than weak and unreli-
able ones. We considered a logarithmic weight-to-length
remapping such that Lwei = −log10(Wwei/max(Wwei) +
1) (the unity addition to the denominator avoids the
remapping of the maximum weight into zero length) [12],
producing normally distributed lengths that attenuate
the important of extreme weights [82, 83].
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Network communication models

In this section, we provide details regarding the def-
inition of the five network communication models eval-
uated in this study. All computations were carried out
using freely available code provided in the Brain Con-
nectivity Toolbox (https://sites.google.com/site/
bctnet/) [84].

First, we note a subtle but important distinction be-
tween network communication models and measures. A
Network communication model (e.g., shortest path rout-
ing) delineates a strategy or algorithm to transfer infor-
mation between node pairs. In turn, a network commu-
nication measure (e.g., shortest path efficiency) quantify,
from a graph-theoretical standpoint, the efficiency of in-
formation transfer achieved by a given communication
model. For simplicity, we used “model” throughout this
paper to refer to both network communication models
and measures.

We also note that certain communication measures are
inherently asymmetric, in that Casy(i, j) 6= Casy(j, i).
While this asymmetry contains meaningful information
on signaling properties of nervous systems [8], in the
present study we consider symmetric communication ma-
trices given by C(i, j) = (Casy(i, j) + Casy(j, i))/2. This
simplification allows us to take into account only the up-
per triangle of C, substantially reducing the dimension-
ality of our predictive models and contributing to the
computational tractability of our analyses.

Shortest path efficiency

Shortest path routing proposes that neural signaling
takes place along optimally efficient paths that mini-
mize the sum of connection lengths traversed between
nodes. Let Λ∗ ∈ RN×N denote the matrix of shortest
path lengths, where Λ∗(i, j) = L(i, u) + ... + L(v, j) and
{u, ..., v} is the sequence of nodes visited along the short-
est path between nodes i and j. Shortest path efficiency
was defined as SPE = 1/Λ∗ [9]. We computed binary
(SPEbin), weighted (SPEwei), and distance (SPEdis)
shortest path efficiency matrices based on the Lbin, Lwei,
Ldis connection length matrices, respectively.

Navigation efficiency

Navigation routing identifies communication paths by
greedily propagating information based on a measure
of node (dis)similarity [11]. Following previous stud-
ies on brain network communication, we used the Eu-
clidean distance between region centroids to guide nav-
igation [8, 12]. Navigating from node i to node j in-
volves progressing to i’s neighbor that is closest in dis-
tance to j. This process is repeat until j is reached (suc-
cessful navigation) or a node is revisited (failed naviga-
tion). Successful navigation path lengths are defined as

Λ(i, j) = L(i, u) + ...+ L(v, j), where {u, ..., v} is the se-
quence of nodes visited during the navigation from i to
j. Failure to navigate from i to j yields Λ(i, j) = ∞.
Navigation efficiency was defined as NE = 1/Λ. Binary
(NEbin), weighted (NEwei), and distance (NEdis) nav-
igation efficiency matrices were computed based on the
Lbin, Lwei, Ldis, respectively.

Diffusion efficiency

Diffusion efficiency models neural signaling in terms
of random walks. Let T ∈ RN×N denote the transi-
tion matrix of a Markov chain process unfolding on the
connection weight matrix W . The probability that a
naive random walker at node i will progress to node j

is given by T (i, j) = W (i, j)/
∑N
u=1W (i, u). The mean

first passage time H(i, j) quantifies the expected num-
ber of intermediate regions visited in a random walk
from i to j (details on the mathematical derivation of
H from T are given in [13, 85, 86]). Diffusion efficiency
is defined as DE = 1/H, thus capturing the efficiency
of neural communication under a diffusive propagation
strategy [13]. Binary (DEbin), weighted (DEwei), and
distance (DEdis) diffusion efficiency matrices were com-
puted based on the Wbin, Wwei, Wdis, respectively.

Search Information

Search information is derived from the probability of
random walkers serendipitously traveling along the short-
est paths between node pairs [14]. Let Ω(i, j) = {u, ..., v}
be the sequence of nodes along the shortest path from
node i to node j computed from the connection length
matrix L. The probability of a random walker start-
ing at i reaches j via Ω(i, j) is given by P (Ω(i, j)) =
T (i, u) × ... × T (v, j), where T is the previously defined
transition probability matrix computed from W . We de-
fined search information as SI(i, j) = log2(P (Ω(i, j)))
[6, 8]. This definition quantifies how accessible shortest
paths are to naive random walkers, capturing the degree
to which efficient routes are hidden in network topology.
Note that the computation of search information depends
both on L—for the identification of shortest paths—and
W—for the simulation of random walk processes. We
used Wwei combined with Lbin, Lwei, and Ldis to com-
pute, respectively, binary, weighted, and distance ver-
sions of search information.

Communicability

Communicability models neural signaling as a diffu-
sive process unfolding simultaneously along all possi-
ble walks in a network [15]. Communicability between
nodes i and j is defined as the weighted sum of the
total number of walks between them, with each walk
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weighted by its length (i.e., number of connections tra-
versed). In the binary case, this yields CMY (i, j) =∑∞
n=0Wbin(i, j)n/n!. In the limit n→∞, this sum con-

verges to CMY (i, j) = eWbin(i,j). Non-binary connection
weight matrices are typically normalized as W ′wei(i, j) =

Wwei(i, j)/(
√
s(i)

√
(s(j))) prior to the computation of

communicability to attenuate the influence of high

strength nodes [16], where s(i) =
∑N
u=1Wwei(i, u) is the

total strength of node i. We used Wbin, W ′wei and W ′dis
to compute, respectively, binary, weighted and distance-
based versions of communicability.

Functional connectivity data

Minimally preprocessed resting-state functional MRI
data from the same 889 individuals was also obtained
from the HCP. Participants were scanned twice (right-
to-left and left-to-right phase encodings) on two separate
days, resulting in a total of four sessions per individual.
In each session, functional MRI data was acquired for
a period of 14m33s with 720ms TR. Further details on
resting-state functional MRI data collection and prepro-
cessing as described in [78, 87]. Functional activity in
each of N = 68, 360 regions was computed by averaging
the signal of all vertices comprised in the region. Pair-
wise Pearson correlation matrices were computed from
the regional time series of each session, resulting in four
matrices per participant. For each participant, the four
matrices were averaged to yield a final N × N FC ma-
trix. Group-level functional connectomes were computed
by averaging the FC matrices of all subjects.

Behavioral dimensions

Information on HCP behavioral protocols and proce-
dures is described elsewhere [88]. A total of 109 variables
measuring alertness, cognition, emotion, sensory-motor
function, personality, psychiatric symptoms, substance
use and life function were selected from the HCP be-
havioral dataset [19]. Selected items consisted of raw
(age- and gender-unadjusted), total or subtotal assess-
ment scores. The set of 109 measures was submitted to
an independent component analysis (ICA) pipeline in or-
der to derive latent dimensions summarizing orthogonal
dimensions of behavioral information. This procedure
contributed to the computational tractability of our anal-
yses by enabling behavioral inferences to be performed
on a small set of data-driven components, rather than
restricted to arbitrarily selected measures.

Behavioral dimensions were computed as follows. A
rank-based inverse Gaussian transformation [89] was
used to normalize continuous behavioral variables (87 of
109). Age and gender were regressed out from all behav-
ioral items. ICA was performed on the resulting residu-
als using the FastICA algorithm [90] implemented in the

icasso MALTLAB package [91]. Participants were sam-
pled with replacement to generate a total of 500 boot-
strap samples. ICA was independently performed on
each sample with randomly selected initial conditions.
Agglomerative clustering with average linkage was used
to derive consensus clusters of independent components
across different bootstrap samples and initial conditions.
This procedure, including bootstrapping and randomiza-
tion of initial conditions, was repeated for 10 trials of a
set of candidate ICA models ranging from 3 to 30 inde-
pendent components. The best number of components
was estimated based on the reproducibility across the 10
trials by means of a cluster quality index. Clearly sep-
arated clusters indicate independent components were
consistently and reliably estimated, despite being com-
puted based on different bootstrap samples and initial
conditions. This criterion identified the five component
model as the most robust and parsimonious set of latent
dimensions. The obtained components were visualized
as word clouds with font size proportional to the contri-
bution of each original behavioral variable (see Fig. S14
in [19]). This enabled the characterization of the five di-
mensions as cognitive performance, illicit substance use,
tobacco use, personality and emotion traits, and mental
health. Further details on the computation of the behav-
ioral dimensions are provided in [19].

Behavioral prediction framework

Let y ∈ Rn×1 be a vector of response variables corre-
sponding to a given behavioral dimension, where n = 899
is the number of individuals in our sample. LetX ∈ Rn×p
be a matrix of p explanatory variables corresponding to
the upper triangle of vectorized communication matri-
ces C ∈ RN×N , so that p = N(N − 1)/2. We applied
two independent statistical models to predict y from X:
lasso regression and a regression model based on network
features identified by the NBS. These models implement
different strategies of feature selection aimed at identify-
ing a parsimonious set of variables in X to predict y.

The data was split into train and test sets to perform
10-fold cross-validation. The family structured in the
HCP dataset was taken into account by ensuring that in-
dividuals of the same family were not separated between
train and test sets [54]. Sensitivity to particular train-
test data splits was addressed by repeating the 10-fold
cross-validation 10 times. The same train and test sets
were used for lasso and NBS regressions. Model param-
eter estimation was performed exclusively on train sets
while model performance was assessed exclusively on test
sets.

Lasso regression

Let {Xa, ya} and {Xe, ye} denote a split of {X, y} into
train and test sets, respectively. We used lasso regression
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[22] to compute β as

min
β∈Rp
{ 1

n
||ya −Xaβ||22 + λ||β||1},

where 0 ≤ λ ≤ 1 is a feature selection parameter con-
trolling model complexity. We systematically evaluated
100 logarithmically-spaced values of λ ranging from 0.001
to 1. Model fit was evaluated as the Pearson correlation
coefficient between ŷe and ye, where ŷe = Xeβ. For each
value of λ, model performance was computed as the av-
erage model fit over 100 pairs of train and test sets (10
repetitions of 10-fold splits). To avoid trivial cases for
which maximum performance is achieved for ||β||1 = 0,
we selected the smallest λ leading to model performance
within one standard deviation of the maximum perfor-
mance.

Network-based statistics regression

The NBS identifies sets of connected components that
explain significant interindividual variation in a response
variable [23]. We used the NBS as a feature selection
technique to identify behaviorally relevant groups of con-
nections. We then fit a regression model to the average
connection weight of the selected connections in order
to predict behavior. Importantly, connected components
were identified exclusively in training sets, while predic-
tion accuracy were computed based on held-out test sets.

Let {Xa, ya} and {Xe, ye} denote a split of {X, y} into
train and test sets, respectively. The cross-validated pre-
dictive utility of NBS connected components was com-
puted as follows. For each column of Xa (corresponding
to the value of a connection in the upper triangle of a
communication matrix C(i, j) across subjects in the train
set), the inter-individual Pearson correlation between
C(i, j) and ya was computed. Connections for which sta-
tistical association strength exceeded a t-statistic thresh-
old t > |3| were grouped into sets of positive (t > 3)
and negative (t < −3) connected components. This pro-
cedure was repeated for 1000 random permutations of
ya, and the likelihood of observing positive and negative
connected components as large as empirical ones was as-
sessed using a non-parametric test. Further details on
the NBS are found in [23].

Let Γ+ and Γ− be, respectively, the largest positive and
negative connected components identified by the NBS
based on the train data {Xa, ya}. We computed g+,−

a ∈
R|ya|×1 as the average weight of connections belonging to
the connected component Γ+,−:

g+,−
a =

1

|Γ+,−|
∑

u∈Γ+,−

Xa(., u),

where |Γ+,−| indicates the number of connections com-
prising the connected component. We defined the matrix
Ga = [g+

a |g−a ]. Therefore, Ga ∈ R|ya|×2 contains the av-
erage weight of connections identified as positively and
negatively associated with the behavioral dimension y for
subjects in the train set {Xa, ya}. Using a bivariate lin-
ear regression model, we computed the coefficients β such
that

min
β∈R2
{ 1

n
||ya −Gaβ||22}.

Analogously, we computed the average weight of con-
nected components in the test set

g+,−
e =

1

|Γ+,−|
∑

u∈Γ+,−

Xe(., u)

and Ge = [g+
e |g−e ]. Finally, behavioral predictions were

computed as ŷe = Geβ and out-of-sample prediction ac-
curacy was evaluated as the Pearson correlation coeffi-
cient between ŷe and ye. This procedure was repeat for
100 pairs of train and test sets (10 repetitions of 10-fold
splits). In cases where no significant component was iden-
tified by the NBS (|Γ+,−| = 0), model performance was
set to 0.

Functional connectivity prediction framework

FC prediction utility was determined via Spearman
correlation between empirical FC and analytically de-
rived communication matrices. Therefore, none of the
models and measures used to infer FC required train-
ing, statistical estimation of weights or parameter tuning
(an advantage over other classes of high-order models).
Hence, we oftentimes adopted the term FC “prediction”
even though predictive utility was not assessed out-of-
sample [6].

Overall predictive utility rankings

Overall ranking of communication model predictive
utility were computed by averaging rankings obtained
for behavioral and functional analyses, which were given
equal weight on the averaging process. The overall rank-
ing for thresholded N = 360 connectomes was com-
puted as the weighted average of rankings for (i) lasso
behavioral predictions (0.25 weight), (ii) NBS behav-
ioral predictions (0.25 weight), and (iii) FC predictions
(0.5 weight). Rankings for other connectome mapping
pipelines were computed by averaging, with equal weight,
lasso behavioral predictions and FC predictions.
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[41] A. Messé, D. Rudrauf, H. Benali, and G. Marrelec, “Re-
lating structure and function in the human brain: relative
contributions of anatomy, stationary dynamics, and non-
stationarities,” PLoS Comput Biol, vol. 10, p. e1003530,
Mar 2014.
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SUPPLEMENTARY INFORMATION

Note 1: Behavioral predictive utility for the
cognition and tobacco use dimensions

We have characterized the predictive utility of con-
nectivity measures and communication models by con-
sidering a pooled prediction accuracy between the cog-
nition and tobacco use dimensions. As we have seen,
these behavioral dimensions led to the most accurate and
consistent predictions in our sample. Considering the
average prediction accuracy across the two traits facili-
tated the comparison of communication models by pro-
viding us with a single score on which to evaluate pre-
diction accuracy. However, this approach may poten-
tially obscure nuanced phenotype-specific relationships
between brain and behavior. Indeed, we observed no cor-
relation between the prediction accuracies obtained for
cognition and tobacco use (Spearman rank correlation
p = 0.49, 0.69 for lasso and NBS, respectively). There-
fore, in this section, we sought to separately examine
behavioral predictions for the cognition and tobacco use
dimensions.

We observed that the outstanding performance of FC
was mostly due to the cognition dimension (Fig. S4 and
S5; this can also be observed in Fig. 2c,d). This is in line
with several findings on the relationship between cogni-
tive processes and the architecture of functional networks
[46]. Interestingly, while FC still yielded top-ranking pre-
dictions of tobacco use, several communication models
showed comparable predictive utility in this dimension
(Fig. S6 and S7; again evident in Fig. 2c,d). For in-
stance, navigation was the best predictor of tobacco use,
with binary and distance navigation occupying the first
positions under lasso and NBS, respectively. Although
none of the communication models statistically outper-
form FC, this points towards a tighter margin of differ-
ence between the utility of structural and functional mea-
sures in predicting behavioral phenotypes not directly re-
lated to cognition.

Another interesting observation was that weighted
search information was the best communication model
in predicting cognition, but showed near bottom-ranking
predictive utility of tobacco use, which resulted in a
moderate performance when combining predictions from
both behavioral dimensions. Along similar lines, we
observed that rankings of connection weight definitions
were sensitive different behavioral dimensions and predic-
tion methods, painting an unclear picture of what weight-
ing schemes best contribute to predict human behavior
from structural connectomes.

Therefore, collectively, our results did not point to-
wards a single communication model as the best predictor
of human behavior. Despite the overall good performance
of communicability and navigation, our observations in-
dicate that different communication models may be bet-
ter suited to predict different behavioral dimensions, pos-
sibly suggesting the presence of behavior-specific signal-
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ing mechanisms in the human brain. Importantly, across
the multiple analyses performed, our results consistently
suggested that network communication models, in par-
ticular communicability and navigation, improve the be-
havioral predictive utility of the human connectome.

Note 2: Additional analyses of structure-function
coupling

We further examined structure-function relationships
by stratifying FC predictions across anatomically con-
nected and unconnected regions pairs (Fig. S9a). In
accordance to previous work [6, 12], associations to
FC were stronger for connected regions. Despite these
changes in association strength, rankings of communi-
cation models in terms FC predictions were consistent
across the scenarios explored (Spearman rank correlation
r = 0.90, 0.68, 0.85 and p = 8×10−7, 3×10−3, 0 between
connected and all, all and unconnected, and connected
and unconnected region pairs, respectively). Interest-

ingly, certain communication models outperformed SC
for connected regions, suggesting that indirected polysy-
naptic signaling maybe relevant for communication even
in the presence of direct anatomical links.

Estimates of structure-function coupling depend on ac-
curate reconstruction of structural connectomes. How-
ever, white matter tractography is prone to a number
of known biases, of which the underestimation of inter-
hemispheric connections is an important concern [73]. To
attenuate this issue, past studies have focused on intra-
hemispheric characterization of structure-function cou-
pling [41, 56]. Focusing on the right hemisphere, we
found that, for all communication models, FC associa-
tions were stronger compared to whole-brain estimates
(Fig. S9b). Importantly, the functional predictive utility
ranking of communication models remained consistent
(Spearman rank correlation r = 0.93 and p = 0 between
whole-brain and right hemisphere rankings). This sug-
gests that our analyses may provide a meaningful rank-
ing of signaling strategies despite shortcomings in con-
nectome mapping techniques.
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FC
SI

w
ei

SI
bi

n
C

M
Y

w
ei

N
E bi

n
SP

E w
ei

C
M

Y
di

s
C

M
Y

bi
n

SC SI
di

s
N

E w
ei

D
E di

s
SP

E bi
n

SP
E di

s
N

E di
s

D
E bi

n
D

E w
ei

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy

Overall Pairwise comparisons

FC
SI

w
ei

SI
bi

n
C

M
Y

w
ei

N
E bi

n
SP

E w
ei

C
M

Y
di

s
C

M
Y

bi
n

SC SI
di

s
N

E w
ei

D
E di

s
SP

E bi
n

SP
E di

s
N

E di
s

D
E bi

n
D

E w
ei

FC
SIwei
SIbin

CMYwei
NEbin

SPEwei
CMYdis
CMYbin

SC
SIdis

NEwei
DEdis

SPEbin
SPEdis
NEdis
DEbin
DEwei

-3

-2

-1

0

1

2

3

C
ohens's d

FC SI
C

M
Y SC N
E

SP
E

D
E

-0.2

0

0.2

0.4

0.6

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy Communication
Pairwise

comparisons

FC SI
C

M
Y SC N
E

SP
E

D
E

FC
SI

CMY
SC
NE

SPE
DE

-2

0

2 C
ohens's d

Wei Bin Dis

-0.1

0

0.1

0.2

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy Weights
Pairwise

comparisons

Wei Bin Dis

Wei

Bin

Dis
-0.4

-0.2

0

0.2

0.4

C
ohens's d

a b

c d e f

FIG. S4. Comparison of the behavioral predictive utility of connectome communication models (Lasso regression, N = 360
thresholded connectomes, cognition prediction accuracy).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.053702doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053702
http://creativecommons.org/licenses/by-nc-nd/4.0/


22

FC
SI

w
ei

C
M

Y
w

ei

SC
N

E bi
n

C
M

Y
di

s
N

E di
s

C
M

Y
bi

n
D

E di
s

SP
E bi

n
SI

bi
n

N
E w

ei
SI

di
s

SP
E di

s
D

E bi
n

SP
E w

ei
D

E w
ei

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy

Overall Pairwise comparisons

FC
SI

w
ei

C
M

Y
w

ei SC
N

E bi
n

C
M

Y
di

s
N

E di
s

C
M

Y
bi

n
D

E di
s

SP
E bi

n
SI

bi
n

N
E w

ei
SI

di
s

SP
E di

s
D

E bi
n

SP
E w

ei
D

E w
ei

FC
SIwei

CMYwei
SC

NEbin
CMYdis

NEdis
CMYbin

DEdis
SPEbin

SIbin
NEwei

SIdis
SPEdis
DEbin

SPEwei
DEwei

-1.5

-1

-0.5

0

0.5

1

1.5

C
ohens's d

FC SC
C

M
Y SI N
E

D
E

SP
E

-0.2

0

0.2

0.4

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy Communication
Pairwise

comparisons

FC SC
C

M
Y SI N
E

D
E

SP
E

FC
SC

CMY
SI

NE
DE

SPE
-1

-0.5

0

0.5

1 C
ohens's d

Dis Bin Wei

-0.1

0

0.1

0.2

Be
ha

vi
or

al
 p

re
di

ct
io

n 
ac

cu
ra

cy Weights
Pairwise

comparisons

Dis Bin Wei

Dis

Bin

Wei -0.2

-0.1

0

0.1

0.2

C
ohens's d

a b

c d e f

FIG. S5. Comparison of the behavioral predictive utility of connectome communication models (NBS, N = 360 thresholded
connectomes, cognition prediction accuracy)
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FIG. S6. Comparison of the behavioral predictive utility of connectome communication models (Lasso regression, N = 360
thresholded connectomes, tobacco use prediction accuracy)
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FIG. S7. Comparison of the behavioral predictive utility of connectome communication models (NBS, N = 360 thresholded
connectomes, tobacco use prediction accuracy
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FIG. S8. Structure-function coupling across connectome communication models (N = 68, 360 unthresholded connectomes).
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FIG. S9. Stratification of structure-function coupling across connectome communication models (N = 360 thresholded connec-
tomes). Markers indicate median (across subjects) Spearman correlation between FC and communication models. Squared,
circular and triangular markers denote models computed on weighted, binary and distance connectomes, respectively. Marker
colors denote different FC predictors. Teal: shortest paths, violet: navigation, red: diffusion, blue: search information, orange:
communicability, pink: SC, and green: Euclidean distance. (a) Structure-function coupling anatomically connected (left),
all (center) and anatomically unconnected (right) region pairs. (b) Structure-function coupling for whole-brain (left) and
right-hemisphere (right) connectomes.
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FIG. S10. Overall ranking of communication models (multiple connectome mapping pipelines). Communication models and SC
were ranked according to averaged behavioral and functional predictions. (a,d,g) Overall predictive utility ranking. Rankings
shown in (a,d,g) grouped by (b,e,h) communication models and (c,f,i) connection weight definitions.
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